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Abstract. The frequency domain electromagnetic induction
(FDEM) method is a widely used tool for geophysical soil
exploration. Field surveys using FDEM provide apparent
electrical conductivity (ECa), which is typically used for
qualitative interpretations. Quantitative estimations of soil
properties remain challenging, especially in heterogeneous
fields. Quantitative approaches are based on either deter-
ministic or empirical modeling. While the deterministic ap-
proach faces limitations related to instrumental drift, data
calibration, inversion, and pedophysical modeling, the em-
pirical approach requires developing a local model, which
involves extensive field sampling.

This study aims to evaluate the effectiveness of FDEM
modeling based on either a deterministic or empirical ap-
proach, identify its limitations, and search for optimal field
protocols. We provide practical guidelines for end users to
quantitatively predict soil water content, bulk density, clay
content, cation exchange capacity, and water EC in hetero-
geneous fields. Two field surveys were conducted in Bel-
gium, where FDEM data were collected using Dualem-421S
and Dualem-21HS sensors, along with data taken from elec-
trical resistivity tomography (ERT) measurements and an
impedance moisture probe and soil sampling. A comprehen-
sive sensitivity analysis revealed that deterministic model-
ing procedures could not predict water content more accu-
rately than a mean value approximation (negative R2). This
analysis also highlighted the sensitivity of the minimization
method used in FDEM data inversion and the applied pedo-

physical model. Empirical modeling, which does not require
FDEM data calibration or inversion, outperformed the deter-
ministic approach. However, its prediction accuracy is lim-
ited, particularly if soil sample depth is not considered.

1 Introduction

Frequency domain electromagnetic induction (FDEM) tools
are widely applied in geophysical soil surveys (Boaga, 2017).
These instruments often serve to qualitatively determine spa-
tiotemporal changes in the apparent electrical conductivity
(ECa), reflecting the influence of soil characteristics within
the measured soil volume (Doolittle and Brevik, 2014). As
the relationship between electrical conductivity (EC) and
several of such soil attributes has been investigated exten-
sively, FDEM is also capable of their quantitative assess-
ment. Specifically, soil water content is a preferred target be-
cause of its central role in soil–plant interaction, groundwater
assessment, soil ecological functioning, and climate regula-
tion.

Despite these applications, a broader practical implemen-
tation of FDEM remains mainly limited to academic settings
(Altdorff et al., 2017; Huang et al., 2007). Two major chal-
lenges hinder wider adoption. Firstly, the FDEM methodol-
ogy itself faces issues such as instrumental drift, approxima-
tions to translate raw FDEM data to ECa, calibration diffi-
culties (Hanssens et al., 2020; Minsley et al., 2012), and the
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necessity for data inversion of ECa to true EC before a non-
local quantitative assessment can be made. This reality per-
sists even though – particularly for research purposes – adap-
tive correction procedures and open-source inversion codes
have become available. Secondly, a significant obstacle in
translating soil EC data into a target soil property lies in the
current limitations of pedophysical models. These models are
non-site-specific deterministic and link geophysical variables
with soil properties (see, e.g., Friedman, 2005; Glover, 2015;
Romero-Ruiz et al., 2018) but often suffer from a lack of pre-
cision and are difficult to generalize. This is exacerbated by
the variability in soil types, spatial heterogeneity, tempera-
ture conditions, and the electromagnetic frequency of mea-
surements (Jougnot et al., 2018; Moghadas and Badorreck,
2019). Importantly, the difference between the laboratory-
analyzed and FDEM-measured soil volumes can cause scale
inconsistencies (Lück et al., 2022) that affect the validity of
these relationships. As an alternative to pedophysical mod-
els, field-specific empirical relationships can be composed at
the cost of obtaining significant amounts of calibration data
(Corwin and Lesch, 2003). Despite empirical modeling being
inherently limited to the conditions represented by the dataset
the model has been trained for, exhaustive assessments of this
method demonstrated useful predictions of various soil prop-
erties across agricultural fields (Boaga, 2017; Rentschler et
al., 2020).

