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Abstract. Soil moisture plays a crucial role in the hydrolog-
ical cycle, but accurately predicting soil moisture presents
challenges due to the nonlinearity of soil water transport and
the variability of boundary conditions. Deep learning has
emerged as a promising approach for simulating soil mois-
ture dynamics. In this study, we explore 10 different network
structures to uncover their data utilization mechanisms and
to maximize the potential of deep learning for soil mois-
ture prediction, including three basic feature extractors and
seven diverse hybrid structures, six of which are applied to
soil moisture prediction for the first time. We compare the
predictive abilities and computational costs of the models
across different soil textures and depths systematically. Fur-
thermore, we exploit the interpretability of the models to
gain insights into their workings and attempt to advance our
understanding of deep learning in soil moisture dynamics.
For soil moisture forecasting, our results demonstrate that
the temporal modeling capability of long short-term memory
(LSTM) is well suited. Furthermore, the improved accuracy
achieved by feature attention LSTM (FA-LSTM) and the
generative-adversarial-network-based LSTM (GAN-LSTM),
along with the Shapley (SHAP) additive explanations anal-
ysis, help us discover the effectiveness of attention mech-
anisms and the benefits of adversarial training in feature
extraction. These findings provide effective network design
principles. The Shapley values also reveal varying data lever-
aging approaches among different models. The t-distributed
stochastic neighbor embedding (t-SNE) visualization illus-
trates differences in encoded features across models. In sum-
mary, our comprehensive study provides insights into soil
moisture prediction and highlights the importance of the ap-
propriate model design for specific soil moisture prediction
tasks. We also hope this work serves as a reference for deep

learning studies in other hydrology problems. The codes of
3 machine learning and 10 deep learning models are open
source.

1 Introduction

Soil moisture is significant with respect to simulating many
hydrological processes, as it controls the interaction of wa-
ter and energy between the land surface and the atmosphere
(Entin et al., 2000; Vereecken et al., 2022). Accurately pro-
viding information on soil moisture dynamics is crucial for
effective water resources planning and management, agricul-
tural production, climate prediction, and flood disaster mon-
itoring (Vereecken et al., 2008; Sampathkumar et al., 2013).
However, due to the randomness of rainfall and the nonlinear
features of infiltration and evaporation processes (Guswa et
al., 2002), soil moisture is highly variable and nonlinear in
space and time (Heathman et al., 2012), making it difficult to
forecast.

As various mainstream approaches have been applied to
soil moisture dynamics prediction, a comprehensive study is
needed to provide suitable solutions for different predicting
tasks, encourage improvements on models, and build confi-
dence in this area. Traditionally, soil moisture dynamics pre-
diction is widely based on physical models, such as the soil–
plant–air model (Saxton et al., 1974), HYDRUS (Simunek et
al., 2005), and CATHY (Camporese et al., 2015). Although
these models are interpretable, they perform poorly in practi-
cal applications, because of the inestimable parameters (Gill
et al., 2006) and inadequate description of physical processes
(Li et al., 2022b). With the reduction in data acquisition costs
and advancements in computation, there has been an increas-
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ing focus on data-driven models. Initially, multiple linear re-
gression (Qiu et al., 2003; Hummel et al., 2001) and em-
pirical models (Azhar et al., 2011; Verma and Nema, 2021)
are applied to soil moisture prediction. However, one non-
negligible problem is that these methods require calibrations
and have limited generalization capabilities (Holzman et al.,
2017; Jackson, 2003). Compared with these traditional data-
driven models, machine learning methods appear to possess
a stronger data fitting ability. For instance, support vector re-
gression (SVR) (Gill et al., 2006) and random forest (RF)
(Prasad et al., 2019) have both shown satisfactory and ro-
bust results with low computing costs in soil moisture predic-
tion. Additionally, the single-layer feedforward neural net-
work with generalized inverse operation – extreme learning
machine (ELM) (Huang et al., 2006) – can precisely predict
the future trends of soil moisture and support future irriga-
tion scheduling (Liu et al., 2014). Moreover, when dealing
with multi-scale soil moisture data, such as satellite data,
Abbaszadeh et al. (2019) employed 12 distinct random for-
est models to downscale the daily composite version of Soil
Moisture Active/Passive (SMAP) data.

Currently, deep learning is the state-of-the-art data-driven
method and has made obvious improvements in many re-
search areas (Lecun et al., 2015). Due to their powerful ap-
proximation ability, deep neural networks (DNNs) (Goodfel-
low et al., 2016) have been extensively applied in soil mois-
ture descriptions (Cai et al., 2019; Prakash et al., 2018). No-
tably, recurrent neural networks (RNNs) (Pollack, 1990) ex-
cel at capturing temporal information in time series’ data and
model sequential dependencies for predictions (Mikolov et
al., 2011). This is consistent with the characteristics of soil
moisture dynamics simulation. Fang et al. (2019) utilized
long short-term memory (LSTM) (Hochreiter and Schmid-
huber, 1997) for soil moisture and received satisfactory re-
sults. Furthermore, Sungmin et al. (2021, 2022) efficiently
employed LSTM to interpolate global gridded datasets from
in situ observations (Sungmin and Orth, 2021; Sungmin et
al., 2022). From a different perspective, convolution neural
networks (CNNs) (LeCun, 1989) are capable of extracting
features from training data in specific dimensions, making
them widely used in dealing with two-dimensional (Albawi
et al., 2018; Patil and Rane, 2021) or one-dimensional data
(Severyn and Moschitti, 2015; Shi et al., 2015). Therefore,
1D-CNNs are applied in many hydrology research endeav-
ors (Hussain et al., 2020; Chen et al., 2021). Additionally,
attention mechanisms enable the selection of critical infor-
mation from multiple input features or model outputs, which
can be visualized using attention weight (Ding et al., 2020;
Li et al., 2022a). On this foundation, self-attention can model
dependencies and aggregate features from inputs while dis-
regarding their distance (Vaswani et al., 2017), which shows
great potential in soil moisture prediction.

