Articles | Volume 29, issue 13
https://doi.org/10.5194/hess-29-2837-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-2837-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantitative soil characterization using the frequency domain electromagnetic induction method in heterogeneous fields
Gaston Mendoza
CORRESPONDING AUTHOR
Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, geb. B, 9000 Ghent, Belgium
Guillaume Blanchy
Urban and Environmental Engineering, University of Liège, Liège, Belgium
F.R.S-FNRS (Fonds de la Recherche Scientifique), Brussels, Belgium
Ellen Van De Vijver
Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, geb. B, 9000 Ghent, Belgium
Jeroen Verhegge
Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, geb. B, 9000 Ghent, Belgium
Department of Archaeology, Ghent University, Sint-Pietersnieuwstraat 35-UFO, 9000 Ghent, Belgium
Wim Cornelis
Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, geb. B, 9000 Ghent, Belgium
Philippe De Smedt
Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, geb. B, 9000 Ghent, Belgium
Department of Archaeology, Ghent University, Sint-Pietersnieuwstraat 35-UFO, 9000 Ghent, Belgium
Related authors
Gaston Matias Mendoza Veirana, Hana Grison, Jeroen Verhegge, Wim Cornelis, and Philippe De Smedt
SOIL, 11, 629–637, https://doi.org/10.5194/soil-11-629-2025, https://doi.org/10.5194/soil-11-629-2025, 2025
Short summary
Short summary
This study explores the link between soil magnetic susceptibility and cation exchange capacity (CEC) to improve prediction models for CEC in European soils. The results show that magnetic susceptibility significantly enhances CEC prediction in sandy soils, achieving high accuracy (R2 = 0.94). This offers a rapid, cost-effective way to estimate CEC, emphasizing the value of geophysical data integration in soil assessment.
Gaston Matias Mendoza Veirana, Hana Grison, Jeroen Verhegge, Wim Cornelis, and Philippe De Smedt
SOIL, 11, 629–637, https://doi.org/10.5194/soil-11-629-2025, https://doi.org/10.5194/soil-11-629-2025, 2025
Short summary
Short summary
This study explores the link between soil magnetic susceptibility and cation exchange capacity (CEC) to improve prediction models for CEC in European soils. The results show that magnetic susceptibility significantly enhances CEC prediction in sandy soils, achieving high accuracy (R2 = 0.94). This offers a rapid, cost-effective way to estimate CEC, emphasizing the value of geophysical data integration in soil assessment.
Liming Guo, Thomas Hermans, Nicolas Benoit, David Dudal, Ellen Van De Vijver, Rasmus Madsen, Jesper Nørgaard, and Wouter Deleersnyder
EGUsphere, https://doi.org/10.5194/egusphere-2025-3160, https://doi.org/10.5194/egusphere-2025-3160, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Understanding what lies beneath the ground is often difficult due to limited drilling data. Our research combines geostatistical method with large-scale geophysical surveys to create more realistic underground maps. We developed a method that merges both data sources to better predict underground layers, helping improve decisions in groundwater management and future geological studies.
Astrid Françoys, Orly Mendoza, Junwei Hu, Pascal Boeckx, Wim Cornelis, Stefaan De Neve, and Steven Sleutel
SOIL, 11, 121–140, https://doi.org/10.5194/soil-11-121-2025, https://doi.org/10.5194/soil-11-121-2025, 2025
Short summary
Short summary
To assess the impact of the groundwater table (GWT) depth on soil moisture and C mineralization, we designed a laboratory setup using 200 cm undisturbed soil columns. Surprisingly, the moisture increase induced by a shallower GWT did not result in enhanced C mineralization. We presume this upward capillary moisture effect was offset by increased C mineralization upon rewetting, particularly noticeable in drier soils when capillary rise affected the topsoil to a lesser extent due to a deeper GWT.
Benjamin Guillaume, Hanane Aroui Boukbida, Gerben Bakker, Andrzej Bieganowski, Yves Brostaux, Wim Cornelis, Wolfgang Durner, Christian Hartmann, Bo V. Iversen, Mathieu Javaux, Joachim Ingwersen, Krzysztof Lamorski, Axel Lamparter, András Makó, Ana María Mingot Soriano, Ingmar Messing, Attila Nemes, Alexandre Pomes-Bordedebat, Martine van der Ploeg, Tobias Karl David Weber, Lutz Weihermüller, Joost Wellens, and Aurore Degré
SOIL, 9, 365–379, https://doi.org/10.5194/soil-9-365-2023, https://doi.org/10.5194/soil-9-365-2023, 2023
Short summary
Short summary
Measurements of soil water retention properties play an important role in a variety of societal issues that depend on soil water conditions. However, there is little concern about the consistency of these measurements between laboratories. We conducted an interlaboratory comparison to assess the reproducibility of the measurement of the soil water retention curve. Results highlight the need to harmonize and standardize procedures to improve the description of unsaturated processes in soils.