Here, we evaluate how FDEM data can serve to quantita-
tively predict spatial variations in volumetric soil water con-
tent (θ ), bulk density (ρb), clay content, cation exchange ca-
pacity (CEC), and water EC (ECw) in a practical, straight-
forward manner on two heterogeneous test sites. In search
for optimal field protocols, we evaluate to which extent con-
sidering instrumental limitations and different procedures of
FDEM data correction and processing influences the accu-
racy of the predicted soil attributes and what the trade-off be-
tween deploying a physics-driven deterministic versus field-
specific data-driven model implies. Finally, we propose field
and modeling strategies for optimal soil characterization with
FDEM surveys.

2 Methodology

2.1 FDEM functioning

FDEM devices function by passing an alternating current
through a transmitter coil, creating a oscillating primary elec-
tromagnetic field that varies over time. This primary field
(HP) interacts with the subsurface, inducing eddy currents
which subsequently produce a secondary electromagnetic
field (HS). The HS/HP ratio is detected by the receiver coil
and is quantified as a complex number, consisting of an in-
phase component (IP=Re(HS/HP)) and a quadrature com-
ponent (QP= Im(HS/HP)). Both IP and QP are typically

measured, reflecting the device setup and the conditions of
the subsurface.

The QP expressed in parts per million (ppm) can be con-
verted to the actual ECa using the linear model developed by
McNeill (1980) assuming a homogeneous subsurface elec-
trical conductivity. This model assumes a uniform subsur-
face EC and is known as the low induction number (LIN)
approximation. It is valid when the induction number (β) is
low (β� 1). The LIN approximation proposed by McNeill
(1980) is given by

ECa = QP
4

µ0ωs2 when β = s

√
µ0ωEC

2
� 1, (1)

where ω is the angular frequency, µ0 is the magnetic perme-
ability of free space (1.257× 10−8 H m−1), and s is the coil
separation. It can be seen from this equation that large fre-
quencies and higher EC soils will violate the β� 1 specifi-
cation. It is important to note that the LIN approximation also
assumes that the FDEM device is operated at ground level
above a homogeneous, poorly conductive subsurface (Calle-
gary et al., 2007; McNeill, 1980).

2.2 Data collection

Two heterogeneous agricultural fields were examined in this
study. Site 1, located in Middelkerke, Belgium, is shown in
Fig. 1a. Belgian soil map data (Van Ranst and Sys, 2000)
indicate that the field is affected by saline groundwater and
exhibits a soil texture varying from loam (26 % clay, 34 %
sand) to silt loam (10 % clay, 40 % sand) (USDA textures),
with clay layers starting at depths greater than 0.50 m. In
contrast, Site 2, located in Bottelare, Belgium (Fig. 1b), is
characterized by fresh groundwater. The soil texture at this
location ranges from sandy loam (13 % clay, 76 % sand) to
clay (64 % clay, 5 % sand). Both sites have a plow horizon,
are actively used for agriculture, and had no standing crops
at the time of the survey.

Field surveys at both sites involved collecting FDEM data
using different sensors, all operating at 9 kHz: the Dualem-
421S at Site 1 with a 3 m crossline sampling density and the
Dualem-21HS at Site 2 with a 1 m crossline sampling den-
sity, both with a constant distance above ground of 0.165 m
using a sled. The instrument was pulled with a quad across
the field with a driving speed of approximately 10 km h−1

and a measurement sampling rate of 10 Hz. The crossline
sampling density was decided based on the time to survey
each field, Site 1 being bigger. The surveys at both sites
provided in-phase (IP) and quadrature-phase (QP) data with
an in-line sampling density of approximately 0.3 m in hor-
izontal co-planar (HCP) and perpendicular (PRP) config-
uration. For both sites, transmitter–receiver separations of
1.0 m (HCP1.0), 1.1 m (PRP1.1), 2.0 m (HCP2.0), and 2.1 m
(PRP2.1) were used. Additionally, 4.0 m HCP (HCP4.0) and
4.1 m PRP data (PRP4.1) were collected at Site 1 and 0.5 m
HCP (HCP0.5) and 0.6 m PRP data (PRP0.6) at Site 2. Elec-
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Figure 1. Site 1 in Middelkerke (a) and Site 2 in Bottelare (b) (Belgium), with the position of the ERT transects and 15 soil sampling
locations per site, selected via conditioned Latin Hypercube Sampling based on previously obtained FDEM LIN ECa data. The mapped data
are ERT-calibrated robust ECa HCP1.0.

trical resistivity tomography (ERT; Syscal Pro, Iris Instru-
ments) was performed with 0.5 m electrode spacing, during
the FDEM surveys (Fig. 1). The ERT transects were located
based on previous surveys to include the largest ECa range
across the field.