As various deep learning approaches have focused on dis-
tinct data utilization mechanisms, hybrid structures have be-
come a vital research area. On one hand, combining the

feature importance processing methods – attention mecha-
nisms – with deep learning models, can indeed lead to im-
provements (Ahmed et al., 2021; Ding et al., 2019; Kilinc
and Yurtsever, 2022). Li et al. (2022) proposed an attention-
aware LSTM to estimate soil moisture and temperature and
achieved better performance than LSTM alone. In their work,
three attention mechanisms help obtain the spatial–temporal
feature vectors of LSTM inputs or outputs. On the other
hand, the combinations of multiple neural networks tend
to perform better than a single network alone (Semwal et
al., 2021). The hybrid CNN–GRU model proposed by Yu
et al. (2021) outperformed the independent CNN or GRU
model in predicting root zone moisture. Moreover, Li et
al. (2022b) proposed EDT-LSTM, a stacked LSTM model
based on the encoder–decoder structure (Sutskever et al.,
2014) and residual learning (He et al., 2016). This achieved
more stable results than a single LSTM. Regarding the opti-
mization of training strategies, adversarial training in gener-
ative adversarial networks (GANs) (Goodfellow et al., 2014)
can capture more information on real data. This helps to ad-
dress the problem of fuzzy prediction and provides a superior
solution for weather forecasts (Jing et al., 2019; Ravuri et
al., 2021). Moreover, advancements in model structure have
been instrumental in enhancing performance and improving
generalization abilities. For instance, Liu et al. (2022) inte-
grated multi-scale designs into their models. In addition to
pure deep learning models, differentiable, physics-informed
machine learning models with a physical foundation have
emerged as a noteworthy development. This kind of model
systematically integrates physical equations with deep learn-
ing, enabling the prediction of untrained variables and pro-
cesses with high accuracy (Feng et al., 2023).

Therefore, it is essential to design effective and suitable
neural network structures for soil moisture prediction tasks.
In this study, we comprehensively evaluate the performance
of various deep learning methods in soil moisture predic-
tion, highlighting their key characteristics in terms of pre-
diction accuracy and computational costs. The models eval-
uated in this research range from machine learning models,
such as RF, ELM, and SVR, to basic deep learning models,
including 1D-CNN, LSTM, and the encoder of Transformer
(Vaswani et al., 2017), and hybrid deep learning models, in-
cluding CNN–LSTM, LSTM–CNN, CNN-with-LSTM, fea-
ture attention LSTM (FA-LSTM), temporal attention LSTM
(TA-LSTM), feature and temporal attention LSTM (FTA-
LSTM), and generative-adversarial-network-based LSTM
(GAN-LSTM). Notably, the encoder of the Transformer
is first developed in soil moisture prediction, with CNN–
LSTM, LSTM–CNN, FA-LSTM, TA-LSTM, FTA-LSTM,
and GAN-LSTM first applied and systematically compared
for soil moisture. To gain insights into their workings and
provide a thorough analysis of why some methods perform
better, we utilize the Shapley (SHAP) (Lundberg et al., 2018)
method to demonstrate the importance of features in differ-
ent models and employ t-distributed stochastic neighbor em-
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Figure 1. The spatial locations of the 30 selected sites.

bedding (t-SNE) visualization (Van der Maaten and Hinton,
2008) to show the encoded features across models. The sys-
tematical assessment of the models is carried out across mul-
tiple sites at five depths. For forecasting soil moisture, the uti-
lized data include meteorological data, soil temperature data,
and soil moisture content data from previous days, as these
inputs are closely associated with evaporation and infiltration
processes.

In the remainder of this article is structured as follows:
Sect. 2 describes the data used and the deep learning back-
ground; Sect. 3 presents a detailed description of the partici-
pating methods; Sect. 4 analyzes comparison results and dis-
cusses the interpretability of the models; and the conclusion
is drawn in Sect. 5.

2 Data description and background

2.1 Data description

To create a comprehensive evaluation under different soil
types, in situ observations at 30 different sites are down-
loaded from the International Soil Moisture Network (ISMN)
(https://ismn.earth/en/dataviewer/, last access: 20 February
2024). The research sites are carefully chosen according to
the geographical location (as dispersed as possible), soil tex-
tures, and distinct land cover types (as diverse as possible).
The main characteristics of the selected sites are shown in
Table 1. The spatial locations of the sites are shown on a
world map in Fig. 1. More detailed site meteorological in-
formation and soil moisture time series’ data are provided in
Appendix D.

