Articles | Volume 29, issue 13
https://doi.org/10.5194/hess-29-2785-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-2785-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Is drought protection possible without compromising flood protection? Estimating the potential dual-use benefit of small flood reservoirs in southern Germany
Institute for Water and the Environment – Hydrology, Karlsruhe Institute of Technology, 76133 Karlsruhe, Germany
Center for Disaster Management and Risk Reduction Technology (CEDIM), Karlsruhe Institute of Technology, 76133 Karlsruhe, Germany
Invited contribution by Sarah Quỳnh-Giang Ho, recipient of the EGU Natural Hazards Outstanding Student and PhD candidate Presentation Award 2023.
Uwe Ehret
Institute for Water and the Environment – Hydrology, Karlsruhe Institute of Technology, 76133 Karlsruhe, Germany
Center for Disaster Management and Risk Reduction Technology (CEDIM), Karlsruhe Institute of Technology, 76133 Karlsruhe, Germany
Related authors
No articles found.
Manuel Álvarez Chaves, Eduardo Acuña Espinoza, Uwe Ehret, and Anneli Guthke
EGUsphere, https://doi.org/10.5194/egusphere-2025-1699, https://doi.org/10.5194/egusphere-2025-1699, 2025
Short summary
Short summary
This study evaluates hybrid hydrological models that combine physics-based and data-driven components, using Information Theory to measure their relative contributions. When testing conceptual models with LSTMs that adjust parameters over time, we found performance primarily comes from the data-driven component, with physics constraints adding minimal value. We propose a quantitative tool to analyse this behaviour and suggest a workflow for diagnosing hybrid models.
Eduardo Acuña Espinoza, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, Ralf Loritz, and Uwe Ehret
Hydrol. Earth Syst. Sci., 29, 1749–1758, https://doi.org/10.5194/hess-29-1749-2025, https://doi.org/10.5194/hess-29-1749-2025, 2025
Short summary
Short summary
Long short-term memory (LSTM) networks have demonstrated state-of-the-art performance for rainfall-runoff hydrological modelling. However, most studies focus on predictions at a daily scale, limiting the benefits of sub-daily (e.g. hourly) predictions in applications like flood forecasting. In this study, we introduce a new architecture, multi-frequency LSTM (MF-LSTM), designed to use inputs of various temporal frequencies to produce sub-daily (e.g. hourly) predictions at a moderate computational cost.
Maria Staudinger, Anna Herzog, Ralf Loritz, Tobias Houska, Sandra Pool, Diana Spieler, Paul D. Wagner, Juliane Mai, Jens Kiesel, Stephan Thober, Björn Guse, and Uwe Ehret
EGUsphere, https://doi.org/10.5194/egusphere-2025-1076, https://doi.org/10.5194/egusphere-2025-1076, 2025
Short summary
Short summary
Four process-based and four data-driven hydrological models are compared using different training data. We found process-based models to perform better with small data sets but stop learning soon, while data-driven models learn longer. The study highlights the importance of memory in data and the impact of different data sampling methods on model performance. The direct comparison of these models is novel and provides a clear understanding of their performance under various data conditions.
Eduardo Acuña Espinoza, Ralf Loritz, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, and Uwe Ehret
Hydrol. Earth Syst. Sci., 29, 1277–1294, https://doi.org/10.5194/hess-29-1277-2025, https://doi.org/10.5194/hess-29-1277-2025, 2025
Short summary
Short summary
Data-driven techniques have shown the potential to outperform process-based models in rainfall–runoff simulations. Hybrid models, combining both approaches, aim to enhance accuracy and maintain interpretability. Expanding the set of test cases to evaluate hybrid models under different conditions, we test their generalization capabilities for extreme hydrological events.
Andrea L. Campoverde, Uwe Ehret, Patrick Ludwig, and Joaquim G. Pinto
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-134, https://doi.org/10.5194/gmd-2024-134, 2024
Revised manuscript not accepted
Short summary
Short summary
We looked at how well the model WRF-Hydro performed during the 2018 drought event in the River Rhine basin, even though it is typically used for floods. We used the meteorological ERA5 reanalysis dataset to simulate River Rhine’s streamflow and adjusted the model using parameters and actual discharge measurements. We focused on Lake Constance, a key part of the basin, but found issues with the model’s lake outflow simulation. By removing the lake module, we obtained more accurate results.