Cited articles
Altdorff, D., von Hebel, C., Borchard, N., van der Kruk, J., Bogena, H. R., Vereecken, H., and Huisman, J. A.: Potential of catchment-wide soil water content prediction using electromagnetic induction in a forest ecosystem, Environ. Earth Sci., 76, 111, https://doi.org/10.1007/s12665-016-6361-3, 2017.
Bárdossy, A. and Singh, S. K.: Robust estimation of hydrological model parameters, Hydrol. Earth Syst. Sci., 12, 1273–1283, https://doi.org/10.5194/hess-12-1273-2008, 2008.
Binley, A.: Tools and Techniques: Electrical Methods, in: Treatise on Geophysics, 233–259, Elsevier, https://doi.org/10.1016/B978-0-444-53802-4.00192-5, 2015.
Binley, A. and Kemna, A.: DC Resistivity and Induced Polarization Methods, edited by: Rubin, Y. and Hubbard, S. S., Hydrogeop., 50, 129–156, Springer Netherlands, https://doi.org/10.1007/1-4020-3102-5_5, 2005
Blanchy, G., Saneiyan, S., Boyd, J., McLachlan, P., and Binley, A.: ResIPy, an intuitive open source software for complex geoelectrical inversion/modeling, Comput. Geosci., 137, 104423, https://doi.org/10.1016/j.cageo.2020.104423, 2020.
Boaga, J.: The use of FDEM in hydrogeophysics: A review, J. Appl. Geophys., 139, 36–46, https://doi.org/10.1016/j.jappgeo.2017.02.011, 2017
Brus, D. J.: Sampling for digital soil mapping: A tutorial supported by R scripts, Geoderma, 338, 464–480, https://doi.org/10.1016/j.geoderma.2018.07.036, 2019.
Callegary, J. B., Ferre, T. P. A., and Groom, R. W.: Vertical spatial sensitivity and exploration depth of low-induction-number 35 electromagnetic-induction instruments, Vadose Zone J., 6, 158–167, https://doi.org/10.2136/vzj2006.0120, 2007.
Cavka, D., Mora, N., and Rachidi, F.: A Comparison of Frequency-Dependent Soil Models: Application to the Analysis of Grounding Systems, IEEE T. Electromagn. C., 56, 177–187, https://doi.org/10.1109/TEMC.2013.2271913, 2014.
Ciesielski, H., Sterckeman, T., Santerne, M., and Willery, J. P.: A comparison between three methods for the determination of cation exchange capacity and exchangeable cations in soils, Agronomie, 17, 9–16, https://doi.org/10.1051/agro:19970102, 1997a.
Ciesielski, H., Sterckeman, T., Santerne, M., and Willery, J. P.: Determination of cation exchange capacity and exchangeable cations in soils by means of cobalt hexamine trichloride. Effects of experimental conditions, Agronomie, 17, 1–7, https://doi.org/10.1051/agro:19970101, 1997b.
Cong-Thi, D., Dieu, L. P., Caterina, D., De Pauw, X., Thi, H. D., Ho, H. H., Nguyen, F., and Hermans, T.: Quantifying salinity in heterogeneous coastal aquifers through ERT and IP: Insights from laboratory and field investigations, J. Contam. Hydrol., 262, 104322, https://doi.org/10.1016/j.jconhyd.2024.104322, 2024.
Corwin, D. L. and Lesch, S. M.: Application of soil electrical conductivity to precision agriculture: Theory, principles, and guidelines, Agron J., 95, 455–471, https://doi.org/10.2134/agronj2003.4550, 2003.
Dimech, A., Isabelle, A., Sylvain, K., Liu, C., Cheng, L., Bussière, B., Chouteau, M., Fabien-Ouellet, G., Bérubé, C., Wilkinson, P., Meldrum, P., and Chambers, J.: A multiscale accuracy assessment of moisture content predictions using time-lapse electrical resistivity tomography in mine tailings, Sci. Rep.-UK, 13, 20922, https://doi.org/10.1038/s41598-023-48100-w, 2023.
Doolittle, J. A. and Brevik, E. C.: The use of electromagnetic induction techniques in soils studies, Geoderma, 223–225, 33–45, https://doi.org/10.1016/j.geoderma.2014.01.027, 2014.