During the input factor screening process, we carefully
choose meteorological inputs based on the precipitation and
evapotranspiration calculation, including precipitation (P ),
atmospheric temperature (AT), longwave radiation (LR),
shortwave radiation (SR), wind speed (WS), and relative hu-
midity (RH), which are closely related to the soil evapotran-
spiration and infiltration processes. Moreover, soil tempera-
ture (ST) data and soil moisture (SM) data from the previous
day are incorporated to represent the soil condition. Figure 2

displays the Pearson correlation analysis results for input fac-
tors at the Cape-Charles and UpperBethlehem sites. Pearson
correlation analysis examines the relationship between two
variables by calculating the correlation coefficient, thereby
measuring the strength and direction of their association. No-
tably, the correlation coefficients between soil moisture and
the input data vary greatly with respect to both the station
and depth. While the correlation coefficient between long-
wave radiation and soil moisture is low at the UpperBethle-
hem site, it is significant at the Cape-Charles site, highlight-
ing the influence of site-specific differences. Although utiliz-
ing highly correlated factors as inputs appears to be a logical
choice, achieving uniformity across different sites and depths
can be difficult. This presents a crucial aspect to explore
when evaluating the performance of models for self-learning
screening of significant influencing factors. Therefore, the
input data xt at time t consist of all eight factors, xt =

{Pt ,Tt ,LWt ,SWt ,RHt ,WSt , STt ,SMt−1}. As groundwater
level observations are difficult to obtain, changes in the lower
boundary conditions are excluded from the inputs.

Figure 3 shows the autocorrelation analysis conducted at
five soil depths. The autocorrelation coefficients for soil wa-
ter content at different depths decrease with an increasing
number of delay days. The most significant change is ob-
served in the surface layer. As a result, we have utilized a 4 d
delay as our input for all deep learning models in this study to
forecast the soil moisture content on the fifth day. This means
the input vector I {xt−3,xt−2,xt−1,xt } is used to predict the
target value yt , which is the soil moisture SMt at time t . For
machine learning, we only utilize the xt to generate predic-
tions.

This study builds individual predictive models for each
site and depth, disregarding the inclusion of static proper-
ties such as land cover, soil hydraulic properties, and to-
pography. Soil moisture and soil temperature data are ob-
tained from the ISMN. Specifically, the meteorological data
applied in this work are sourced from the NASA Prediction
Of Worldwide Energy Resources (POWER) project (https:
//power.larc.nasa.gov/, last access: 20 February 2024), which
provides a wide range of meteorological data, such as tem-
perature, precipitation, and solar radiation. Detailed infor-
mation can be found at (https://power.larc.nasa.gov/docs/
methodology/data/sources/, last access: 20 February 2024).
The meteorological data are used as an auxiliary component
for soil moisture prediction in our work. Therefore, even
though the resolution of some variables appears coarse, we
can safely disregard the potential influence of resolution on
our research findings and conclusions.

2.2 Deep learning backgrounds

Deep learning enhances the complexity and learning capabil-
ity of traditional machine learning methods by adding multi-
ple layers (Kamilaris and Prenafeta-Boldú, 2018). At each
layer, input signals are weighted through the connections
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Figure 2. Pearson correlation analysis results among the observed variables at 0.05 and 1.00 m at the Cape-Charles (a–b) and UpperBethle-
hem (c–d) sites.

of each neuron and are subsequently activated by activation
functions (Schmidhuber, 2015). Deep learning discovers in-
tricate structures in training data by utilizing backpropaga-
tion to guide the machine with respect to adjusting its internal
parameters (Lecun et al., 2015).

In this study, the primary challenge in soil moisture pre-
diction is processing the time series’ data with specific di-
mensions and simulating soil moisture dynamics with high
spatiotemporal variability. Given the diversity of neural net-
works, numerous methods have the potential to deal with
specific time series’ data. CNNs can extract local temporal
information from the data by sliding convolutional kernels
along the time dimension. On the other hand, RNNs excel
at capturing the overall temporal sequence information. Ad-

ditionally, self-attention has the potential to associate inputs
and make predictions, making them capable of handling se-
quential data effectively. These three types of networks can
be regarded as fundamental feature extractors in deep learn-
ing. Furthermore, hybrid deep learning models integrate the
characteristics of multiple models, enhancing their prediction
capacities (Yu et al., 2021). Combinations of CNNs, RNNs,
and attention mechanisms have been widely utilized in many
studies. Furthermore, employing specified training strategies
with suitable network structures can also improve prediction
performance. For instance, GANs enable the training objec-
tive of neural networks to go beyond minimizing data mean-
square error and to utilize adversarial training to fully capture
data regularities. By designing appropriate network struc-
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Table 1. Summary of main characteristics of the 30 sites.