Eduardo Acuña Espinoza, Ralf Loritz, Manuel Álvarez Chaves, Nicole Bäuerle, and Uwe Ehret
Hydrol. Earth Syst. Sci., 28, 2705–2719, https://doi.org/10.5194/hess-28-2705-2024, https://doi.org/10.5194/hess-28-2705-2024, 2024
Short summary
Short summary
Hydrological hybrid models promise to merge the performance of deep learning methods with the interpretability of process-based models. One hybrid approach is the dynamic parameterization of conceptual models using long short-term memory (LSTM) networks. We explored this method to evaluate the effect of the flexibility given by LSTMs on the process-based part.
Uwe Ehret and Pankaj Dey
Hydrol. Earth Syst. Sci., 27, 2591–2605, https://doi.org/10.5194/hess-27-2591-2023, https://doi.org/10.5194/hess-27-2591-2023, 2023
Short summary
Short summary
We propose the
c-u-curvemethod to characterize dynamical (time-variable) systems of all kinds.
Uis for uncertainty and expresses how well a system can be predicted in a given period of time.
Cis for complexity and expresses how predictability differs between different periods, i.e. how well predictability itself can be predicted. The method helps to better classify and compare dynamical systems across a wide range of disciplines, thus facilitating scientific collaboration.
Patrick Ludwig, Florian Ehmele, Mário J. Franca, Susanna Mohr, Alberto Caldas-Alvarez, James E. Daniell, Uwe Ehret, Hendrik Feldmann, Marie Hundhausen, Peter Knippertz, Katharina Küpfer, Michael Kunz, Bernhard Mühr, Joaquim G. Pinto, Julian Quinting, Andreas M. Schäfer, Frank Seidel, and Christina Wisotzky
Nat. Hazards Earth Syst. Sci., 23, 1287–1311, https://doi.org/10.5194/nhess-23-1287-2023, https://doi.org/10.5194/nhess-23-1287-2023, 2023
Short summary
Short summary
Heavy precipitation in July 2021 led to widespread floods in western Germany and neighboring countries. The event was among the five heaviest precipitation events of the past 70 years in Germany, and the river discharges exceeded by far the statistical 100-year return values. Simulations of the event under future climate conditions revealed a strong and non-linear effect on flood peaks: for +2 K global warming, an 18 % increase in rainfall led to a 39 % increase of the flood peak in the Ahr river.
Susanna Mohr, Uwe Ehret, Michael Kunz, Patrick Ludwig, Alberto Caldas-Alvarez, James E. Daniell, Florian Ehmele, Hendrik Feldmann, Mário J. Franca, Christian Gattke, Marie Hundhausen, Peter Knippertz, Katharina Küpfer, Bernhard Mühr, Joaquim G. Pinto, Julian Quinting, Andreas M. Schäfer, Marc Scheibel, Frank Seidel, and Christina Wisotzky
Nat. Hazards Earth Syst. Sci., 23, 525–551, https://doi.org/10.5194/nhess-23-525-2023, https://doi.org/10.5194/nhess-23-525-2023, 2023
Short summary
Short summary
The flood event in July 2021 was one of the most severe disasters in Europe in the last half century. The objective of this two-part study is a multi-disciplinary assessment that examines the complex process interactions in different compartments, from meteorology to hydrological conditions to hydro-morphological processes to impacts on assets and environment. In addition, we address the question of what measures are possible to generate added value to early response management.
Elnaz Azmi, Uwe Ehret, Steven V. Weijs, Benjamin L. Ruddell, and Rui A. P. Perdigão
Hydrol. Earth Syst. Sci., 25, 1103–1115, https://doi.org/10.5194/hess-25-1103-2021, https://doi.org/10.5194/hess-25-1103-2021, 2021
Short summary
Short summary
Computer models should be as simple as possible but not simpler. Simplicity refers to the length of the model and the effort it takes the model to generate its output. Here we present a practical technique for measuring the latter by the number of memory visits during model execution by
Strace, a troubleshooting and monitoring program. The advantage of this approach is that it can be applied to any computer-based model, which facilitates model intercomparison.