In addition to geophysical surveys, soil sampling was car-
ried out at 15 predetermined locations at each site. These lo-
cations were strategically selected using the Latin hypercube
sampling method (Minasny and McBratney, 2006) and were
based on insights from previously collected FDEM data.
Undisturbed soil samples were extracted from two depths,
0.10 m (topsoil) and 0.50 m (subsoil) below the surface, in
stainless steel 100 cm3 cores using an auger. In total, 30
samples per site were analyzed in the laboratory to obtain
soil texture (after sieving at 2 mm), CEC (CoHex method,
Ciesielski et al., 1997a, b), θ , and ρb (gravimetric method
with convective oven drying at 105 °C).

To accurately determine in situ EC, ECw, and temperature
within the soil sampling volume (100 cm3), measurements
were taken at each sampling location using a HydraProbe
soil probe (HydraProbe, Stevens Water Monitoring Systems,
2008). The correction proposed by Logsdon et al. (2010) was
applied to improve the quality of these EC readings.

2.3 Data processing

The general processing workflow of the FDEM survey fol-
lows Hanssens et al. (2020) and is described in Fig. 2. The
methodology aims at processing the FDEM data to obtain
reliable EC data at sampling locations and then predict soil
properties. For this process, a meaningful physical modeling
sequence was followed. For instance, no inversion was im-
plemented on uncalibrated FDEM data. This involved four
key steps: ERT inversion, FDEM data calibration, FDEM
data inversion, and pedophysical modeling (Hanssens et al.,

2020). All computer code used is open-source, and de-
fault parameters were prioritized, ensuring reproducibility of
methodology and results. All developed codes for this sec-
tion are available in Mendoza Veirana (2024b) and collected
data in Mendoza Veirana (2024a).

2.3.1 ERT inversion

The measured ERT data were inverted using the ResIPy
(v3.5.4) open software (Blanchy et al., 2020) which is based
on the R2 codes (Binley and Kemna, 2005) (see Fig. 2 light-
blue box; see full code in the Jupyter Notebook “00_inv-
ERT”). The method for inversion follows a least-squares
minimization between the measured ERT data and modeled
subsurface geoelectrical parameters. The inversion process
incorporates regularization techniques that balance data fi-
delity and smoothness of the subsurface model to address the
inherent non-uniqueness and instability in ERT data inver-
sion (Binley, 2015). A standard inversion using a triangular
mesh was implemented, converging after three iterations. Af-
ter inversion, extraction of ERT profiles was done by averag-
ing the EC in a neighborhood of 0.5 m around each electrode.
Alternatively, to obtain smoother profiles, an extraction win-
dow of 2.5 m was also used.

2.3.2 FDEM data calibration

Calibrating raw FDEM data is required for obtaining reli-
able EC data at sampling locations, and such calibration was
done by combining ERT and FDEM data (see Fig. 2, green
boxes) (Lavoué et al., 2010; van der Kruk et al., 2018). On
the one hand, the raw uncalibrated FDEM data (in ppm) were
transformed to ECa data following the LIN approximation.
On the other hand, the inverted ERT EC data were firstly
grouped by profile, and any profiles at the beginning or end
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Figure 2. Workflow of geophysical data process including prediction of soil properties. Ellipses represent observations that exist indepen-
dently of all data processes. Rectangles represent data over all the field and/or soil sampling locations. Parallelograms represent data over the
ERT profiles. The square represents an external model. Colors represent modeling processes: light blue for ERT inversion (Jupyter Notebook
“00_inv-ERT”), green for FDEM data calibration (Jupyter Notebook “01_QP_ cal”), orange for FDEM data inversion (Jupyter Notebook
‘02_EC_invert’), and red for soil properties modeling (Jupyter Notebook “03_Soil_properties_modelling”).

of each transect that did not reach a minimum depth of 4 m
were removed due to the lower sensitivity in those periph-
eral zones. After this, 100 profiles remained for Site 1 and
40 profiles for Site 2. Subsequently, the inverted ERT pro-
files were forward-modeled to the theoretical FDEM LIN
ECa measured by the Dualem instrument over the ERT tran-

sect (Lavoué et al., 2010). The forward model implements a
1D full solution of Maxwell’s equations considering an elec-
tromagnetic field, which, after FDEM instrument reading, is
composed by IP and QP signals.

