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Abstract. Despite theoretical benefits of recurrent artificial
neural networks over their feedforward counterparts, it is
still unclear whether the former offer practical advantages
as rainfall–runoff models. The main drawback of recurrent
networks is the increased complexity of the training proce-
dure due to their architecture. This work uses the recently
introduced and conceptually simple echo state networks for
streamflow forecasts on twelve river basins in the Eastern
United States, and compares them to a variety of traditional
feedforward and recurrent approaches. Two modifications on
the echo state network models are made that increase the
hydrologically relevant information content of their internal
state. The results show that the echo state networks outper-
form feedforward networks and are competitive with state-
of-the-art recurrent networks, across a range of performance
measures. This, along with their simplicity and ease of train-
ing, suggests that they can be considered promising alter-
natives to traditional artificial neural networks in rainfall–
runoff modelling.

1 Introduction

The development of rainfall–runoff (R–R) models that make
accurate and reliable forecasts of river streamflow remains
among the most important and difficult tasks in hydrology.
A plethora of methods exist, such as the popular concep-
tual models which use simplified descriptions of physical
processes. Examples of this approach are the HBV model
(Lindström et al., 1997), TOPMODEL (Beven et al., 1995),
and the Sacramento soil moisture accounting model (Bur-
nash, 1995). Because of their flexibility and ease of use,
data-driven methods based on time series analysis, or, more

recently, machine learning methods such as artificial neural
networks (ANNs) are increasingly considered as alternatives
(e.g. Hsu et al., 1995; Shamseldin, 1997; Campolo et al.,
1999; Abrahart and See, 2000; Jain and Srinivasulu, 2004;
de Vos and Rientjes, 2008b). Although many investigations
of ANNs suggested good performance, their strongly empir-
ical, “black-box” nature limits possible applications, and has
raised concerns regarding their reliability and validity as hy-
drological models (e.g.Cunge, 2003; de Vos and Rientjes,
2005).

Most research on ANNs as R–R models has focused on
so-called feedforward ANNs, which perform a static map-
ping between model input and output. In order to represent
the memory of the system in feedforward ANNs, dynam-
ical properties are commonly explicitly modelled by using
tapped-delay lines on input variables so that the input space
is expanded to a certain time window. Recurrent ANNs, on
the other hand, have cyclical connections in the structure of
the network that allow an implicit, more parsimonious mod-
elling of dynamical properties. They implement dynamical
systems capable of representing and encoding deeply hidden
states in which a network’s output depends on an arbitrary
number of previous inputs, which is why their temporal rep-
resentation capabilities can be better than those of feedfor-
ward ANNs with tapped-delay lines (Saad et al., 1998). Since
river basins are dynamical systems, such capabilities seem
to give recurrent ANNs a significant advantage over feed-
forward ANNs in representing a basin’s hydrological state.
Indeed they have been successfully tested as R–R models
by, for example,Hsu et al.(1997), Coulibaly et al.(2000),
Chang et al.(2002) andChiang et al.(2004), but the number
of applications using feedforward ANNs dwarfs those with
recurrent ANNs. The main reason for this is that recurrency
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in ANNs causes increased complexity of the training proce-
dure as a result of the cyclical network connections, and sub-
sequent convergence problems for training algorithms (Atiya
and Parlos, 2000; Lukoševǐcius and Jaeger, 2009). As such,
it is still not fully clear whether recurrent ANNs, despite the-
oretical benefits, offer practical advantages over feedforward
ANNs with tapped-delay lines in R–R modelling.

Reservoir computing (RC) has recently been introduced
as an alternative to traditional recurrent ANNs (Jaeger,
2001). RC commonly involves (1) the generation of a non-
adaptable, recurrent ANN whose state maintains a non-linear
transformation of its input history (the “reservoir”), and
(2) the training of a non-recurrent, usually linear, model that
extracts the desired response from the reservoir’s state (the
“readout”). The training approach of RC methods can there-
fore be notably simpler and faster than the ones applied to
traditional recurrent ANNs. However, it requires that enough
process information is contained in the reservoir state for the
linear method to extract. RC methods have attracted a lot of
interest thanks to their fast training times and good perfor-
mance compared to traditional methods of system identifi-
cation, prediction and classification (Hammer et al., 2009;
Lukoševǐcius and Jaeger, 2009). The field is still very young,
though, and research on optimal reservoir design and read-
out methods is ongoing. Very few applications of RC in hy-
drology have been reported thus far. An early example is
Sacchi et al.(2007), who used the most popular RC model,
the echo state network (ESN), as one-month-ahead predic-
tor of hydropower plant reservoir inflow, based on histor-
ical inflow values. The ESN model was compared to the
Self-Organizing Nonlinear Auto-Regressive model with eX-
ogenous input (SONARX) (Barreto and Aráujo, 2001), a
SONARX variant based on the radial basis function net-
work (SONARX-RBF) (Sacchi et al., 2004) and the adaptive
neuro-fuzzy inference system (ANFIS) model (Jang, 1993),
with various windows-in-time as input for the latter mod-
els. It was concluded that ESN performed significantly better
than SONARX, and slightly better than the SONARX-RBF
and ANFIS models. Another example of RC methods in the
literature isCoulibaly(2010), who used ESNs for forecasting
monthly water levels of four North American Great Lakes.
It was shown that this model generally outperformed both
a standard recurrent ANN and a Bayesian neural network
model over a range of forecast lead times. The paper was
subsequently discussed and extended by means of a simple
linear benchmarking operation byAbrahart et al.(2012b),
who showed that the good performance of ESNs can be at-
tributed to their highly dynamical non-linear structure.

This study’s main aim is to find out if ESN R–R models
can be considered valid alternatives to feedforward and tradi-
tional recurrent ANN approaches. Forecasting performance
of such models is therefore evaluated on a variety of meso-
scale river basins. Experiments are done comparing three
different variations of the ESN with two simple benchmark
models, two feedforward ANN models, and three recurrent

ANN models, each of the latter trained with two recurrent
training algorithms. The comparison is made using a vari-
ety of performance measures, for one and multiple time steps
ahead. Additionally, several reservoir design aspects of ESNs
are investigated in order to optimise the hydrologically rele-
vant information contained in the reservoir state, allowing for
more accurate and reliable R–R models.