Cited articles
Acheampong, D., Balana, B. B., Nimoh, F., and Abaidoo, R. C.: Asssesing the effectiveness and impact of agricultural water management interventions: the case of small reservoirs in northern Ghana, Agr. Water Manag., 209, 163–170, https://doi.org/10.1016/j.agwat.2018.07.009, 2018.
Adams, L. E., Lund, J. R., Moyle, P. B., Quiñones, R. M., Herman, J. D., and O'Rear, T. A.: Environmental hedging: A theory and method for reconciling reservoir operations for downstream ecology and water supply, Water Resour. Res., 53, 7816–7831, https://doi.org/10.1002/2016wr020128, 2017.
Baden-Württemberg, H. R.: Strategie zur Minderung von Hochwasserrisiken in Baden-Württemberg, https://um.baden-wuerttemberg.de/fileadmin/redaktion/ (last access: 30 June 2025), 2014.
Baden-Württemberg, L. f. U.: Regionalisierte Abfluss-Kennwerte Baden-Württemberg - Mittlere Abflüsse und mittlere Niedrigwasserabflüsse [data set], https://www.lubw.baden-wuerttemberg.de/wasser/regionalisierte-abflusskennwerte (last access: 30 June 2025), 2016.
Baden-Württemberg, L. f. U.: NIZ Pegel Klassifizierung, https://www.hvz.baden-wuerttemberg.de/pdf/NIZ_Pegel_Klassifizierung.pdf (last access: 30 June 2025), 2024a.
Baden-Württemberg, L. f. U.: Hinweise zu den Wasserstands- und Aflussvorhersagen der Hochwasservorhersagezentrale der LUBW, https://www.hvz.baden-wuerttemberg.de/pdf/Hinweise-WHM-Vorhersage.pdf (last access: 30 June 2025), 2024b.
Balley, P.: An integrated real-time optimal flood and drought control operation model of a multi-purpose two-reservoir system: the Waiau River System, Dissertation, Department of Natural Resources Engineering, Lincoln University, 1997.
Beck, H. E., McVicar, T. R., Vergopolan, N., Berg, A., Lutsko, N. J., Dufour, A., Zeng, Z., Jiang, X., van Dijk, A., and Miralles, D. G.: High-resolution (1 km) Koppen-Geiger maps for 1901–2099 based on constrained CMIP6 projections, Sci. Data, 10, 724, https://doi.org/10.1038/s41597-023-02549-6, 2023.
Berhane, G., Gebreyohannes, T., Martens, K., and Walraevens, K.: Overview of micro-dam reservoirs (MDR) in Tigray (northern Ethiopia): Challenges and benefits, J. Afr. Earth Sci., 123, 210–222, https://doi.org/10.1016/j.jafrearsci.2016.07.022, 2016.
Bundesamt, U.: Niedrigwasser, Dürre und Grundwasserneubildung – Bestandsaufnahme zur gegenwärtigen Situation in Deutschland, den Klimaprojektionen und den existierenden Maßnahmen und Strategien1862-4804, 2021.
Cammalleri, C., Vogt, J., and Salamon, P.: Development of an operational low-flow index for hydrological drought monitoring over Europe, Hydrol. Sci. J., 62, 346–358, https://doi.org/10.1080/02626667.2016.1240869, 2016.
Cañón, J., González, J., and Valdés, J.: Reservoir operation and water allocation to mitigate drought effects in crops: a multilevel optimization using the Drought Frequency Index, J. Water Res. Pl., 135, 458–465, https://doi.org/10.1061/(ASCE)0733-9496(2009)135:6(458), 2009.
Casadei, S., Di Francesco, S., Giannone, F., and Pierleoni, A.: Small reservoirs for a sustainable water resources management, Adv. Geosci., 49, 165–174, https://doi.org/10.5194/adgeo-49-165-2019, 2019.
Chang, J., Guo, A., Wang, Y., Ha, Y., Zhang, R., Xue, L., and Tu, Z.: Reservoir Operations to Mitigate Drought Effects With a Hedging Policy Triggered by the Drought Prevention Limiting Water Level, Water Resour. Res., 55, 904–922, https://doi.org/10.1029/2017wr022090, 2019.
Chang, T. J., Kleopa, X. A., and Teoh, C. B.: Use of Flood-Control Reservoirs for Drought Management, J. Irrig. Drain. Eng., 121, 9 pp., 1995.