Sand Silt Clay Land cover Period Lat Long

Kingston-1-W 85 10 5 Grassland 2012–2023 41.48 −71.54
HubbardBrook 85 11 4 Tree cover 2003–2022 43.93 −71.72
Monahans-6-ENE 83 6 11 Shrub cover 2010–2022 31.62 102.81
Necedah-5-WNW 83 11 6 Grassland 2009–2022 44.06 −90.17
ShadowMtns 79 10 11 Shrub cover 2013–2017 35.47 −115.72
Falkenberg 73 21 6 Cropland 2003–2020 52.17 14.12
Kenai-29-ENE 54 38 8 Shrub cover 2012–2023 60.72 −150.45
AAMU-jtg 53 22 25 Grassland 2010–2022 34.78 −86.55
Darrington-21-NNE 53 22 25 Tree cover 2013–2019 48.54 −121.45
Palestine-6-WNW 49 27 24 Grassland 2009–2013 31.78 −95.72
Durham-11-W 49 27 24 Herbaceous cover 2009–2016 40.37 −81.78
Cullman-NAHRC 49 27 24 Mosaic cropland 2006–2022 34.20 −86.80
Cape-Charles 49 27 24 Herbaceous cover 2011–2022 37.29 −75.93
LittleRiver 47 30 23 Grassland 2005–2020 31.50 −83.55
Montrose-11-ENE 43 35 22 Tree cover 2010–2023 38.54 −107.69
Coshocton-8-NNE 41 39 20 Grassland 2009–2016 40.37 −81.78
MahantangoCk 41 39 20 Cropland 2002–2021 40.67 −76.67
Bodega-6-WSW 39 38 23 Grassland 2011–2023 38.32 −123.08
GrouseCreek 36 41 23 Grassland 2016–2023 41.78 −113.82
Aberdeen-35-WNW 36 41 23 Grassland 2012–2023 45.71 −99.13
Goodwell-2-SE 36 41 23 Grassland 2010–2022 36.57 −101.61
FortAssiniboine#1 36 41 23 Grassland 2017–2021 48.48 −109.8
Cper 36 41 23 Grassland 2013–2021 40.82 −104.71
Riley-10-WSW 36 41 23 Shrub cover 2011–2021 43.47 −119.69
Spickard 35 41 24 Grassland 2010–2022 40.25 −93.72
Joplin-24-N 35 41 24 Grassland 2010–2020 37.43 −94.58
Weslaco 34 45 21 Cropland 2017–2021 26.16 −97.96
UpperBethlehem 32 38 30 Herbaceous cover 2008–2010 17.72 −64.80
Buffalo-13-ESE 31 44 25 Grassland 2012–2023 45.52 −103.30
ClotdelesPeresII 19 49 32 Cropland 2021–2023 42.16 0.84

Figure 3. Autocorrelation analysis results of soil water content with
different numbers of delay days at the Cape-Charles site.

tures and training strategies, it is possible to further improve
prediction accuracy.

It is necessary to conduct a comprehensive evaluation to
analyze the internal mechanisms of models and decide on
the most suitable combination rule for soil moisture predic-
tion. With the collected data in Sect. 2.1, it is possible to
deeply explore the prediction abilities of the deep learning
models. We evaluate models from the perspectives of pre-
diction accuracy and computational costs to provide a refer-
ence for soil moisture dynamics predictions. Further research
on model interpretability can provide insights into how the
model structure influences the utilization of data, leading to
a more effective model structure design.

3 Models and methodology

Three machine learning models and seven deep learning
models take part in this comparative research. Introductions
to each model are provided below, along with key refer-
ences for interested readers. The parameters of each model
are recorded in Appendix A.
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3.1 Machine learning methods

In this study, random forest (RF), extreme learning machine
(ELM), and support vector machine (SVM) machine learning
models are applied to compare with the deep learning models
as a benchmark.

Random forest, proposed by Breiman (2001), is used for
regression and classification tasks and has gained popular-
ity for its high accuracy. RF works by constructing multiple
decision trees on randomly sampled subsets of the training
data. Each tree is trained on a random subset of features, and
the final prediction is made by averaging the predictions of
the individual trees. This approach reduces overfitting and in-
creases model stability. For soil moisture prediction, RF has
proven to be a stable and reliable method (Carranza et al.,
2021).

Extreme learning machine (Huang et al., 2006) utilizes a
single-layer feedforward neural network as its foundation.
ELM achieves a fast learning speed and strong generaliza-
tion ability by employing random input layer weights and
biases and applying generalized inverse matrix theory to cal-
culate the output layer weights. The algorithm has been ap-
plied in various fields and has shown promising results. Liu
et al. (2014) employed ELM to predict the large-scale soil
moisture in Australian orchards. The results demonstrated
that the model was capable of accurate forecasting.

Support vector machine (Cortes and Vapnik, 1995) was
proposed for applications in classification and regression. It
aims to find the maximum-margin hyperplane that best sep-
arates sample points. To make this hyperplane more robust
in high-dimensional feature spaces, SVM uses kernel func-
tions to perform nonlinear mapping and create a new feature
space where the data can be linearly separable. The algorithm
then finds the optimal classification hyperplane with the max-
imum margin. SVMs have achieved great success in various
fields. Gill et al. (2006) applied SVM to soil moisture pre-
diction and compared it with DNNs. The results showed that
SVM was suitable for soil moisture content prediction. Sup-
port vector regression (SVR), which is applied in this study,
is a variant of SVM that is specifically designed for regres-
sion tasks.

For machine learning, xt and yt represents the input fea-
ture and target object, respectively. The input data correspond
one-to-one in time to the target and serve as both the in-
put and output of the machine learning models. The predic-
tion accuracy of machine learning serves as a comparison for
deep learning models. Hyperparameters used in models are
recorded in Appendix A.

3.2 Basic deep neural networks

3.2.1 LSTM

RNNs (Pollack, 1990) operate by recursing in the direction
of sequence progression, with all nodes in the network being

chained together. These unique properties make RNNs effec-
tive with respect to processing sequential data and extracting
temporal information, which has led to breakthroughs in nat-
ural language processing (Connor et al., 1994). The ability
of RNNs to model temporal dependencies is suitable for pre-
dicting soil moisture.