Section2 briefly reviews feedforward and traditional re-
current ANN models and their training methods, after which
a short introduction to RC is given. Section3 presents the
data set and model settings used in this work. The results of
these experiments are presented and discussed in Sect.4, and
finally conclusions are drawn in Sect.5.

2 Artificial neural networks

2.1 Feedforward versus recurrent networks

As shown in Fig.1a, feedforward ANNs only have forward
network connections between the network input(s), the hid-
den layer(s) of neurons and the output neuron(s). As such,
they can be thought to perform a static function mapping be-
tween an inputU and an outputY (see Eqs.1 and2).

yk = g

(
J∑

j=1

xjwjk+bk

)
(1)

xj = f

(
I∑

i=1

uiwij + bj

)
(2)

whereJ andI are the number of hidden neurons and inputs,
respectively,yk is the value of thekth output neuron,xj is the
so-called activation value of thej th hidden neuron,ui is the
ith input value,b is a bias value,w is a connection weight,
andf andg are transfer functions.f is almost always non-
linear andg either linear or non-linear.

In order to allow system memory to be incorporated into
these static ANN models, tapped-delay lines are commonly
used, which result in a window of historical values of the
variable as input signals (e.g.Ut ,Ut-1, . . . ,Ut-s). By increas-
ing s, the size of the input vector and therefore the number
of connection weights in the ANN are increased, making the
model less parsimonious.

Recurrent ANNs represent dynamical systems and are able
to model more complex temporal relationships. Figure1b
and c show the two types of traditional recurrent ANN mod-
els that are tested in this work, the Elman network (Elman,
1990) and the fully recurrent network (Williams and Zipser,
1989). Both networks have cyclical connections in the struc-
ture. The Elman network is a partially recurrent network
and has (besides feedforward connections) connections from
the hidden neurons that loop back to themselves, fully con-
nected, with a time step delay. The equation for the activation
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Fig. 1. (a)Feedforward ANN.(b) Elman recurrent ANN.(c) Williams–Zipser fully recurrent ANN.(d) Williams–Zipser fully recurrent and
fully feedforward ANN.(e)Echo State Network.(f) Layered Echo State Network. Note: bias signals are omitted for clarity.

function thus becomes

xt
j = f

(
I∑

i=1

ut
iwij +

K∑
k=1

xt-1
k wkj + bj

)
. (3)

In the Williams–Zipser fully recurrent ANN, the input con-
nects directly to all hidden and output neurons, and the to-
tal of hidden and output neurons is fully interconnected with
a time step delay.

2.2 Training methods

A common approach to ANN training in function approxi-
mation applications such as R–R modelling is to use super-
vised training. Sample input and output data are presented to
the network, after which optimisation algorithms attempt to
minimise the network output error by adjusting the network
weight matrixW. The most popular training method for feed-

forward ANNs is the standard backpropagation (BP) algo-
rithm (Rumelhart and McLelland, 1986), which uses a first-
order gradient-descent method to find optimal weight values.
The objective functionE(W) is calculated after which the BP
algorithm applies an update to the weights in the network:

1wji = −η
∂E

∂wji

, (4)

whereη is the learning rate of the BP algorithm. The weight
updating corresponds to following the gradient along the er-
ror surfaceE(W) in search for a minimum. Weight updates
can be performed every time a single training pattern has
been presented (i.e. online mode), or based on the mean error
over all training data (i.e. batch mode).

More sophisticated alternatives to the standard BP al-
gorithm, such as the conjugate gradient (CG) algorithm
and the second-order-gradient-based Levenberg–Marquardt
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(LM) algorithm, have been found to commonly outper-
form in terms of accuracy and convergence speed (e.g.
Møller, 1993; Hagan and Menhaj, 1994; de Vos and Rientjes,
2005). In the LM algorithm, weight updates are performed
according to

1w = −[H + µI ]−1JT e (5)

whereµ is a (variable) learning rate,J the Jacobian matrix
that contains first derivatives of the network errors with re-
spect to the weights,e a vector of network errors, andH an
approximation of the Hessian matrix,H = JT J. More infor-
mation can be found in (Hagan and Menhaj, 1994).

Recurrent ANN training has also traditionally relied on
gradient-based methods. The most commonly used algo-
rithm, backpropagation through time (BPTT), is an extension
of the standard BP method (seeWerbos, 1990). BPTT also
uses a first-order-gradient approach to weight updates. The
recurrent connections inside the network are dealt with by
unfolding time iterations of the network into layers, creating
an equivalent feedforward network (Atiya and Parlos, 2000).
Like BP, training can be performed in batch mode or online
mode. Using the latter, the network unfolding is limited to
a chosen truncation depth to keep the method computation-
ally feasible (Haykin, 1999).

The extended Kalman filter (EKF) is a well-known method
for non-linear state estimation of dynamical systems that has
been successfully used for recurrent ANN training (Pusko-
rius and Feldkamp, 1994; Sum et al., 1998). Following the
notation inHaykin(2001), the dynamics of the recurrent net-
work are modelled as

Wt+1 = Wt + ωt

Yt = ht (Wt ,Ut ,υ t-1) + υ t , (6)

whereW are the network weights,U the input,ω andυ are
Gaussian uncorrelated noises representing process and mea-
surement noise, respectively, andY is the output, which is
based on a time-dependent functionht . The task of the EKF
is to estimate optimal weights, given a series of observed out-
puts. This is done at each time step through so-called mea-
surement updates of the EKF procedure:

K t = PtHt

(
1

η
I + HT

t PtHt + Rt

)−1

Wt+1 = Wt + K tξt

Pt+1 = Pt − K tHT
t Pt + Qt , (7)

whereK is called the Kalman gain,P is the error covariance
matrix of the weights,Q is the covariance matrix of the noise
ω, R is the covariance matrix of the noiseυ, η is a learn-
ing rate parameter,ξ is the difference between observed out-
put and output calculated from the previous weight estimate,
andH contains the derivatives of the network output with re-
spect to the weights. The latter can be calculated using the
truncated BPTT procedure mentioned above.

