Articles | Volume 17, issue 1
https://doi.org/10.5194/hess-17-253-2013
https://doi.org/10.5194/hess-17-253-2013
Research article
 | 
22 Jan 2013
Research article |  | 22 Jan 2013

Echo state networks as an alternative to traditional artificial neural networks in rainfall–runoff modelling

N. J. de Vos

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Hydrological response to climate change and human activities in the Three-River Source Region
Ting Su, Chiyuan Miao, Qingyun Duan, Jiaojiao Gou, Xiaoying Guo, and Xi Zhao
Hydrol. Earth Syst. Sci., 27, 1477–1492, https://doi.org/10.5194/hess-27-1477-2023,https://doi.org/10.5194/hess-27-1477-2023, 2023
Short summary
Incorporating experimentally derived streamflow contributions into model parameterization to improve discharge prediction
Andreas Hartmann, Jean-Lionel Payeur-Poirier, and Luisa Hopp
Hydrol. Earth Syst. Sci., 27, 1325–1341, https://doi.org/10.5194/hess-27-1325-2023,https://doi.org/10.5194/hess-27-1325-2023, 2023
Short summary
Machine-learning- and deep-learning-based streamflow prediction in a hilly catchment for future scenarios using CMIP6 GCM data
Dharmaveer Singh, Manu Vardhan, Rakesh Sahu, Debrupa Chatterjee, Pankaj Chauhan, and Shiyin Liu
Hydrol. Earth Syst. Sci., 27, 1047–1075, https://doi.org/10.5194/hess-27-1047-2023,https://doi.org/10.5194/hess-27-1047-2023, 2023
Short summary
River hydraulic modeling with ICESat-2 land and water surface elevation
Monica Coppo Frias, Suxia Liu, Xingguo Mo, Karina Nielsen, Heidi Ranndal, Liguang Jiang, Jun Ma, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 27, 1011–1032, https://doi.org/10.5194/hess-27-1011-2023,https://doi.org/10.5194/hess-27-1011-2023, 2023
Short summary
Hydrological modeling using the Soil and Water Assessment Tool in urban and peri-urban environments: the case of Kifisos experimental subbasin (Athens, Greece)
Evgenia Koltsida, Nikos Mamassis, and Andreas Kallioras
Hydrol. Earth Syst. Sci., 27, 917–931, https://doi.org/10.5194/hess-27-917-2023,https://doi.org/10.5194/hess-27-917-2023, 2023
Short summary

Cited articles

Abrahart, R. J. and See, L. M.: Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments, Hydrol. Process., 14, 2157–2172, 2000.
Abrahart, R. J., Heppenstall, A. J. and See, L. M.: Timing error correction procedure applied to neural network rainfall-runoff modelling, Hydrol. Sci. J., 52, 414–431, https://doi.org/10.1623/hysj.52.3.414, 2007.
Abrahart, R. J., Anctil, F., Coulibaly, P., Dawson, C. W., Mount, N. J., See, L. M., Shamseldin, A. Y., Solomatine, D. P., Toth, E. and Wilby, R. L.: Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting, Prog. Phys. Geog., 36, 480–513, https://doi.org/10.1177/0309133312444943, 2012a.
Abrahart, R. J., Mount, N. J. and Shamseldin, A. Y.: Discussion of "Reservoir Computing approach to Great Lakes water level forecasting" by P. Coulibaly [J. Hydrol. 381 (2010) 76–88]. J. Hydrol., 422–423, 76–80, https://doi.org/10.1016/j.jhydrol.2011.10.006, 2012b.
Anctil, F., Michel, C., Perrin, C., and Andréassian, V.: A soil moisture index as an auxiliary ANN input for stream flow forecasting, J. Hydrol., 286, 155–167, 2004.
Download