LSTM (Hochreiter and Schmidhuber, 1997) neural net-
works were proposed to address the limitations of traditional
RNNs. LSTM can overcome the issue of gradient vanish-
ing and memorize more useful information through a special
unit, which is called the cell state. Thus, LSTM operates as
follows:

it = σ
(
Wi ·

[
ht−1, xt

]
+ bi

)
, (1)

ft = σ
(
Wf ·

[
ht−1, xt

]
+ bf

)
, (2)

ot = σ
(
Wo ·

[
ht−1, xt

]
+ bo

)
, (3)

C̃t = tanh
(
Wc ·

[
ht−1, xt

]
+ bc

)
, (4)

ct = ft · ct−1+ it · C̃t , (5)
ht = ot · tanh(ct ) . (6)

Here, Wi and bi are the parameters for the input gate, Wf and
bf are the parameters for the forget gate, Wo and bo are the
parameters for the output gate, Wc and bc are used for cell
state updating, and σ is the activation function.

We generate the time-dependent hidden
states H , {ht−3,ht−2,ht−1, ht } from input
I , {xt−3,xt−2,xt−1, xt } through the LSTM. After se-
quentially processing all inputs in the LSTM, the last hidden
state ht of the sequential output is used as the prediction for
network training, as depicted in Fig. 4a. This is because the
input features at each time step can be encoded in the last
hidden state. The parameters in this model are recorded in
Appendix A.

3.2.2 1D-CNN

CNNs (LeCun, 1989) were originally applied to image
recognition. The convolution and pooling layers in CNNs can
extract the distinguishing features of the given data while re-
ducing the number of data to be processed (Ajit et al., 2020).
Consequently, CNNs are highly effective in processing data
that come in the form of multiple arrays.

For time series’ data, 1D-CNNs can extract local tem-
poral features via convolution kernels that slide along the
time dimension. The 1D-CNNs have demonstrated success in
speech and natural language processing applications (Abdel-
Hamid et al., 2014; Severyn and Moschitti, 2015). Hence,
1D-CNNs are capable of soil moisture prediction tasks. The
complete forward-propagation process of a simple 1D-CNN
for soil moisture prediction is illustrated in Fig. 4b. Given
that the input vector I , {xt−3,xt−2,xt−1, xt }, two convolu-
tion layers are employed in the 1D-CNN architecture. The
convolution kernel size (Kernel_size) is set to 2, with a stride
of 1. Specific parameters are listed in Table A1. To preserve
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the information in the data, pooling layers are intentionally
omitted.

3.2.3 Transformer

The self-attention mechanism can model the dependencies
and aggregate features from inputs. Therefore, a stack-
ing structure of self-attention mechanisms like Transformer
(Vaswani et al., 2017) can achieve the functions of CNNs
and RNNs without iterations. This provides a novel way for
predictions to be made. In this study, we utilize the encoder
structure of the Transformer (Vaswani et al., 2017), as de-
picted in Fig. 4c, to predict soil moisture. The self-attention
is shown in Fig. 4d and operates as follows:

SA = softmax

(
QKT
√
dk

)
= softmax

((
WQIE

)
(WKIE)

T

√
dk

)
, (7)

Sf (IE)= SA⊗V = softmax

((
WQIE

)
(WKIE)

T

√
dk

)
WVIE . (8)

Here, WK, WV, and WQ are the key, value, and query pa-
rameter matrices, respectively; IE is the Transformer input;
and 1

√
dk

is the scaling factor, dk = 4.
The outputs generated by the self-attention mechanism

correspond one-to-one to the inputs. In this study, a “class to-
ken” vector xclass is introduced as additional input to start the
prediction process. The class token is randomly initialized
and can be trained, serving as the fifth input. It enables ag-
gregate global features from all other inputs and avoids bias
towards a specific time step in the sequence. However, the
self-attention mechanism ignores the temporal order of the
inputs. To address this issue, we incorporate positional en-
coding to preprocess the inputs. Both the learnable positional
encoding and sine cosine coding are tested in this research.
The sine cosine positional encoding is defined as follows:

PE(pos1,2pos2) = sin

(
pos1

10000
2pos2
dmodel

)
, (9)

PE(pos1,2pos2+ 1) = cos

(
pos1

10000
2pos2
dmodel

)
. (10)

Here, the parameters pos1 and pos2 represent the positions
of the first and second dimensions of the input, respectively,
and dmodel = 8 denotes the parameter of self-attention, which
is equal to the input features at each time step.

The encoded position vectors PE are added to the original
inputs before feeding them into the Transformer. With PE,
the input of the Transformer is defined as follows:

IE = {xt−3,xt−2,xt−1,xt ,xclass}+PE. (11)

3.3 Hybrid deep learning models

3.3.1 Hybrid structure of CNN and LSTM

In this section, three ways of connecting CNN and LSTM
models, CNN–LSTM, LSTM–CNN, and CNN-with-LSTM,
are considered. These hybrid models possess advanced capa-
bilities with respect to handling diverse types of data, gen-
erally leading to improved prediction accuracy. To ensure a
rigorous comparison with the previous 1D-CNN and LSTM
models, the parameters of the CNN and LSTM layers in our
hybrid models are kept as consistent as possible with the 1D-
CNN and LSTM models. The detailed parameter setting in-
formation can be found in Table A1.