Traditional RNN training using BPTT, and even the so-
phisticated EKF, suffers from several shortcomings related
to the combination of model complexity and gradient-based
optimisation (afterLukoševǐcius and Jaeger, 2009):

– Gradual weight updates during the training proce-
dure may drive recurrent networks through bifurcations
where gradient information becomes useless (Doya,
1992).

– Weight updates can be computationally expensive and
many updates may be necessary.

– Relationships over long-range memory are hard to
learn, because the necessary gradient information expo-
nentially dissolves over time (Bengio et al., 1994).

– Training algorithms require skill and experience to ap-
ply, since their complexity requires a number of global
control settings that are not easily optimised.

2.3 Reservoir computing

2.3.1 History and developments

Reservoir computing refers to a group of recurrent ANN
methods that share certain specific aspects of network design
and training that are notably different from traditional meth-
ods. Its primary examples are the independently proposed
but recently unified (seeVerstraeten et al., 2007) liquid state
machines (Maass et al., 2002), ESNs (Jaeger, 2001; Jaeger
and Haas, 2004) and Backpropagation-Decorrelation learn-
ing rule (Steil, 2004). In this work ESNs are used, which are
the simplest and most common approach to RC.

Recently, RC methods have attracted a lot of research in-
terest because they overcome several of the training prob-
lems of traditional recurrent ANN methods by separating the
simulation of model dynamics and the training of the net-
work. As a consequence, they offer excellent modelling ac-
curacy and fast training times (see review byLukoševǐcius
and Jaeger, 2009). Additionally, RC methods are easily ex-
tensible for additional outputs. However, significant research
challenges remain, concerning richness of reservoir dynam-
ics, optimal readouts and (both general and task-specific)
model design guidelines.

2.3.2 Reservoir and readout workings

RC involves (1) the generation of the so-called reservoir,
a non-adaptable recurrent ANN whose state maintains a non-
linear transformation of its input history, and (2) the training
of a non-recurrent, usually linear, readout that extracts the
desired response from the reservoir’s state (see Fig.1e for an
example RC network). The idea behind this is that the reser-
voir contains a representation of current and historical system
dynamics that is rich enough to enable the readout to learn
the functional dependence between system input and output.

Hydrol. Earth Syst. Sci., 17, 253–267, 2013 www.hydrol-earth-syst-sci.net/17/253/2013/



N. J. de Vos: Echo state networks as an alternative to traditional ANNs in R–R modelling 257

This approach can be thought of as non-linearly and tem-
porally expanding the input into a high-dimensional feature
vector and then utilizing those features using linear methods
(Lukoševǐcius and Jaeger, 2009), in the same vein as methods
that rely on kernel expansion (e.g. Support Vector Machines).

A reservoir functions like a regular recurrent ANN, with-
out the requirement that the neurons are arranged in layers.
Its architecture is not strictly defined, and can be custom-
made. It is not formally required, but generally intended that
the internal connections induce recurrent pathways between
neurons (Jaeger, 2001). Often a large, sparsely connected
reservoir with random weights is used, based on the intu-
ition that such a network should be able to maintain a rich
dynamical state. However, what exactly constitutes rich dy-
namics in the network’s activation values is generally not
well-defined and depends on the modelling task at hand.
Moreover, because of the strong coupling between activation
values, a reservoir often lacks the ability to represent multi-
ple time scales simultaneously. To overcome such problems,
various variations on reservoir design have been proposed
(see review byLukoševǐcius and Jaeger, 2009), but no sharp
guidelines for optimal reservoir design exist as of yet.

A condition called the ‘echo state property’ is imposed on
the reservoir of an ESN, which states that the effect of pre-
vious inputs and states on future states should vanish grad-
ually as time passes, and not persist or even get amplified
(seeJaeger, 2001; Buehner and Young, 2006, for details). By
scaling the reservoir weight matrixW according to its spec-
tral radius (i.e. largest absolute eigenvalue)ρ(W) < 1, this
condition is generally satisfied. The value of the spectral ra-
dius is intimately connected to the intrinsic time scale of the
dynamics of the reservoir state (Jaeger, 2002). Optimal val-
ues forρ(W) thus depend on the degree of non-linearity and
memory that a model requires.

Generally, linear readouts are used because they have the
advantage that they can be trained by well-studied and fast
linear regression methods. A popular example is ridge re-
gression (a.k.a. Tikhonov regularisation), which is based on
the idea of adding an additional cost term to the least squares
optimisation so that the norm of the weights is kept small.
It has been proven successful in improving robustness and
generalisation of RC models (Wyffels et al., 2008). In ridge
regression, weight values are determined according to

W = YXT (XXT
+ α2I)−1, (8)

whereY is the target output,X the reservoir state, andα
a regularisation parameter.

2.3.3 On instantaneous non-linear capacity of a
reservoir

Lukoševǐcius (2007) and Lukoševǐcius and Jaeger(2009)
have pointed out that the traditional ESN architecture can
suffer from an inability to produce a both non-linear and in-
stantaneous mapping from input to output. Feedforward and
partially recurrent ANNs such as the Elman network do have
this ability thanks to feedforward connections through one
or more hidden layers. Traditional ESN output, however, is
a linear combination of model input and reservoir state. Al-
though a reservoir allows for non-linear transformations of
the input, this signal is mixed with previous values of the
reservoir internal state.

A possible solution to this problem was introduced by
Lukoševǐcius (2007) in the form of layered echo state net-
works (LESNs). An LESN’s reservoir is divided intoL layers
with roughly the same amount of neurons, and each time step
it is updated layer by layer. Figure1f shows the organisation
of layers and connections inside a LESN. At each time step,
the activation values of the neurons in layer 1 are calculated
first, based on the input signals and the delayed recurrent
signals from all neurons (i.e. exactly like in a regular ESN).
Subsequent layers’ activation values are calculated from the
input, all previous layers’ present activation values and all re-
current signals. In this way, LESNs attempts to combine the
benefits of feedforward and recurrent connections by allow-
ing the input signals to propagate forward through multiple
layers of neurons during a single time step. IncreasingL en-
ables more complex instantaneous transformation at the cost
of reduced memory capacity.