Consoli, S., Matarazzo, B., and Pappalardo, N.: Operating Rules of an Irrigation Purposes Reservoir Using Multi-Objective Optimization, Water Resour. Manag., 22, 551–564, https://doi.org/10.1007/s11269-007-9177-9, 2007.
Di Baldassarre, G., Wanders, N., AghaKouchak, A., Kuil, L., Rangecroft, S., Veldkamp, T. I. E., Garcia, M., van Oel, P. R., Breinl, K., and Van Loon, A. F.: Water shortages worsened by reservoir effects, Nat. Sustain., 1, 617–622, https://doi.org/10.1038/s41893-018-0159-0, 2018.
Draper, A. and Lund, J.: Optimal hedging and carryover storage value, J. Water Res. Plan. Manag., 130, 83–87, https://doi.org/10.1061/(ASCE)0733-9496(2004)130:1(83), 2004.
Drastig, K., Prochnow, A., Libra, J., Koch, H., and Rolinski, S.: Irrigation water demand of selected agricultural crops in Germany between 1902 and 2010, Sci. Total Environ., 569/570, 1299–1314, https://doi.org/10.1016/j.scitotenv.2016.06.206, 2016.
Erfurt, M., Skiadaresis, G., Tijdeman, E., Blauhut, V., Bauhus, J., Glaser, R., Schwarz, J., Tegel, W., and Stahl, K.: A multidisciplinary drought catalogue for southwestern Germany dating back to 1801, Nat. Hazards Earth Syst. Sci., 20, 2979–2995, https://doi.org/10.5194/nhess-20-2979-2020, 2020.
Heinzel, C., Fink, M., and Höllermann, B.: The potential of unused small-scale water reservoirs for climate change adaptation: A model- and scenario based analysis of a local water reservoir system in Thuringia, Germany, Front. Water, 4, 892834, https://doi.org/10.3389/frwa.2022.892834, 2022.
Hisdal, H., Tallaksen, L. M., Gauster, T., Bloomfield, J. P., Parry, S., Prudhomme, C., and Wanders, N.: Hydrological drought characteristics, in: Hydrological Drought, 1st Edn., Elsevier Science, 157–231, 2004.
Ho, S. Q.-G.: Reservoirs Max Benefit, Zenodo [data set and code], https://doi.org/10.5281/zenodo.12724797, 2024.
Huang, W.-C. and Chou, C.-C.: Drought early warning system in reservoir operation: Theory and practice, Water Resour. Res., 41, W11406, https://doi.org/10.1029/2004wr003830, 2005.
Hui, R., Lund, J., Zhao, J., and Zhao, T.: Optimal Pre-storm Flood Hedging Releases for a Single Reservoir, Water Resour. Manag., 30, 5113–5129, https://doi.org/10.1007/s11269-016-1472-x, 2016.
Jurik, L., Húska, D., Halászová, K., and Bandlerová, A.: Small Water Reservoirs – Sources of Water or Problems?, J. Ecol. Eng., 16, 22–28, https://doi.org/10.12911/22998993/59343, 2015.
Jurík, L., Zeleòáková, M., Kaletová, T., and Arifjanov, A.: Small Water Reservoirs: Sources of Water for Irrigation, in: Water Resources in Slovakia: Part I, The Handbook of Environmental Chemistry, 69, 115–131, https://doi.org/10.1007/698_2018_301, 2018.
Karamouz, M. and Araghinejad, S.: Drought Mitigation through Long-Term Operation of Reservoirs: Case Study, Journal of Irrigation and Drainage Engineering – ASCE, 134, https://doi.org/10.1061/(ASCE)0733-9437(2008)134:4(471), 2008.
Knight, R. R., Gain, W. S., and Wolfe, W. J.: Modelling ecological flow regime: an example from the Tennessee and Cumberland River basins, Ecohydrology, 5, 613–627, https://doi.org/10.1002/eco.246, 2011.
Knight, R. R., Murphy, J. C., Wolfe, W. J., Saylor, C. F., and Wales, A. K.: Ecological limit functions relating fish community response to hydrologic departures of the ecological flow regime in the Tennessee River basin, United States, Ecohydrology, 7, 1262–1280, https://doi.org/10.1002/eco.1460, 2013.