CNN–LSTM

Generally, the CNN–LSTM model is comprised of CNN
layers followed by LSTM layers. The input data first pass
through convolution layers to better extract local features in
the sequential data. Then, LSTM layers are used to asso-
ciate the time series extracted features. Therefore, this kind
of model excels at handling the input data in image format;
this has been widely utilized in prediction tasks, yielding pos-
itive outcomes in various applications (Semwal et al., 2021).
In our soil moisture prediction task, CNN–LSTM consists of
two convolution layers and an LSTM layer, which is shown
in Table A1. As we mentioned in Sect. 3.2, the last hidden
state ht is still applied as the prediction. Figure 5a depicts
the structure of the CNN–LSTM applied in this research.

LSTM–CNN

In contrast to the CNN–LSTM model, the LSTM–CNN
model first utilizes LSTM layers to associate the time series’
data and output high-dimensional related hidden states. Sub-
sequently, convolution layers are employed to extract the fea-
tures of these time-dependent hidden states. This model has
also been widely adopted in various applications (Xia et al.,
2020). In this study, LSTM–CNN for soil moisture predic-
tion consists of an LSTM layer and two convolution layers
sequentially. The structure of LSTM–CNN can be seen in
Fig. 5b. The detailed layers and parameters of this model are
presented in Table A1.

CNN-with-LSTM

CNN-with-LSTM is a model that employs the parallel com-
bination of both CNN and LSTM, merging their outputs
through concatenation, and uses a fully connected network
for regression analysis. By combining the feature extraction
capabilities of CNN with the time series memory ability of
LSTM, this model captures both the local and global tempo-
ral characteristics of the input data. This kind of hybrid struc-
ture has been used in soil moisture prediction and achieved
satisfactory results (Yu et al., 2021). In our work, CNN-with-
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Figure 4. Network structures of the LSTM (a), the 1D-CNN (b), and the proposed Transformer (c), inspired by Dosovitskiy et al. (2020),
with the self-attention structure (d) for soil moisture prediction.

LSTM is comprised of an LSTM layer and two convolution
layers in parallel, and the structure is depicted in Fig. 5c. Ta-
ble A1 lists the network structures of the CNN and LSTM
models in addition to the parameter settings.

3.3.2 Hybrid structure of attention and LSTM

To enhance the accuracy of deep learning models and ad-
dress the issue of a lack of interpretability, attention mech-
anisms have been incorporated into LSTM models to weigh
the importance of different input and output vector dimen-
sions (Li et al., 2022a; Ding et al., 2020; Xia et al., 2020). At-
tention mechanisms are commonly used in combination with
other neural networks as a form of preprocessing or post-
processing. Through training, attention mechanisms dynam-
ically generate spatiotemporal attention importance weights
to selectively focus on critical parts of the input or output, as

illustrated in Fig. 6. These attention weights enable the model
to assign importance to various elements within the input se-
quence, thus helping to make more accurate predictions. Ad-
ditionally, these attention weights offer a visualized represen-
tation, which provides insights into the sections of the input
sequence most essential for a specific prediction. According
to the specific roles of the attention mechanisms, the hybrid
models can be classified into three categories: FA-LSTM (a
feature attention mechanism with LSTM), TA-LSTM (a tem-
poral attention mechanism with LSTM), and FTA-LSTM (an
LSTM combines both feature and temporal attention mecha-
nisms). Ding et al. (2020) conducted experiments on these
three kind of hybrid models in flood prediction, confirm-
ing the effectiveness of incorporating LSTM with attention
mechanisms.
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Figure 5. The framework of the proposed CNN and LSTM hybrid models: (a) CNN–LSTM, (b) LSTM–CNN, and (c) CNN-with-LSTM.

Figure 6. Framework of (a) the proposed FTA-LSTM hybrid models, (b) the feature attention (FA) mechanism, and (c) the temporal attention
(TA) mechanism, inspired by Ding et al. (2020).
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FA-LSTM

FA-LSTM applies an attention mechanism to assign weights
for distinct features in the input vector. In this study, for
soil moisture prediction, the feature attention mechanism in
FA-LSTM processes the input vector I {xt−3, . . .xt }, where
xt = {f 1t ,f 2t , . . .f nt } and generates the weighted output{
xt−3

′. . .x′t
}
. Through the attention mechanism, the output

x′t remains the same dimension size as the input xt . The fea-
ture attention importance weight αt and attention mechanism
output x′t are defined as follows:

αt = FA(xt ) , (12)
x′t = αt ⊗ xt . (13)

Figure 6b also shows the operation of the feature attention
mechanism. The FA-LSTM model consists of an LSTM and
a feature attention mechanism for input preprocessing, as de-
tailed in Table A1.