The Williams–Zipser fully recurrent ANN to a certain
degree suffers from the same problem because of the lack
of non-delayed connections between input and output layer
through a hidden layer. This work therefore introduces a
variation on this network which does have feedforward con-
nections between the hidden layer and the output layer (the
WZFF, see Table2 and Fig.1d).

2.3.4 On reservoir dynamics

Ever since the introduction of ESNs, leaky-integrator neu-
rons have been suggested for allowing a reservoir to repre-
sent slower dynamics (Jaeger, 2001). Leaky-integrator neu-
rons apply a low-pass filter in the form of an exponential
moving average to its activation values, as shown in Eq. (9)
(cf. Eq. 3). The coefficientc ∈ [0,1] is the decay rate, for
which a value of 1 results in a regular neuron.

xt
j = (1-c)xt−1

j + f

(
I∑

i=1

ut
iwij +

K∑
k=1

xt-1
k wkj + bj

)
(9)
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Table 1.Overview of MOPEX river basins and their characteristics.

Mean Mean Mean Skew-
Mean annual annual annual ness

Area elev. precip. pot. evap. Q Q

ID River Latitude Longitude (km2) (m) Soil Vegetation (mm) (mm) (mm)

B1 S. Branch Potomac 39.4469−78.6544 3810 171 Loam Dec. broad leaf 1042 761 385 16.0
B2 Monocacy 39.3880 −77.3800 2116 71 Silt loam Dec. broad leaf 1041 896 420 11.0
B3 Rappahannock 38.3222 −77.5181 4134 17 Clay loam Mixed forest 1030 920 377 8.0
B4 Tygart Valley 39.1500 −80.0400 2372 390 Loam Dec. broad leaf 1166 711 745 4.2
B5 Bluestone 37.5439 −81.0106 1020 465 Silt clay loam/loam Dec. broad leaf 1018 741 421 5.3
B6 East Fork White 39.2000 −85.9256 4421 184 Silt loam/clay loam Cropland 1015 855 376 5.2
B7 French Broad 35.6092 −82.5786 2448 594 Loam Mixed forest 1383 819 796 4.2
B8 English 41.4664 −91.7156 1484 193 Clay loam Cropland 893 994 272 6.9
B9 Spring 37.2456 −94.5661 3015 254 Silt loam/clay loam Dec. broad leaf 1076 1094 302 12.5
B10 Amite 30.4639 −90.9903 3315 0 Silt loam Ever. needleleaf 1564 1073 584 7.4
B11 Guadelupe 29.8606 −98.3828 3406 289 Clay Crop/nat. veg. 765 1528 116 25.6
B12 San Marcos 29.6650 −97.6497 2170 98 Clay Crop/nat. veg. 827 1449 179 35.0

3 Experimental setup

3.1 Data

Following the recent call for the use of benchmark data sets
in ANN research byAbrahart et al.(2012a), the model sim-
ulations in this work are done on the well-known Model Pa-
rameter Estimation Experiment (MOPEX) data set as pre-
sented inDuan et al.(2006). This data set includes daily
precipitation, potential evaporation, and discharge data for
twelve river basins in the Eastern United States. Table1
shows geographical, hydrometeorological and land surface
characteristics of these basins. The skewness of the discharge
data is shown in the last column. High skewness values indi-
cate occurrence of extreme high flow events.

The data were split up into training (1979–1990, with the
first year for model spin-up), cross-validation (1991–1998)
and test (1960–1979) periods.

3.2 Model input and output

The data used as inputs to the ANN models are time series of
daily precipitation (P ), potential evaporation (E), discharge
(Q), and the 20-day simple moving average of the precipita-
tion time series (Pma). The latter serves as a crude indicator
of the wetness in the basin.

As explained in Sect.2, the Elman, Williams–Zipser and
ESN networks use only the latest values of theP , E, Q,
andPma data as input. Two feedforward models were con-
structed, one of which also uses only these latest values of the
4 variables, and the other used tapped-delay lines. In order to
determine the optimal input windows for these tapped-delay
lines, linear correlation and average mutual information be-
tween the input and output time series were calculated. These
results suggested that the information content with respect to
Q at timet+1 for all catchments was highest in the last three
time steps for bothP andQ. Moreover, because of the rela-
tively low time frequency of the data compared to the catch-

ment dynamics, there is high linear (auto-)correlation att0
and t-1 and a sharp drop after that. ForE andPma, corre-
lations were flatter and only time stept0 was chosen. This
results in a total of 8 inputs, as shown in Table2.

All input data were standardised to have a mean of 0 and
a standard deviation of 1, and the output data were nor-
malised to a range of−0.9 to 0.9.

3.3 Training settings

The feedforward ANNs were trained in batch mode by the
LM algorithm. Standard backpropagation was tested but not
presented here because it performed very poorly compared
to the LM algorithm, most likely due to the first-order gradi-
ent algorithm getting stuck in local optima. The Elman and
Williams–Zipser ANNs were trained online by both trun-
cated BPTT and EKF (with truncated BPTT for determin-
ing the necessary gradients). BPTT used a window size of 10
and a learning rate of 0.005. For EKF, a learning rateη of 1
was used, and the covariance matrixP was initialised with
values of 1000 on the diagonal and 0 elsewhere. The initial
matrices forQ andR used values of 10−4 and 200, respec-
tively. Before training, feedforward, Elman and Williams–
Zipser ANN weights were drawn randomly from a uniform
distribution wherew ∈ [−0.25,0.25]. The RC network read-
outs were trained in batch mode by ridge regression. Unless
noted otherwise, all presented summary statistics are based
on 20 independent training runs, to properly reflect the ef-
fects of randomness in initialisation and/or training of the
model weights.

A potential pitfall of ANN training is overfitting, which
means that the network has learned the intricacies of the
training data, including noise, and thereby has lost its abil-
ity to generalise beyond the specifics of this data. In order to
improve their generalisation capability, training of the feed-
forward, Elman and Williams–Zipser models used the often-
applied early-stopping approach, in which weight adaptation
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Table 2.Overview of the rainfall–runoff models used.