After calculating both FDEM LIN ECa data over the ERT
profiles, these data were matched by spatial proximity with
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the closest FDEM data point. A linear regression was then
fitted for the six coil configurations (see Fig. 3). This linear
regression was applied to the entire FDEM survey dataset,
effectively performing a linear calibration.

Lastly, the calibrated FDEM QP data were transformed to
robust ECa (rECa) values to provide reliability beyond LIN
constraints (Hanssens et al., 2019), such as high salinity and
clay content levels. A visual comparison of the forwarded
FDEM ECa and uncalibrated and calibrated LIN and rECa
FDEM data over the ERT transect is shown in Fig. 4. The
rECa consistently exceeds the LIN ECa, reflecting the known
limitations of the LIN approach and aligning with the tests
reported by Hanssens et al. (2019).

2.3.3 FDEM data inversion

To assess the impact of the different modeling steps, we pro-
vide the parameters used and alternatives for comparison. To
obtain top- and subsoil EC, 1D data inversion was performed
with EMagPy (v1.2.2) (McLachlan et al., 2021) using the
full Maxwell-based forward model (Wait, 1982). For both
sites and based on borehole observations, a five-layer sub-
surface discretization was maintained, with fixed interfaces
at 0.3, 0.6, 1.0, and 2.0 m. Another option for layer interfaces
definition consists in using a logarithmic scale from 0.15 to
2.0 m. The closest FDEM observation to each sampling lo-
cation was selected as the reference, in contrast to averaging
FDEM observations within a radius (2 m for Site 1 and 1 m
for Site 2) around the sampling location. Additional parame-
ters of the inversion problem include an optimization method
(Gauss–Newton) (Virtanen et al., 2020) or Robust Parameter
Estimation (ROPE) (Bárdossy and Singh, 2008), a vertical
smoothing parameter (α, default= 0.07), and L2 norm ob-
jective function. Moreover, inversion data were composed of
all the coil configurations. Removing HCP2.0 and PRP2.1
for Site 1 and HCP0.5 and PRP0.6 for Site 2 could lead to
lower inversion errors. The starting model for inversion was
set to the average of the ERT profiles using the given subsur-
face layers; alternatively, one particular reference ERT pro-
file can be used. Inversions with a negative R2 error were
discarded and not analyzed further. Finally, EC limits (con-
straints) were applied to rECa FDEM data at sampling lo-
cations during its inversion process (just for ROPE solver).
These were defined as the minimum and maximum EC val-
ues of the inverted ERT profiles.

Once the EC data were obtained by inversion of the rECa
FDEM data for each sample location, they were used to cal-
culate the soil properties of interest.

2.3.4 Soil property calculation

Linking EC data to soil properties at sampling locations can
follow two basic modeling strategies: local empirical and
universal deterministic modeling.

Local empirical modeling enables us to empirically pre-
dict several soil properties across the surveyed field, at the
expense of collecting and analyzing soil samples to build a
training dataset. This modeling consists of fitting functions
to the training dataset and predicting at targeted locations.
Traditionally, polynomial functions have been used for this
task (Rentschler et al., 2020), but in recent years machine
learning algorithms (such as artificial neural networks and
random forest) have performed better (Moghadas and Bador-
reck, 2019; Rentschler et al., 2020; Terry et al., 2023). How-
ever, using machine learning requires a large number of train-
ing data that may not be obtainable for practical FDEM appli-
cations. Thus, we stick to polynomial functions for empirical
modeling.