TA-LSTM

TA-LSTM utilizes the temporal attention mechanism to
weigh the importance of LSTM output vectors across time
steps. This enables the model to concentrate on the most rel-
evant hidden states, potentially enhancing its performance on
tasks that involve temporal modeling. The temporal attention
mechanism is shown in Fig. 6c. In our work, the output vec-
tor H att, which is obtained through the temporal attention
mechanism in TA-LSTM, is the weighted sum of all states in
H {ht−3,ht−2,ht−1ht }. The temporal attention weight β and
attention mechanism output H att can be defined as follows:

β = TA(H ) , (14)

H att
=

4∑
i=1

βi⊗hi. (15)

Compared with LSTM, the difference with TA-LSTM
lies in the post-processing of the LSTM output. LSTM uti-
lizes the last hidden state output for prediction, whereas TA-
LSTM employs temporal weighting to utilize all hidden state
outputs. Table A1 contains the network structure and param-
eters information.

FTA-LSTM

FTA-LSTM is the model that combines both feature and tem-
poral attention mechanisms, as illustrated in Fig. 6a. It ap-
plies the feature attention mechanism before the LSTM layer,
to assign weights for the input features, and the temporal at-
tention mechanism after the LSTM layer, to weigh the im-
portance of the LSTM output vectors of different time steps.
The parameters of FTA-LSTM can be found in Table A1.

3.4 GAN-LSTM

GANs (Goodfellow et al., 2014) comprise a generator and
a discriminator. The generator is designed to generate pre-
dictions that are similar to the truth, while the discriminator
tries to distinguish between the truth and the predictions. The
unique network structure and adversarial training of GANs
make them highly effective in various fields, particularly in
dealing with fuzzy prediction (Jing et al., 2019). Thus, GANs
offer a promising way to predict soil moisture, potentially
leading to accurate results in real situations. For predicting
soil moisture, the GAN-LSTM model is used, where the gen-
erator (G) employs an LSTM model capable of processing
time series’ data, and the discriminator (D) uses a single-
layer feedforward neural network, similar to the work of Li et
al. (2020). Alternating adversarial training is performed be-
tween G and D, meaning that one of them is trained while the
other one remains fixed. The structure and training strategies
of GAN-LSTM are shown in Fig. 7.

The training objective of the discriminator D is to distin-
guish between predictions generated by the generator G and
the ground truth, by minimizing the loss function Ld . The
binary cross-entropy loss is utilized as the similarity evalua-
tion metric, with the objective of training D to output 1 when
presented with ground truth as input and 0 when presented
with predictions as input:

Ld = Lbce
(
d
([

SMt−4, . . .,SMt−1,yt
])
,1
)

+Lbce
(
d
([

SMt−4, . . .,SMt−1, ŷt
])
,0
)
. (16)

Here, Lbce is the binary cross-entropy loss, which is defined
as follows:

Lbce
(
p̂,p

)
=−plog

(
p̂
)
− (1−p) log

(
1− p̂

)
, (17)

where p denotes the label (0 or 1) and p̂ denotes the logit
value between 0 and 1.

For generator G, there are two training objectives: (1) to
generate soil moisture dynamics predictions that are accurate
and consistent with the truth, which is achieved by minimiz-
ing the fitting error of the soil moisture content data, denoted
as Lmse; (2) to deceive D, which is achieved by minimizing
the binary cross-entropy loss Lbce between the predictions
and the truth in D. The output of D should be close to 1 when
inputting the G predictions into D, ensuring that the predic-
tion is close to the truth. Therefore, we train G by minimizing
the following loss function Lg:

Lg = Lmse
(
yt , ŷt

)
+ λbceLbce

(
d
([

SMt−4, . . .,SMt−1, ŷt
])
,1
)
, (18)

where λbce is the hyperparameter that controls the impor-
tance of the second term. Here, we determine λbce to be
1× 10−7 through manual testing. For adversarial training in
our GAN-LSTM, the parameter update ratio of G and D in
the model is 3 : 1; thus, every time G is updated (the learning
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Figure 7. The framework of the proposed GAN-LSTM model.

rate is set to 0.0005), D will be updated three times (the learn-
ing rate is set to 0.001). The network structure parameters of
GAN-LSTM are recorded in Table A1.

4 Results and discussion

This study evaluates the performance of 3 machine learning
methods and 10 deep learning models with respect to pre-
dicting soil moisture at 10 sites and 5 depths. To evaluate the
model’s ability to predict over time series, we examined fore-
casts for 1, 3, and 7 d ahead. When making predictions longer
than 1 d, we adopted iterative predictions. The generated soil
moisture data for the first day, along with the corresponding
observed meteorological data and historical 3 d data, recon-
struct the new 4 d input, which is used to predict soil water
for the second day. Two standard metrics, R2 and root-mean-
square error (RMSE) are used to evaluate the performance of
the models. R2 represents how well the model captures the
variability in the data, whereas the RMSE measures the accu-
racy of the model’s predictions. These metrics are calculated
as follows:

R2
= 1−

∑N
i=1
(
yi − ŷi

)2∑N
i=1(yi − ȳi)

2
, (19)

RMSE=

√∑N
i=1
(
yi − ŷi

)2
N

. (20)

Here, yi denotes the ground truth, ŷi denotes the model pre-
diction, ȳi denotes the mean of the ground truth, and N de-
notes the sample size.

The collected data in Sect. 2 are split into training, valida-
tion, and test sets using a 6 : 2 : 2 ratio in time order, as sum-
marized in Appendix D. The training set is used to train the
models with a learning rate of 0.001 unless stated otherwise.
We train the deep learning models for at least 1500 epochs,

with a batch size of 50. In each epoch, 20 batches are used for
training. The validation set is employed to determine whether
the deep learning model should be updated. If the trained
model performs worse on the validation set compared with
the previous model, the previous model is retained. Finally,
the test set is utilized to evaluate and compare the accuracy
of the trained models. To ensure statistical robustness, each
final result is obtained by averaging the outcomes of 25 rep-
etitions of the training process.