Model Architecture Inputs Network structure+ No. of weights Training method

PM Persistence model Qt – – –
LIN Multiple linear Pma,t ,Pt-2,Pt-1,Pt , – 9 Ridge regression

regression model Et ,Qt-2,Qt-1,Qt

FF Feedforward ANN Pma,t ,Pt ,Et ,Qt 4–2–1 13 LM
FFTDL Feedforward ANN w/ Pma,t ,Pt-2,Pt-1,Pt , 8–3–1 31 LM

tapped-delay lines Et ,Qt-2,Qt-1,Qt

ELBPTT Elman recurrent ANN Pma,t ,Pt ,Et ,Qt 4–4–1 41 BPTT
ELEKF Elman recurrent ANN Pma,t ,Pt ,Et ,Qt 4–4–1 41 EKF
WZBPTT Williams–Zipser Pma,t ,Pt ,Et ,Qt 4–4–1 50 BPTT

fully recurrent ANN
WZEKF Williams–Zipser Pma,t ,Pt ,Et ,Qt 4–4–1 50 EKF

fully recurrent ANN
WZFFBPTT Williams–Zipser Pma,t ,Pt ,Et ,Qt 4–4–1 54 BPTT

fully recurrent and
fully feedforward ANN

WZFFEKF Williams–Zipser Pma,t ,Pt ,Et ,Qt 4–4–1 54 EKF
fully recurrent and
fully feedforward ANN

ESN Echo State Network Pma,t ,Pt ,Et ,Qt 4–200–1 ≈ 9000 untrained Ridge regression
and 205 trained∗

LESN Layered Echo State Network Pma,t ,Pt ,Et ,Qt 4–200–1 ≈ 9000 untrained Ridge regression
with 2 layers and 205 trained∗

LESN-L Layered Echo State Network Pma,t ,Pt ,Et ,Qt 4–200–1 ≈ 9000 untrained Ridge regression
with 2 layers of and 205 trained∗

leaky-integrator neurons

+ Network structure is expressed as: number of input units – number of units in hidden layer or reservoir – number of neurons in output layer.
∗ The untrained weights are the randomly generated input-to-reservoir and internal reservoir weights. The trained weights are the readout weights.

is stopped when the error on the cross-validation data starts
to increase significantly. The linear regression methods of
the RC models exclude the use of early-stopping, so the
cross-validation data was not used in their training. Instead,
these models relied on regularisation by the ridge regression
method for good generalisation ability. Using trial-and-error
testing, a good value of the regularisation parameterα (see
Eq.8) was found to be 0.1.

The objective function used for training all ANN models
is the mean squared error (MSE) (Eq.10).

MSE=
1

T

T∑
t=1

(Q̂t − Qt )
2 (10)

where Q̂ is the estimated andQ the observed discharge
value.

3.4 Performance evaluation

Model performance is evaluated using the well-known Nash–
Sutcliffe coefficient of efficiency of both regular flow val-
ues (CE, Eq.11) and log-transformed flow values (CElog,
Eq. 12), and the Mean Squared Derivative Error (MSDE,
Eq.13). The CE is a scaled variation of the MSE and stresses
fit on peak flows, whereas the CElog focuses on low flows.

The MSDE penalises hydrograph shape errors, especially
timing errors and noise, thereby exploiting information that
is largely ignored by traditional hydrological model perfor-
mance measures (de Vos and Rientjes, 2008b). It ignores ab-
solute differences between the simulated and observed hy-
drographs, but instead expresses differences in their first
derivatives. The MSDE can be interpreted as a more accurate
variation of the well-known statistic that counts the number
of sign changes in the sequence of residuals, as used by the
National Weather Service (Brazil, 1988).

CE= 1−

T∑
t=1

(Q̂t − Qt )
2

T∑
t=1

(Qt − Q̄t )2

(11)

CElog = 1−

T∑
t=1

(ln(Q̂t ) − ln(Qt ))
2

T∑
t=1

(ln(Qt ) − ln(Q̄t ))2

(12)

MSDE=
1

T

T∑
t=1

((Q̂t − Q̂t-1) − (Qt − Qt−1))
2, (13)
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whereQ̄ is the mean observed discharge value.
As a baseline reference for comparing model performance,

a persistence model and a multiple linear regression model
were used. The persistence model merely copies the last
known value of variableQ as its prediction, creating a lagged
copy of the original time series. Comparison with this sim-
ple model allows for a more strict and appropriate evalua-
tion of ANN model performance because ANN R–R models
have been shown to be prone to the problem of merely us-
ing the last known discharge value in their prediction (Anctil
et al., 2004; de Vos and Rientjes, 2005; Abrahart et al., 2007;
de Vos and Rientjes, 2008a). The multiple linear regression
model is based on the same 8 inputs used for the feedfor-
ward model with tapped-delay lines (see Table2) and is also
calibrated using ridge regression.

3.5 Artificial neural network design

Through a trial-and-error approach, 2 and 3 neurons in a sin-
gle hidden layer were found to be optimal for the feedfor-
ward ANNs without and with tapped-delay lines, respec-
tively. Also, bias signals are used in the hidden layer and out-
put layer, bringing the total number of weights to be trained
to 13 and 31. The optimal number of hidden neurons for
the Elman network and the regular and feedforward varia-
tions of the Williams–Zipser ANN was determined to be 4,
resulting in 41, 50 and 54 weights, respectively (including
bias signals). All ANNs in this study used the hyperbolic
tangent transfer function in both the hidden and output neu-
rons. Although linear functions are often successfully used
in output neurons (e.g.Yonaba et al., 2010), the hyperbolic
tangent function was used for the sake of a fair comparison
with the Williams–Zipser networks, which use them in all
their neurons.

Initial tests suggested that the RC networks performed
best if the input signals, a bias signal with value 1, and the
reservoir were all fully and directly connected to the read-
out (as shown in the example in Fig.1e). The input and
bias were also fully connected to the reservoir. No feedback
connections from output to reservoir were used, since this
seemed to deteriorate performance. The weights of the input-
to-reservoir connections determine how strongly a reservoir
is excited by input, and thereby the degree of non-linearity
of its response. Here these weights were drawn randomly
from a uniform distribution wherew ∈ [−0.1,0.1]. All other
connection weights were drawn from a normal distribution.
The common practice of using a sparsely and randomly con-
nected reservoir is followed, by randomly allowing approxi-
mately 20 % of all connections to be active.