In our case, for both sites the original soil analysis dataset
(n= 30) was randomly split into a training dataset (n= 20),
while the remaining was used as test dataset (n= 10); this
process was repeated 100 times. The optimal polynomial de-
gree was chosen as the one that maximizes the median R2

errors on all the 100 test sets.
Three distinct approaches to polynomial development

were utilized. A first approach, named “layers together” (ST-
LT), consisted of combining data from different soil depths
so that no differentiation was made between top- and sub-
soil samples for model development. Secondly, these sample
sets were considered separately in an approach whereby dif-
ferent polynomials were developed for each soil layer (“lay-
ers separate”(ST-LS)). In this modeling approach, the same
polynomial degree was maintained for both top- and subsoil
data. Finally, the ST-LS2 approach was like ST-LS but per-
mitted different polynomial degrees for the models of each
layer.

Model training features included calibrated (LIN and ro-
bust) and uncalibrated (LIN) ECa data from the six FDEM
coils and the inverted EC data at soil sampling locations,
while independent targeted soil properties were θ , cation ex-
change capacity (CEC), clay content, ρb, and ECw.

Deterministic modeling uses general pedophysical EC–θ
relationships based on physical principles that have been val-
idated across a wide range of soil conditions (e.g., models
presented by Rhoades et al., 1976). Such modeling does not
require calibration data, avoiding the cost of field sampling
and laboratory analysis. However, such pedophysical mod-
els may fall short in representing extreme scenarios outside
the tested soil characteristics ranges. Additionally, soil data
(such as porosity, ECw, and texture) must be available to
adequately populate the model and predict the target prop-
erty. Lastly, soil data also require corrections of temperature
and electromagnetic frequency (Moghadas and Badorreck,
2019). Because the relationship of EC with soil properties
is most straightforward for θ , predicting other targets, such
as soil texture or salinity, is generally not feasible under de-
terministic modeling.

To compare performances between deterministic and em-
pirical modeling strategies, we tested the pedophysical mod-
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Figure 3. Calibration of FDEM QP data. A linear regression is fit between the FDEM LIN ECa data collected on the field (X axis) over the
ERT transect and the FDEM response that was forward-modeled from the inverted ERT data (Y axis). This is shown for the three different
QP coil configurations across the three subplot columns and for both sites displayed in the top and bottom rows.

els on the same test datasets used for empirical modeling.
Three different approaches were employed to populate the
pedophysical model. The deterministic approach for layers
together (DT-LT) consisted of averaging soil property data
from all samples regardless of their depth. The layers sep-
arate approach (DT-LS) utilized averaged soil property data
from samples at the same layers. The last approach, termed
the “ideal” (DT-ID) scenario, used the actual soil property
data from each specific location. Hereby, ideal EC refers to
the EC at each sampling location that would result in a per-
fect θ prediction after pedophysical modeling.

Predicting θ via pedophysical modeling followed three
steps. First the inverted EC data at 9 kHz were transformed to
direct current (DC) EC using the model proposed by Long-
mire and Smith (1975), which was further validated by Cavka
et al. (2014). Then, the resultant DC EC was temperature-
corrected using the model proposed by Sheets and Hen-
drickx (1995). Lastly, the EC data were converted to θ based
on Fu et al. (2021):

EC= ECwθ
2
+ θ∅

(
0.654

clay
100− clay

+ 0.018
)

+ (1−∅)ECs, (2)

with the solid-phase conductivity ECs (considered negligi-
ble) and porosity ∅= 1− ρb/ρp, where ρp is the soil parti-
cle density (= 2.65g cm−3). All steps were implemented au-
tomatically using Pedophysics open-source software (Men-
doza Veirana and De Smedt, 2024). The pedophysical model
of Eq. (2) has been validated for samples with 0 % to 33 %
clay content, ρb from 1.05 to 1.83 g cm−3, ECw from 0.03 to
5.6 S m−1, and θ up to 50 %.

Evaluating the deterministic modeling goodness in com-
parison with previous studies is not possible because the per-
formance of the FDEM technique is site dependent (Boaga,
2017). Therefore, error indicators (R2 and RMSE) are com-
pared between deterministic and empirical modeling ap-
proaches. Additionally, to assess the limitations of the deter-
ministic modeling, the inverted FDEM EC and ideal EC data
are compared to the in-site EC measured with the impedance
probe, along with their associated water content.