LARSIM-Entwicklergemeinschaft: Das Wasserhaushaltsmodell LARSIM: Modellgrundlagen und Anwendungsbeispiele, https://larsim.info/dokumentation/LARSIM-Dokumentation.pdf (last access: 30 June 2025), 2023.
Liebe, J., Andreini, M., van de Giesen, N., and Steenhuis, T.: The small reservoirs project: Research to improve water availability and economic development in rural semi-arid areas., in: The hydropolitics of Africa: A contemporary challenge, edited by: Bardouille, R., Nagel, M., and Ndulo, M., Cambridge Scholars Publishing, Necastle, UK, 325–332, ISBN 1-84718-112-0, 2007.
Liu, H., Sun, Y., Yin, X., Zhao, Y., Cai, Y., and Yang, W.: A reservoir operation method that accounts for different inflow forecast uncertainties in different hydrological periods, J. Clean. Prod., 256, 120471, https://doi.org/10.1016/j.jclepro.2020.120471, 2020.
LUBW: Arbeitshilfe zur DIN 19700 für Hochwasserrückhaltebecken in Baden-Württemberg, https://pd.lubw.de/93810 (last access: 30 June 2025), 2007.
Ludwig, K. and Bremicker, M.: The Water Balance Model LARSIM - Design, Content and Applications, Institut für Hydrologie der Universität Freiburg i. Br., https://larsim.info/fileadmin/files/Dokumentation/FSH-Bd22-Bremicker-Ludwig.pdf (last access: 30 June 2025), 2006.
Mady, B., Lehmann, P., Gorelick, S. M., and Or, D.: Distribution of small seasonal reservoirs in semi-arid regions and associated evaporative losses, Environ. Res. Commun., 2, 061002, https://doi.org/10.1088/2515-7620/ab92af, 2020.
Ministerium für Umwelt, K. u. E. B.-W.: Strategie zum Umgang mit Wassermangel in Baden-Württemberg: Erfordernisse zur Verringerung von Risiken und – Nutzungskonflikten bei Niedrigwasser und – abnehmenden Grundwasserreserven, Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg, Stuttgart, https://um.baden-wuerttemberg.de/de/umwelt-natur/wasser/wasserversorgung/wassermangel (last access: 30 June 2025), 2022.
Ogilvie, A., Riaux, J., Massuel, S., Mulligan, M., Belaud, G., Le Goulven, P., and Calvez, R.: Socio-hydrological drivers of agricultural water use in small reservoirs, Agr. Water Manag., 218, 17–29, 2019.
Padiyedath Gopalan, S., Hanasaki, N., Champathong, A., and Tebakari, T.: Impact assessment of reservoir operation in the context of climate change adaptation in the Chao Phraya River basin, Hydrol. Process., 35, e14005, https://doi.org/10.1002/hyp.14005, 2020.
Qadir, M., Sharma, B. R., Bruggeman, A., Choukr-Allah, R., and Karajeh, F.: Non-conventional water resources and opportunities for water augmentation to achieve food security in water scarce countries, Agr. Water Manag., 87, 2–22, https://doi.org/10.1016/j.agwat.2006.03.018, 2007.
Salmoral, G., Rey, D., Rudd, A., de Margon, P., and Holman, I.: A Probabilistic Risk Assessment of the National Economic Impacts of Regulatory Drought Management on Irrigated Agriculture, Earth's Future, 7, 178–196, https://doi.org/10.1029/2018ef001092, 2019.
Shih, J.-S. and ReVelle, C.: Water-Supply Operations during Drought: Continuous Hedging Rule, Journal of Water Resources Planning and Management, 120, 613–629, https://doi.org/10.1061/(ASCE)0733-9496(1994)120:5(613), 1994.
Shih, J.-S. and ReVelle, C.: Water supply operations during drought: A discrete hedging rule, Eur. J. Oper. Res., 82, 163–175, https://doi.org/10.1016/0377-2217(93)E0237-R, 1995.
Tallaksen, L. M., Madsen, H., and Clausen, B.: On the definition and modelling of streamflow drought duration and deficit volume, Hydrol. Sci. J., 42, 15–33, https://doi.org/10.1080/02626669709492003, 2009.