The size of the reservoir determines to a large degree
the capacity of a network to learn complex dynamics with
reasonable accuracy. Additionally, the spectral radius of the
reservoir weights controls reservoir dynamics and therefore
is an important setting for a RC model (Jaeger, 2002). Fig-
ures2 and3 show training and cross-validation performance,

respectively, over a range of values for both parameters. The
results show that large reservoirs, especially in combination
with large spectral radii, fit the training data best, but gener-
ally at the expense of the cross-validation performance. This
is an indication that RC models can be overfitted to the train-
ing data, despite regularisation by the ridge regression proce-
dure. A moderate reservoir size of 200 and spectral radius of
0.6 were chosen for further simulations to avoid such prob-
lems. Although ignored here in order to allow fair compari-
son with other ANNs, there are sometimes significant differ-
ences between the optimal parameter values for each of the
basins, indicating different system dynamics, complexities,
and degrees of overfitting.

The LESN model that allows for instantaneous non-linear
transformations, as discussed in Sect.2.3.3, was trained with
a range of settings for the number of layersL and evalu-
ated on the cross-validation performance, which showed that
the optimal number of layers was 2. To improve reservoir
dynamics, Eq. (9) was tested on the recurrent connections
of the LESNs (but not the feedforward connections, as not
to reduce their instantaneous non-linear capabilities), result-
ing in the LESN-L model. Initial tests showed that good val-
ues for the coefficientc vary between basins due to differ-
ences in hydrometeorological drivers and basin characteris-
tics. Therefore, in order to encompass a range of possible
system dynamics, the 100 neurons of each of the layers of the
LESN were assigned coefficients that were evenly distributed
between 0.01 and 1.

4 Results and discussion

Figures4 and5 show the CE for the training and test data,
respectively, for all models mentioned in Table2. The over-
all performance of all ANNs is quite good, judging from the
comparison with the persistence model (PM) and multiple
linear regression (LIN) benchmark models and the high ab-
solute range of CE values. The performance also compares
well to the results presented inDuan et al.(2006), who use
the same data set for calibrating 8 well-known conceptual
models over the entire available history. Figure 12 of that pa-
per shows that the models’ mean Nash–Sutcliffe values over
the 12 catchments range between 0.38 and 0.71, and 4 of
these models even have a mean below 0.55.

Moreover, results are largely consistent between the train-
ing and test data, which means that the models having kept
their ability to generalise and are not significantly overfitted.
Some river basins (especially B11 and B12) seem to be diffi-
cult to model, judging from the low performance of the PM
and LIN models. This may be because these catchments are
relatively dry and suffer more from flash floods (see Table1).
Additionally, extrapolation issues arise, specifically in basins
B2, B3 and B11. These all have one extreme event occur-
ring in the test data that falls significantly outside the range
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Fig. 2. ESN training performance (averaged over 10 runs) over a range of values for the reservoir size (y-axis) and spectral radius (x-axis).
Lighter shades represent a low MSE, darker shades a high MSE.
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Fig. 3. ESN cross-validation performance (averaged over 10 runs) over a range of values for the reservoir size (y-axis) and spectral radius
(x-axis). Lighter shades represent a low MSE, darker shades a high MSE.
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Fig. 4. Training performance in terms of CE. The box plot expresses statistics of over 20 models runs. The central mark is the median, the
edges of the box are the first and third quartiles, and points outside that range are plotted individually as dots. Note that not all subfigures
have the same scale.

for which the models have been trained, and that attributes
significantly to a lower CE.

The feedforward ANNs both generally perform reasonably
well and did not require a lot of computational effort. Their
non-linearity proves to have added value over the LIN model.
However, their spread in performance is often large, which
is likely due to the LM algorithm getting stuck in local op-
tima. The tapped-delay lines of the FFTDL network help per-
formance on several basins (especially B6 and B10), while
performance on others stays largely the same.

All (partially) recurrent models that have non-linear feed-
forward connections between input and output (EL, WZFF,
and LESN) clearly produce superior results over the mod-
els that do not (WZ and ESN). In the meso-scale catchments
and for a forecast lead time of one day, the ANNs get most
of their information forQ(t +1) from Q(t) andP(t), as un-
derlined by the good performance of the FF model. The lat-
ter group’s relatively poor performance therefore seems to
be attributable to the lack of a sufficiently non-linear, in-
stantaneous mapping of these variables (see discussion in
Sect.2.3.3).

The BPTT training algorithm shows poor performance on
most basins, both for the Elman and Williams–Zipser ANNs.
This algorithm was also found to be the slowest of all algo-
rithms tested. These results confirm the drawbacks of gradi-
ent methods for recurrent ANNs, as discussed in Sect.2.2.
EKF, on the other hand, proves to be a powerful training
method that generally allows the Elman and Williams–Zipser

networks to utilise their recurrent architectures and outper-
form the feedforward networks.

ELEKF and WZFFEKF generally outperform FFTDL , sug-
gesting that recurrent ANNs are better models for dealing
with system dynamics than feedforward ANNs with tapped-
delay lines. However, the EKF algorithm takes significantly
more training time and it needs a lot of settings to be tweaked.

Despite randomness in their reservoir construction, the
RC models’ performance are more consistent than any other
model group. Computational effort was higher than the feed-
forward ANNs, due to the simulation of the reservoir, but
less than the other recurrent models, thanks to the fast ridge
regression training procedure.

Figures6 and7 respectively show the CElog and MSDE
performance for the test data, allowing for a more rigor-
ous evaluation of the various models. Both fits on low flow
(as judged from the CElog values) and hydrograph shape
(as judged from the MSDE values) largely confirm the CE
results, indicating reliability of its findings. Again, ELEKF,
WZFFEKF and LESN seem to be the best models, and differ-
ences between them are small.

For some models or algorithms there seems to be a trade-
off between performance measures. The most clear example
of this is the performance of BPTT which sometimes scores
very well on CElog. Apparently, the BPTT algorithms does
find its way to local optima that simulate low flows well,
but is unable to fine-tune to also fit the more challenging
peak flows.
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Fig. 5. Test performance in terms of CE. The box plot expresses statistics of over 20 models runs. The central mark is the median, the edges
of the box are the first and third quartiles, and points outside that range are plotted individually as dots. Note that not all subfigures have the
same scale.