2.4 Sensitivity analysis

In order to develop practical recommendations for FDEM
end users and understand the impact of a given parame-
ter (Pannell, 1997), we performed a sensitivity analysis for
the most relevant parameters described above. This analysis
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Figure 4. Comparison of HCP1.0 QP ECa data along the ERT transect for Site 1 (a) and Site 2 (b). This includes calibrated and uncalibrated
FDEM (LIN) ECa and calibrated robust (rECa) data. Also, the forward-modeled ERT (LIN) ECa data are shown.

aimed at finding the impact of alternative choices made dur-
ing the whole FDEM data processing workflow for determin-
istic estimation of water content in the soil samples. The one-
at-a-time method, which is the most widely used sensitiv-
ity analysis in environmental sciences (Saltelli and Annoni,
2010), was employed. It consists of altering one parameter
in a stepwise manner and calculating the outcome while fix-
ing other influencing parameters to a predefined origin. Al-
though the one-at-a-time method is practical and easy to im-
plement, it does not give clear information about the effect of
all parameters (Saltelli and Annoni, 2010), as the combined
effect of two or more parameters is not evaluated. This was
solved by deploying the elementary effects method (Saltelli
and Annoni, 2010), which consists of changing one parame-
ter at a time but without returning to an origin. Then, using
elementary effects, all combinations of parameters’ values
were evaluated.

In this study, we defined the origin (X0; see Table 1) as the
standard set of parameters used for the whole data process
(F ) that correspond to a standard inversion and subsequent

solution (Y 0), which is the standard solution for volumetric
water content (θ0):

F (observed data,X0)= Y 0 = θ0. (3)

3 Results and discussion

3.1 Comparing EC data

A comparison of EC data obtained by the soil probe obser-
vations, standard FDEM inversion (using X0 parameter val-
ues), and ideal EC for both sites is shown in Fig. 5 alongside
the water and clay content of associated samples. The ob-
served water content has mean values of 0.34 and 0.29 and
variance of 0.003 and 0.008 for Site 1 and Site 2, respectively.

Considering the EC measured by the soil probe as the ref-
erence for actual data, the inverted EC significantly devi-
ates from this reality. Furthermore, while the ideal EC and
soil probe EC display a similar trend, this trend is notice-
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Table 1. List of model parameters used across all the data workflows. Standard values for each parameter are presented in the second column
(X0) and alternatives to these values in the third column.

Parameter X0 (standard values) Alternatives

Profile extraction distance (m) 0.5 2.5

Sample locations Closest Mean

Interfaces Observed Log-defined

Forward model FSeq (full solution with equiva-
lent EC)

FSlin (full solution with LIN approxi-
mation), CS (cumulative sensitivity)

Minimization method Gauss–Newton ROPE

Smoothing parameter (α) 0.07 0.02, 0.2

Remove coils False True

Starting model average True False

Constrain layers EC False True

Deterministic approach Ideal Layers separate, layers together

Figure 5. Comparison between EC obtained with the soil probe (a, d), FDEM standard inversion (b, e), and ideal EC (c, f) versus water
content and clay content as an additional dimension. All the EC data are corrected for electromagnetic frequency and temperature (direct
current EC at 25 °C).

ably stretched (compare first and third column in Fig. 5). It is
also noteworthy that as the difference between ideal and soil
probe EC (for both sites) increases, so does the clay content,
with a Pearson correlation of 0.83 (p<0.005), not shown in
Fig. 5. This disparity becomes even more pronounced for

clay contents exceeding∼ 30 %, which is in accordance with
the validity range of Eq. (2) (clay contents up to 33 %).

3.2 Empirical modeling results

The performance of empirical models for predicting ob-
served soil properties is presented in Fig. 6. Poor predic-
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Figure 6. Bar plots showing median results of empirical modeling of soil properties. The median R2 values are obtained after testing such
models in test datasets randomly generated as 30 % of the original dataset and iterating 100 times to ensure good data distribution.