Van Loon, A. F.: Hydrological drought explained, WIRES Water, 2, 359–392, https://doi.org/10.1002/wat2.1085, 2015.
Van Loon, A. F. and Van Lanen, H. A. J.: A process-based typology of hydrological drought, Hydrol. Earth Syst. Sci., 16, 1915–1946, https://doi.org/10.5194/hess-16-1915-2012, 2012.
Van Loon, A. F., Van Lanen, H. A., Hisdal, H., Tallaksen, L. M., Fendeková, M., Oosterwijk, J., Horvát, O., and Machlica, A.: Understanding hydrological winter drought in Europe, Global Change: Facing Risks and Threats to Water Resources, IAHS Publ., 340, 189–197, 2010.
Venot, J.-P. and Krishnan, J.: Discursive framing: Debates over small reservoirs in the rural South, Water Altern., 4, 316–324, 2011.
Venot, J.-P., Andreini, M., and Pinkstaff, C. B.: Planning and Corrupting Water Resources Development: The Case of Small Reservoirs in Ghana, Water Altern., 4, 399–423, 2011.
Venot, J.-P., Fraiture, C. D., and Nti Acheampong, E.: Revisiting dominant notions: a review of costs, performance and institutions of small reservoirs in Sub-Saharan Africa, International Water Management Institute (IWMI), Colombo, Sri Lanka, IWMI Research Report 144, 39 pp., https://doi.org/10.5337/2012.202, 2012.
Vigiak, O., Lutz, S., Mentzafou, A., Chiogna, G., Tuo, Y., Majone, B., Beck, H., de Roo, A., Malago, A., Bouraoui, F., Kumar, R., Samaniego, L., Merz, R., Gamvroudis, C., Skoulikidis, N., Nikolaidis, N. P., Bellin, A., Acuna, V., Mori, N., Ludwig, R., and Pistocchi, A.: Uncertainty of modelled flow regime for flow-ecological assessment in Southern Europe, Sci. Total Environ., 615, 1028–1047, https://doi.org/10.1016/j.scitotenv.2017.09.295, 2018.
Wisser, D., Frolking, S., Douglas, E. M., Fekete, B. M., Schumann, A. H., and Vörösmarty, C. J.: The significance of local water resources captured in small reservoirs for crop production – A global-scale analysis, J. Hydrol., 384, 264–275, https://doi.org/10.1016/j.jhydrol.2009.07.032, 2010.
Yarnell, S. M., Stein, E. D., Webb, J. A., Grantham, T., Lusardi, R. A., Zimmerman, J., Peek, R. A., Lane, B. A., Howard, J., and Sandoval-Solis, S.: A functional flows approach to selecting ecologically relevant flow metrics for environmental flow applications, River Res. Appl., 36, 318–324, https://doi.org/10.1002/rra.3575, 2020.
You, J.-Y. and Cai, X.: Hedging rule for reservoir operations: 2. A numerical model, Water Resour. Res., 44, W01416, https://doi.org/10.1029/2006wr005482, 2008a.
You, J.-Y. and Cai, X.: Hedging rule for reservoir operations: 1. A theoretical analysis, Water Resour. Res., 44, W01415, https://doi.org/10.1029/2006wr005481, 2008b.
Zhao, T., Zhao, J., Lund, J. R., and Yang, D.: Optimal Hedging Rules for Reservoir Flood Operation from Forecast Uncertainties, J. Water Res. Plan. Manag., 140, 04014041–040140411, https://doi.org/10.1061/(asce)wr.1943-5452.0000432, 2014.
Executive editor
This study addresses the highly relevant issue of dam operation around the central question if dam operation can help to alleviate both floods and droughts, and under what conditions. This study of dams in Germany is highly relevant to water management in a climate with increasing frequency and magnitude of weather extremes.
This study addresses the highly relevant issue of dam operation around the central question if...
Short summary
In this paper, we use models to demonstrate that even small flood reservoirs – which capture water to avoid floods downstream – can be repurposed to release water in drier conditions without affecting their ability to protect against floods. By capturing water and releasing it once levels are low, we show that reservoirs can greatly increase the water available in drought. Having more water available to the reservoir, however, is not necessarily better for drought protection.
In this paper, we use models to demonstrate that even small flood reservoirs – which capture...