−1

−0.5

0

0.5

1

P
M

L
IN

F
F

F
F

−
T

D
L

E
L
−

B
P

T
T

E
L
−

E
K

F

W
Z

−
B

P
T

T

W
Z

−
E

K
F

W
Z

F
F

−
B

P
T

T

W
Z

F
F

−
E

K
F

E
S

N

L
E

S
N

L
E

S
N

−
L

B1

−1

−0.5

0

0.5

1

P
M

L
IN

F
F

F
F

−
T

D
L

E
L
−

B
P

T
T

E
L
−

E
K

F

W
Z

−
B

P
T

T

W
Z

−
E

K
F

W
Z

F
F

−
B

P
T

T

W
Z

F
F

−
E

K
F

E
S

N

L
E

S
N

L
E

S
N

−
L

B2

0

0.2

0.4

0.6

0.8

1

P
M

L
IN

F
F

F
F

−
T

D
L

E
L
−

B
P

T
T

E
L
−

E
K

F

W
Z

−
B

P
T

T

W
Z

−
E

K
F

W
Z

F
F

−
B

P
T

T

W
Z

F
F

−
E

K
F

E
S

N

L
E

S
N

L
E

S
N

−
L

B3

0

0.2

0.4

0.6

0.8

1

P
M

L
IN

F
F

F
F

−
T

D
L

E
L
−

B
P

T
T

E
L
−

E
K

F

W
Z

−
B

P
T

T

W
Z

−
E

K
F

W
Z

F
F

−
B

P
T

T

W
Z

F
F

−
E

K
F

E
S

N

L
E

S
N

L
E

S
N

−
L

B4

0

0.2

0.4

0.6

0.8

1

P
M

L
IN

F
F

F
F

−
T

D
L

E
L
−

B
P

T
T

E
L
−

E
K

F

W
Z

−
B

P
T

T

W
Z

−
E

K
F

W
Z

F
F

−
B

P
T

T

W
Z

F
F

−
E

K
F

E
S

N

L
E

S
N

L
E

S
N

−
L

B5

0

0.2

0.4

0.6

0.8

1

P
M

L
IN

F
F

F
F

−
T

D
L

E
L
−

B
P

T
T

E
L
−

E
K

F

W
Z

−
B

P
T

T

W
Z

−
E

K
F

W
Z

F
F

−
B

P
T

T

W
Z

F
F

−
E

K
F

E
S

N

L
E

S
N

L
E

S
N

−
L

B6

0

0.2

0.4

0.6

0.8

1

P
M

L
IN

F
F

F
F

−
T

D
L

E
L
−

B
P

T
T

E
L
−

E
K

F

W
Z

−
B

P
T

T

W
Z

−
E

K
F

W
Z

F
F

−
B

P
T

T

W
Z

F
F

−
E

K
F

E
S

N

L
E

S
N

L
E

S
N

−
L

B7

0

0.2

0.4

0.6

0.8

1

P
M

L
IN

F
F

F
F

−
T

D
L

E
L
−

B
P

T
T

E
L
−

E
K

F

W
Z

−
B

P
T

T

W
Z

−
E

K
F

W
Z

F
F

−
B

P
T

T

W
Z

F
F

−
E

K
F

E
S

N

L
E

S
N

L
E

S
N

−
L

B8

−1

−0.5

0

0.5

1

P
M

L
IN

F
F

F
F

−
T

D
L

E
L
−

B
P

T
T

E
L
−

E
K

F

W
Z

−
B

P
T

T

W
Z

−
E

K
F

W
Z

F
F

−
B

P
T

T

W
Z

F
F

−
E

K
F

E
S

N

L
E

S
N

L
E

S
N

−
L

B9

0

0.2

0.4

0.6

0.8

1

P
M

L
IN

F
F

F
F

−
T

D
L

E
L
−

B
P

T
T

E
L
−

E
K

F

W
Z

−
B

P
T

T

W
Z

−
E

K
F

W
Z

F
F

−
B

P
T

T

W
Z

F
F

−
E

K
F

E
S

N

L
E

S
N

L
E

S
N

−
L

B10

−1

−0.5

0

0.5

1

P
M

L
IN

F
F

F
F

−
T

D
L

E
L
−

B
P

T
T

E
L
−

E
K

F

W
Z

−
B

P
T

T

W
Z

−
E

K
F

W
Z

F
F

−
B

P
T

T

W
Z

F
F

−
E

K
F

E
S

N

L
E

S
N

L
E

S
N

−
L

B11

−1

−0.5

0

0.5

1

P
M

L
IN

F
F

F
F

−
T

D
L

E
L
−

B
P

T
T

E
L
−

E
K

F

W
Z

−
B

P
T

T

W
Z

−
E

K
F

W
Z

F
F

−
B

P
T

T

W
Z

F
F

−
E

K
F

E
S

N

L
E

S
N

L
E

S
N

−
L

B12

Fig. 6. Test performance in terms of CElog. The box plot expresses statistics of over 20 models runs. The central mark is the median, the
edges of the box are the first and third quartiles, and points outside that range are plotted individually as dots. Note that not all subfigures
have the same scale.
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Fig. 7. Test performance in terms of MSDE. The box plot expresses statistics of over 20 models runs. The central mark is the median, the
edges of the box are the first and third quartiles, and points outside that range are plotted individually as dots. Note that not all subfigures
have the same scale.

Fig. 8. Forecasting performance for lead times of 1 to 3 days. Presented are the median values of the CE over 20 model runs, cut off at
minimum of 0 for clarity.
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The inclusion of slower dynamics in the reservoir using
leaky-integrator neurons could be beneficial to a RC R–R
model, considering the broad range of time scales on which
hydrological processes take place. However, the results of the
so-called LESN-L model (see Figs.4 to 7), show that the
leaky-integrator neurons are not successful in significantly
increasing the information content of the reservoir. Instead,
the model merely ends up with a different trade-off between
CE, CElog and MSDE, compared to the LESN model.