tions (negative median R2 over test datasets) were obtained
when considering topsoil and subsoil data jointly (LT) for
model development over training datasets (i.e., not consid-
ering sample depth). This may be due to an oversimplis-
tic modeling that does not consider sample depths. Nega-
tive R2 values occur when the model fits the data worse
than a simple horizontal line at the mean of the observed
values. Approaches LS and LS2, which use different fitted
functions per soil layer, resulted in better results as expected.
No significant differences were observed in R2 values for
features ECa uncalibrated and calibrated LIN or rECa. This
may be due to the linear relationship between uncalibrated
and calibrated ECa and quasi-linear relationship with cali-
brated rECa, which does not add information to such vari-
ables as polynomial features (Lavoué et al., 2010). However,
the FDEM-inverted EC data generally underperformed com-
pared to the rest of features, with the only exception of the
LS2 approach for θ prediction at Site 1, with aR2

= 0.19 and
a RMSE= 0.047, while for Site 2 the maximum R2 is 0.31,
with a RMSE= 0.066.

Comparing performances for predicting different soil
properties, ECw was shown to be an easier target than any
other soil property. ECw prediction was generally better for

Site 2 that does not have the influence of saline groundwa-
ter. Predicting CEC, clay content, and ρb, on the other hand,
seemed to be highly site dependent.

An important consideration when interpreting the empir-
ical approach is the disparity in scale between the soil vol-
umes measured by FDEM (m3) and the smaller volumes an-
alyzed in the laboratory (100 cm3). While some studies have
addressed this issue, their conclusions are often site specific
and inconsistent (see, e.g., Cong-Thi et al., 2024; Dimech et
al., 2023). Despite these discrepancies, it is worth noting that
non-inverted EC generally outperforms inverted EC for soil
properties prediction, even though inverted EC represents a
smaller soil volume (cubic decimeters). This performance
gap may be attributed to errors in the EC inversion process
rather than the difference in spatial scales.

When the best-performing models for θ prediction are im-
plemented using the entire dataset (Fig. 7) – using both train-
ing and test data – this outperforms the modeling presented in
Fig. 6, where only test data are incorporated into error assess-
ment. While this is a common approach, we want to highlight
this is improper practice to critically evaluate model perfor-
mance as the inclusion of training data in error estimation
results in an overestimation of model performance (Altdorff
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Figure 7. Empirical model implementation. Best-performant em-
pirical models for θ prediction (based on Fig. 6 results) were imple-
mented using the 30 samples per site. Panel (a) shows the data for
Site 1, and panel (b) shows data for Site 2.

et al., 2017; Lipinski et al., 2008; Tibshirani et al., 2001). In
other words, implemented model errors should not be con-
fused with actual expected accuracy of target property pre-
dictions.

To evaluate the influence of other soil properties in θ pre-
diction, the residuals of the implemented empirical models
were correlated with other soil properties, but these were not
significant.

3.3 Sensitivity analysis

The result of the sensitivity analysis is presented in Fig. 8 for
Site 1 (upper subplot) and 2 (lower subplot). Generally, no
possible combination of parameter values yielded an RMSE
lower than 11 % (or 0.11 cm3 cm−3) for θ predictions, which
corresponds to a negative R2 value; that is, they performed
worse than a single mean solution. Additionally, the predic-
tions for θ were worse for Site 2 than for Site 1, presumably

due to the larger variance in θ data at Site 2. The standard so-
lution θ0 obtained using theX0 parameter values was poorly
performant too (see red lines in both subplots of Fig. 8). From
Fig. 8, the boxes which differ the most from the rest repre-
sent the most sensitive parameters. For both sites, the most
sensitive parameters are the minimization method used and
the pedophysical model approach.

Using the minimization method ROPE leads in general to
better θ predictions, despite its average inversion error (R2

=

0.64 for Site 1 andR2
= 0.19 for Site 2) being higher than for

Gauss–Newton (R2
= 0.75 for Site 1 and R2

= 0.94 for Site
2). Also, about 75 % of ROPE inversions for both sites did
not converge or reached a negativeR2 error, while for Gauss–
Newton most of the inversions converged with a positive R2.

The optimal approach in deterministic modeling is not the
same at both sites. While the ID approach was the best at Site
1, the best at Site 2 was LT. This could be because ID uses
actual soil properties to populate the pedophysical model (fo-
cusing on variance of the error), and the LT approach uses
average soil properties (attacking the bias error), resulting in
an unclear benefit because of the general poor performance.