Friedman, S. P.: Soil properties influencing apparent electrical conductivity: A review, Comput. Electron. Agr., 46, 45–70, https://doi.org/10.1016/j.compag.2004.11.001, 2005.
Fu, Y., Horton, R., Ren, T., and Heitman, J. L.: A general form of Archie's model for estimating bulk soil electrical conductivity, J. Hydrol., 597, 126160, https://doi.org/10.1016/j.jhydrol.2021.126160, 2021.
Glover, P. W. J.: Geophysical Properties of the Near Surface Earth: Electrical Properties, Treatise on Geophysics, 89–137, Elsevier, https://doi.org/10.1016/B978-0-444-53802-4.00189-5, 2015.
Hanssens, D., Delefortrie, S., Bobe, C., Hermans, T., and De Smedt, P.: Improving the reliability of soil EC-mapping: Robust apparent electrical conductivity (rECa) estimation in ground-based frequency domain electromagnetics, Geoderma, 337, 1155–1163, https://doi.org/10.1016/j.geoderma.2018.11.030, 2019.
Hanssens, D., Waegeman, W., Declercq, Y., Dierckx, H., Verschelde, H., and Smedt, P. D.: High-resolution surveying with small-loop requency-domain electromagnetic systems: Efficient survey design and adaptive processing, IEEE Geosci. Remote. S., 9, 167–183, https://doi.org/10.1109/MGRS.2020.2997911, 2020.
Huang, H., SanFilipo, B., Oren, A., and Won, I. J.: Coaxial coil towed EMI sensor array for UXO detection and characterization, J. Appl. Geophys., 61, 217–226, https://doi.org/10.1016/j.jappgeo.2006.06.005, 2007.
Jougnot, D., Jiménez-Martínez, J., Legendre, R., Le Borgne, T., Méheust, Y., and Linde, N.: Impact of small-scale saline tracer heterogeneity on electrical resistivity monitoring in fully and partially saturated porous media: Insights from geoelectrical milli-fluidic experiments, Adv. Water Resour., 113, 295–309, https://doi.org/10.1016/j.advwatres.2018.01.014, 2018.
Lavoué, F., van der Kruk, J., Rings, J., André, F., Moghadas, D., Huisman, J. A., Lambot, S., Weihermuller, L., Vanderborght, J., and Vereecken, H.: Electromagnetic induction calibration using apparent electrical conductivity modelling based on electrical resistivity tomography, Near Surf. Geophys., 8, 553–561, https://doi.org/10.3997/1873-0604.2010037 2010.
Lipinski, B. A., Sams, J. I., Smith, B. D., and Harbert, W.: Using HEM surveys to evaluate disposal of by-product water from CBNG development in the Powder River Basin, Wyoming, Geophysics, 73, B77–B84, https://doi.org/10.1190/1.2901200, 2008.
Logsdon, S. D., Green, T. R., Seyfried, M., Evett, S. R., and Bonta, J.: Hydra Probe and Twelve-Wire Probe Comparisons in Fluids and Soil Cores, Soil Sci. Soc. Am. J., 74, 5–12, https://doi.org/10.2136/sssaj2009.0189, 2010.
Longmire, C. and Smith, K.: A Universal Impedance for Soils, Mission Research Corporation, Report DNA 3788T, 1975.
Lück, E., Guillemoteau, J., Tronicke, J., Rummel, U., and Hierold, W.: From point to field scale – Indirect monitoring of soil moisture variations at the DWD test site in Falkenberg, Geoderma, 427, 116134, https://doi.org/10.1016/j.geoderma.2022.116134, 2022.
McLachlan, P., Blanchy, G., and Binley, A.: EMagPy: Open-source standalone software for processing, forward modeling and inversion of electromagnetic induction data, Comput. Geosci., 146, 104561, https://doi.org/10.1016/j.cageo.2020.104561, 2021.
McNeill, J. D.: Electromagnetic terrain conductivity measurement at low induction numbers, Technical Note 6, p. 13, Geonics Limited, 1980.
Mendoza Veirana, G. M.: Data set. Quantitative soil characterization using frequency domain electromagnetic induction method in heterogeneous fields, Zenodo [data set], https://doi.org/10.5281/zenodo.13465721, 2024a.
Mendoza Veirana, G. M.: orbit-ugent/FDEM_quantitative_soil: 0.1 (Version 0.1), Zenodo [code], https://doi.org/10.5281/zenodo.13385389, 2024b.
Mendoza Veirana, G. M. and De Smedt, P.: orbit-ugent/Pedophysics: First release 0.1 (Version 0.1), Zenodo [code], https://doi.org/10.5281/ZENODO.13465700, 2024.