Figure 8 shows CE performance of all model structures
for forecast lead times of 1 to 3 days. Because of the time
scale of the time series (daily) in combination with the res-
idence time of the catchments (often in the order of 12 to
24 h), the differences between models are small compared to
the overall deterioration of model results. Nevertheless, the
best models are again ELEKF, WZFFEKF and LESN, with the
latter slightly outperforming the former two. The slower dy-
namics inside the LESN-L model seems to give it a slightly
increased capacity for forecasting over larger lead times.

5 Conclusions

Recurrent ANNs can theoretically represent river basins in
a more efficient and realistic way than feedforward networks
because of their intrinsic similarity (i.e. both are dynami-
cal systems). However, such theoretical benefits do not al-
ways manifest themselves due to shortcomings of the train-
ing procedure, as exemplified by the underperformance of
the popular BPTT algorithm in this work. The state-of-the-
art EKF training approach, on the other hand, produced good
results that prove the value of recurrent ANNs over their
feedforward counterparts.

The recently introduced, conceptually simple ESN mod-
els that were the main focus of this study are found to be
valid alternatives to feedforward and traditional recurrent
ANNs. They show good accuracy and reliability compared
to even the best traditional recurrent methods tested, often
even outperforming them by a small margin. Moreover, they
exhibit faster training times since this procedure is simpli-
fied to a multiple linear regression problem. By separating
model dynamics and the training procedure, more insight-
ful models are accomplished, which might benefit future re-
search on ANNs in hydrological modelling since the lack of
transparency is generally considered their biggest drawback.

However, the effectiveness of ESN models is strongly de-
pendent on an internal network state that is both sufficiently
rich and relevant to the problem at hand. For example, the
standard ESN model suffered from poor performance here
due to its limited instantaneous non-linear capacity. A varia-
tion with a layered reservoir that allows for a both instanta-
neous non-linear and dynamical mapping proved far more
successful. A second, somewhat less successful reservoir
modification was the use of a range of leaky-integrator neu-
rons that enables simultaneous representation of different hy-

drological time scales within a reservoir. Future research that
focuses on a wider range of time scales might shed more light
on potential benefits of such an approach.

In conclusion, the results of this work suggest that the case
for recurrency in ANN R–R models should be reconsidered.
The specific architecture of ESN models overcomes several
important drawbacks to traditional recurrent methods. This
approach can lead to more accurate, reliable, and realistic
models. Their concept of separating model dynamics simu-
lation and network training may offer a peek into the black
box of ANN R–R models, and present opportunities in hy-
drological modelling (e.g. as members of a model committee
or in hybrid conceptual/empirical operational models).

Research on RC methods such as the ESN is still in
its infancy, and more research clearly is needed on their
use as R–R models, in order to further validate the tech-
nique’s usefulness. Applications on different river basins,
scales of space and time, and forecast horizons would in-
crease insights into its effectiveness and reliability. Addition-
ally, there is still a clear need for comprehensive investiga-
tions on how to maximise information content in a reservoir,
and on which readouts can effectively and efficiently extract
such information.
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Barreto, G. de A. and Aráujo, A. F. R.: A self-organizing NARX
network and its application to prediction of chaotic time series,
in: Proceedings of the IEEE Intl. Joint Conference on Neural Net-
works, vol. 3, Washington D.C., USA, 2144–2149, 2001.

Bengio, Y., Simard, P., and Frasconi, P.: Learning long-term depen-
dencies with gradient-descent is difficult, IEEE T. Neural Netw.,
5, 157–166, 1994.

Beven, K. J., Lamb, R., Quinn, P. F., Romanowicz, R., and Freer, J.:
TOPMODEL, in: Computer Models of Watershed Hydrology,
edited by: Singh, V. P., Water Resources Publications, Colorado,
627–668, 1995.

Brazil, L. E.: Multilevel calibration strategy for complex hydro-
logic simulation models, Ph.D. dissertation, Colo. State Univ.,
Fort Collins, 1988.

Buehner, M. and Young, P.: A tighter bound for the echo state prop-
erty, Neural Netw., 17, 820–824, 2006.

Burnash, R. J. C.: The NWS river forecast system – catchment mod-
eling, in: Computer Models of Watershed Hydrology, edited by:
Singh, V. P., Water Resources Publications, Colorado, 311–366,
1995.

Campolo, M., Andreussi, P., and Soldati, A.: River flood forecast-
ing with a neural network model, Water Resour. Res., 35, 1191–
1197, 1999.

Chang, F. J., Chiang, L. C., and Huang, H. L.: Real-time recurrent
learning network for stream-flow forecasting, Hydrol. Process.,
16, 2577–2588, 2002.

Chiang, Y. M., Chiang, L. C., and Chang, F. J.: Comparison of
static-feedforward and dynamic-feedback neural networks for
rainfall-runoff modeling, J. Hydrol., 290, 297–311, 2004.

Coulibaly, P.: Reservoir computing approach to Great Lakes water
level forecasting, J. Hydrol., 381, 76–88, 2010.

Coulibaly, P., Anctil, F., Rasmussen, P., and Bobée, B.: A recur-
rent neural networks approach using indices of low-frequency
climatic variability to forecast regional annual runoff, Hydrol.
Process., 14, 2755–2777, 2000.

Cunge, J. A.: Of data and models, J. Hydroinform., 5, 75–98, 2003.
de Vos, N. J. and Rientjes, T. H. M.: Constraints of artificial neural

networks for rainfall-runoff modelling: trade-offs in hydrological
state representation and model evaluation, Hydrol. Earth Syst.
Sci., 9, 111–126,doi:10.5194/hess-9-111-2005, 2005.

de Vos, N. J. and Rientjes, T. H. M.: Correction of timing errors of
artificial neural network rainfall-runoff models, in: Practical Hy-
droinformatics, edited by: Abrahart, R. J., See, L. M., and Solo-
matine, D. P., Water Science and Technology Library, Springer,
2008a.

de Vos, N. J. and Rientjes, T. H. M.: Multi-objective training of arti-
ficial neural networks for rainfall-runoff modeling, Water Resour.
Res., 44, W08434,doi:10.1029/2007WR006734, 2008b.

Doya, K.: Bifurcations in the learning of recurrent neural networks,
in: Proc. IEEE Int. Symposium on Circuits and Systems, vol. 6,
San Diego, CA, USA, 2777–2780, 1992.
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