4 Limitations

Although the presented research focuses on comparing dif-
ferent choices made along modeling steps, it is important
to highlight its site-specific nature (Boaga, 2017). There-
fore, because both sites were selected based on their het-
erogeneous nature, the challenge that they represent is not
necessarily representative of most common fields where the
FDEM technique is applied, where collected EC FDEM data
normally have a narrower range (Minsley et al., 2012; van der
Kruk et al., 2018). Furthermore, the effects of scale dispari-
ties among soil sampling, ERT, FDEM, and probe measure-
ments were not examined, even though they can introduce
additional uncertainties when interpreting subsurface prop-
erties.

While several modeling parameters were tested, the
data acquisition strategy remained unchanged. New insights
might be gained by, for instance, using a different algorithm
to select sampling locations (Brus, 2019) or reducing the
FDEM crossline sampling density to better match FDEM
data with ERT data at sampling locations. The FDEM data
calibration strategy used in this study was indeed unique,
and it assumes that the inverted ERT data accurately repre-
sent the subsurface. This assumption poses a limitation, as
inverted ERT data can, in practice, contain acquisition and
inversion errors, which ultimately impact FDEM data cali-
bration (Minsley et al., 2012). Additionally, the evaluation
of different parameters in the sensitivity analysis was not ex-
haustive, with its results being relative to the parameters cho-
sen.

For instance, using different optimization methods would
improve the FDEM inversion error and offer more flexibility
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Figure 8. Box-and-whisker plot results of uncertainty analysis. The figure shows the error outcomes of an elementary effect sensitivity
analysis using parameters involved in processing all FDEM data. The top row displays results for Site 1 and the bottom row for Site 2. The
plotted data are the median of RMSE. The error associated with the θ0 solution is highlighted in red. Each box represents 50 % of the data
(i.e., the error associated with a specific parameter value), with a horizontal line indicating the median, while the whiskers represent 25 % of
the data at each end.

in the inversion, such as allowing variable layer thicknesses.
However, not all optimization methods, such as the Gauss–
Newton method, support variability in subsoil layer depths.
Additionally, only 1D forward and inversion models using
FDEM methods were employed, without considering lateral
smoothing through 2D or 3D inversions.

Furthermore, three different deterministic modeling ap-
proaches were tested using Eq. (2), but other pedophysical
models were not considered. The difficulty in obtaining the
ECs parameter of Eq. (2) led to its exclusion, which might
have compromised the model’s effectiveness.

Lastly, the study was limited to univariable empirical mod-
eling. Multivariable regression incorporating more than one
feature (such as using inverted EC and uncalibrated EC), as
well as other machine learning methods, was not explored.

5 Conclusions and suggestions

Absolute soil property quantification using the FDEM
method in heterogeneous fields is far from being accurate and
methodologically solved.

The classical field-specific empirical modeling of soil
properties, though limited, still offers the most straightfor-

ward solution. Based on our cases, uncalibrated ECa data can
be used without compromising the effectiveness of such an
approach. This bypasses the issues of physics-driven deter-
ministic modeling, such as data calibration, robust EC esti-
mation, geophysical inversion, and pedophysical modeling.
Such empirical models should consider vertical soil variabil-
ity; otherwise large mispredictions are expected. However,
this is at the cost of building a dataset by sampling and an-
alyzing the soil target properties at the desired exploration
depth. In samples not used for training, water content pre-
dictions achieved a poor best estimation with an R2 value of
0.31 (RMSE= 6.6 %), which may be inadequate depending
on the application, whereas ECw was better estimated. Scale
disparity between FDEM field measurements and soil sam-
ples is a less significant issue than using inverted EC data
for empirical estimation of soil properties. In the case that
sampling is not an option, a universal deterministic approach
can be followed at the expense of FDEM calibration data,
e.g., through ERT. A comprehensive sensitivity analysis of
this approach shows that no possible combination of model-
ing parameters could currently lead to reasonable predictions
of water content for the studied sites. Particularly, the pedo-
physical model of Eq. (2) should be reworked and validated
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for soil samples above 30 % of clay content, and a pedotrans-
fer function for ECs would help to ease its implementation.
Additionally, the minimization method implemented in geo-
physical inversion turned out to be of key importance. Thus,
further work is required to improve the deterministic model-
ing predictions.
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