Minasny, B. and McBratney, A. B.: A conditioned Latin hypercube method for sampling in the presence of ancillary information, Comput. Geosci., 32, 1378–1388, 2006.
Minsley, B. J., Smith, B. D., Hammack, R., Sams, J. I., and Veloski, G.: Calibration and filtering strategies for frequency domain electromagnetic data, J. Appl. Geophys., 80, 56–66, https://doi.org/10.1016/j.jappgeo.2012.01.008, 2012.
Moghadas, D. and Badorreck, A.: Machine learning to estimate soil moisture from geophysical measurements of electrical conductivity, Near Surf. Geophys., 17, 181–195, https://doi.org/10.1002/nsg.12036, 2019.
Pannell, D.: Sensitivity analysis of normative economic models: Theoretical framework and practical strategies, Agr. Econ., 16, 139–152, https://doi.org/10.1016/S0169-5150(96)01217-0, 1997.
Rentschler, T., Werban, U., Ahner, M., Behrens, T., Gries, P., Scholten, T., Teuber, S., and Schmidt, K.: 3D mapping of soil organic carbon content and soil moisture with multiple geophysical sensors and machine learning, Vadose Zone J., 19, e20062, https://doi.org/10.1002/vzj2.20062, 2020.
Rhoades, J. D., Raats, P. A. C., and Prather, R. J.: Effects of Liquid-phase Electrical Conductivity, Water Content, and Surface Conductivity on Bulk Soil Electrical Conductivity, Soil Sci. Soc. Am. J., 40, 651–655, https://doi.org/10.2136/sssaj1976.03615995004000050017x, 1976.
Romero-Ruiz, A., Linde, N., Keller, T., and Or, D.: A Review of Geophysical Methods for Soil Structure Characterization: Geophysics and soil structure, Rev. Geophys., 56, 672–697, https://doi.org/10.1029/2018RG000611, 2018.
Saltelli, A. and Annoni, P.: How to avoid a perfunctory sensitivity analysis, Environ. Modell. Softw., 25, 1508–1517, https://doi.org/10.1016/j.envsoft.2010.04.012, 2010.
SENSE-UGent: FDEM_quantitative_soil, GitHub, https://github.com/SENSE-UGent/FDEM_quantitative_soil (last access: 3 July 2025), 2024.
Sheets, K. R. and Hendrickx, J. M. H.: Noninvasive Soil Water Content Measurement Using Electromagnetic Induction, Water Resour. Res., 31, 2401–2409, https://doi.org/10.1029/95wr01949, 1995.
Stevens Water Monitoring Systems.: The Hydra Probe® soil sensor: Comprehensive Stevens Hydra Probe user's manual, instrument manual, Stevens Water Monitoring Systems, Beaverton, OR, 2008.
Terry, N., Day-Lewis, F. D., Lane Jr., J. W., Johnson, C. D., and Werkema, D.: Field evaluation of semi-automated moisture estimation from geophysics using machine learning, Vadose Zone J., 22, e20246, https://doi.org/10.1002/vzj2.20246, 2023.
Tibshirani, R., Friedman, J., and Hastie, T.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, 2001.
van der Kruk, J., von Hebel, C., Brogi, C., Sarah Kaufmann, M., Tan, X., Weihermüller, L., Huisman, J. A., Vereecken, H., and Mester, A.: Calibration, inversion, and applications of multiconfiguration electromagnetic induction for agricultural top- and subsoil characterization, SEG Technical Program Expanded Abstracts 2018, Soc. Expl. GEOP., 2546–2550, https://doi.org/10.1190/segam2018-2965257.1, 2018.
Van Ranst, E. and Sys, C.: Eenduidige legende voor de digitale bodemkaart vanVlaanderen (Schaal 1:20 000), Laboratorium voor Bodemkunde Krijgslaan 281/S8 9000 Gent, University of Ghent, https://ecopedia.s3.eu-central-1.amazonaws.com/pdfs/550.pdf (last access: 6 June 2025), 2000.
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C., Polat, I., Feng, Y., Moore, E., and VanderPlas, J.: SciPy 1.0: Fundamental algorithms for scientific computing in Python, Nat. Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020.
Wait, J. R.: Geo-Electromagnetism, Elsevier, https://doi.org/10.1016/B978-0-12-730880-7.X5001-7, 1982.
Short summary
This study explores two methods for predicting soil properties using the frequency domain electromagnetic induction technique in Belgium. We compared deterministic models, which often require extensive data adjustments, to empirical models. Our findings suggest that empirical models are generally more effective for soil analysis, although each method has its limitations. This research helps improve soil property prediction, crucial for agriculture and environmental management.
This study explores two methods for predicting soil properties using the frequency domain...