Articles | Volume 28, issue 4
https://doi.org/10.5194/hess-28-917-2024
https://doi.org/10.5194/hess-28-917-2024
Research article
 | 
27 Feb 2024
Research article |  | 27 Feb 2024

A comprehensive study of deep learning for soil moisture prediction

Yanling Wang, Liangsheng Shi, Yaan Hu, Xiaolong Hu, Wenxiang Song, and Lijun Wang

Related authors

Data worth analysis within a model-free data assimilation framework for soil moisture flow
Yakun Wang, Xiaolong Hu, Lijun Wang, Jinmin Li, Lin Lin, Kai Huang, and Liangsheng Shi
Hydrol. Earth Syst. Sci., 27, 2661–2680, https://doi.org/10.5194/hess-27-2661-2023,https://doi.org/10.5194/hess-27-2661-2023, 2023
Short summary
Impacts of a revised surface roughness parameterization in the Community Land Model 5.1
Ronny Meier, Edouard L. Davin, Gordon B. Bonan, David M. Lawrence, Xiaolong Hu, Gregory Duveiller, Catherine Prigent, and Sonia I. Seneviratne
Geosci. Model Dev., 15, 2365–2393, https://doi.org/10.5194/gmd-15-2365-2022,https://doi.org/10.5194/gmd-15-2365-2022, 2022
Short summary
On the uncertainty of initial condition and initialization approaches in variably saturated flow modeling
Danyang Yu, Jinzhong Yang, Liangsheng Shi, Qiuru Zhang, Kai Huang, Yuanhao Fang, and Yuanyuan Zha
Hydrol. Earth Syst. Sci., 23, 2897–2914, https://doi.org/10.5194/hess-23-2897-2019,https://doi.org/10.5194/hess-23-2897-2019, 2019
Capturing soil-water and groundwater interactions with an iterative feedback coupling scheme: new HYDRUS package for MODFLOW
Jicai Zeng, Jinzhong Yang, Yuanyuan Zha, and Liangsheng Shi
Hydrol. Earth Syst. Sci., 23, 637–655, https://doi.org/10.5194/hess-23-637-2019,https://doi.org/10.5194/hess-23-637-2019, 2019
Short summary

Related subject area

Subject: Vadose Zone Hydrology | Techniques and Approaches: Modelling approaches
Mesoscale permeability variations estimated from natural airflows in the decorated Cosquer Cave (southeastern France)
Hugo Pellet, Bruno Arfib, Pierre Henry, Stéphanie Touron, and Ghislain Gassier
Hydrol. Earth Syst. Sci., 28, 4035–4057, https://doi.org/10.5194/hess-28-4035-2024,https://doi.org/10.5194/hess-28-4035-2024, 2024
Short summary
Identification of parameter importance for benzene transport in the unsaturated zone using global sensitivity analysis
Meirav Cohen, Nimrod Schwartz, and Ravid Rosenzweig
Hydrol. Earth Syst. Sci., 28, 1585–1604, https://doi.org/10.5194/hess-28-1585-2024,https://doi.org/10.5194/hess-28-1585-2024, 2024
Short summary
Evapotranspiration prediction for European forest sites does not improve with assimilation of in situ soil water content data
Lukas Strebel, Heye Bogena, Harry Vereecken, Mie Andreasen, Sergio Aranda-Barranco, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 28, 1001–1026, https://doi.org/10.5194/hess-28-1001-2024,https://doi.org/10.5194/hess-28-1001-2024, 2024
Short summary
Modelling groundwater recharge, actual evaporation, and transpiration in semi-arid sites of the Lake Chad basin: the role of soil and vegetation in groundwater recharge
Christoph Neukum, Angela Morales-Santos, Melanie Ronelngar, Aminu Bala, and Sara Vassolo
Hydrol. Earth Syst. Sci., 27, 3601–3619, https://doi.org/10.5194/hess-27-3601-2023,https://doi.org/10.5194/hess-27-3601-2023, 2023
Short summary
Predicting soil hydraulic properties for binary mixtures – concept and application for constructed Technosols
Moreen Willaredt, Thomas Nehls, and Andre Peters
Hydrol. Earth Syst. Sci., 27, 3125–3142, https://doi.org/10.5194/hess-27-3125-2023,https://doi.org/10.5194/hess-27-3125-2023, 2023
Short summary

Cited articles

Abbaszadeh, P., Moradkhani, H., and Zhan, X.: Downscaling SMAP radiometer soil moisture over the CONUS using an ensemble learning method, Water Resour. Res., 55, 324–344, 2019. 
Abdel-Hamid, O., Mohamed, A. R., Jiang, H., Deng, L., Penn, G., and Yu, D.: Convolutional neural networks for speech recognition, IEEE T. Audio, Speech, 22, 1533–1545, https://doi.org/10.1109/TASLP.2014.2339736, 2014. 
Ahmed, A. A. M., Deo, R. C., Ghahramani, A., Raj, N., Feng, Q., Yin, Z., and Yang, L.: LSTM integrated with Boruta-random forest optimiser for soil moisture estimation under RCP4.5 and RCP8.5 global warming scenarios, Springer Berlin Heidelberg, 1851–1881 pp., https://doi.org/10.1007/s00477-021-01969-3, 2021. 
Ajit, A., Acharya, K., and Samanta, A.: A Review of Convolutional Neural Networks, Int. Conf. Emerg. Tr., 1–5, https://doi.org/10.1109/ic-ETITE47903.2020.049, 2020. 
Albawi, S., Mohammed, T. A., and Al-Zawi, S.: Understanding of a convolutional neural network, Proc. 2017 Int. Conf. Eng. Technol., ICET 2017, Antalya, Turkey, 21–23 August 2017, IEEE: Piscataway, NJ, USA, 2017, 1–6 https://doi.org/10.1109/ICEngTechnol.2017.8308186, 2018. 
Download
Short summary
LSTM temporal modeling suits soil moisture prediction; attention mechanisms enhance feature learning efficiently, as their feature selection capabilities are proven through Transformer and attention–LSTM hybrids. Adversarial training strategies help extract additional information from time series’ data. SHAP analysis and t-SNE visualization reveal differences in encoded features across models. This work serves as a reference for time series’ data processing in hydrology problems.