4.1 Comparisons of machine learning and LSTM

This section compares the machine learning models with the
deep learning model, represented by LSTM. Table 2 sum-
marizes the R2 between the soil moisture predictions of the
three machine learning methods and the ground truth at 10
sites and 5 depths for the following 1, 3, and 7 d. The sym-
bol (−) signifies an extremely poor R2 result. The results
show that all three methods perform well on short-term (1–
3 d) soil moisture forecasts, but their performance tends to
diverge when predicting at the lead time of 7 d. Among these
three, RF is the most stable and best-performing model.

Figure 8a–e compares the average RMSE of the soil mois-
ture predictions of the machine learning models and LSTM
at different depths for 1, 3, and 7 d ahead across 30 sites. It
reveals that LSTM outperforms the three machine learning
models in terms of prediction accuracy and stability, which
suggests that deep learning has a better capability to process
time series’ data for soil moisture dynamics simulation than
traditional machine learning.

Machine learning models are limited in handling inputs
from multiple time steps when processing time series’ data.
Therefore, while they exhibit proficiency in short-term pre-
dictions, they may not perform well in long-term prediction
tasks and demonstrate comparatively lower accuracy and sta-
bility than deep learning models. Nevertheless, a notable ad-
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Figure 8. RMSE comparisons between RF, ELM, SVR, and LSTM at the Cape-Charles site at five depths: (a) 0.05 m, (b) 0.10 m, (c) 0.20 m,
(d) 0.50 m, and (e) 1.00 m.

vantage of machine learning models is that they require little
training time, enabling rapid deployment, which incurs lower
computational costs compared with deep learning models.

4.2 Comparisons of 1D-CNN, LSTM, and Transformer

In this section, we conduct a comparative analysis of three
basic deep learning networks. We evaluate their predictive
performance by assessing both predictive accuracy and com-
putational costs. The R2 values between the soil moisture
predictions generated by the three models and the ground
truth across 10 sites and 5 depths are presented in Table 3.
Additionally, Fig. 9a–e display the average RMSE values for
soil moisture predictions at 30 sites.

The results reveal that the LSTM model achieves the high-
est prediction accuracy, followed by the 1D-CNN model
and, subsequently, the Transformer model. Notably, LSTM
and Transformer are more stable when making 7 d or deep-
soil-moisture predictions, while 1D-CNN is better suited for
short-term and shallow prediction tasks. This aligns with
the inherent characteristics of the three models. In essence,
LSTM is designed to model temporal dependencies in se-
quential data, emphasizing global features. Transformer op-
erates by modeling relationships in input time series without
iterations and highlights important features by self-attention
weighting. These characteristics prevent overfitting in the
LSTM and Transformer models, resulting in stability in
weekly predictions. In contrast, 1D-CNN excels at extract-
ing and expressing local features, which facilitates it captur-
ing the connections between subtle feature changes and their
corresponding outcomes. This capability allows for adapta-
tion to shallow-soil-moisture prediction tasks with significant
variations.

Figure 9g shows the training epochs required for each
model, while Fig. 9h illustrates the time taken for 100
epochs. The 1D-CNN model demonstrates the fastest train-
ing speed and achieves early convergence. Conversely,
LSTM shows slower training speed, which is attributed to
its iterations. The Transformer trains quickly but converges
at a slower pace than LSTM, resulting in a similar total train-
ing time. In summary, although 1D-CNN offers the lowest

computational costs, LSTM has been proven to be the most
appropriate for soil moisture prediction tasks among the three
with the highest accuracy.

4.3 Comparisons of CNN and LSTM hybrid models

This section compares the three CNN and LSTM hybrid
models (LSTM–CNN, CNN–LSTM, and CNN-with-LSTM)
across 10 sites in terms of prediction accuracy and compu-
tational costs. Table 4 presents the R2 values between the
soil moisture predictions generated by the three hybrid mod-
els and the ground truth across 10 sites at 5 depths. It can be
observed that the prediction accuracy of these models is com-
parable, with LSTM–CNN slightly outperforming the others.
Moreover, Fig. 10a–e show the average RMSE results of the
hybrid models and LSTM across the 30 research sites, indi-
cating that the hybrid models do not exhibit obvious advan-
tages over the standard LSTM.

Specifically, the three models are hybrids of CNN and
LSTM with varying incorporation degrees. According to
their combination methods, we can infer that the models ex-
cel with respect to handling different types of data and place
different emphases on data characteristics. CNN–LSTM ap-
pears to prioritize local features and model long-distance de-
pendencies, whereas LSTM–CNN focuses on global features
and context information. CNN-with-LSTM simultaneously
considers both local features and temporal information for
predictions. These integrations increase the complexity and
enhance the expression capacities of models, but their appli-
cations should depend on the input data and prediction task.
In the case of soil moisture prediction, the benefits of this
combination approach are not significant.

Figure 10g and h display the computational costs of the
three hybrid models. It is evident that CNN–LSTM shows
the fastest training speed and the lowest computational
costs, owing to its convolution layers for input data prepro-
cessing. Moreover, the computational costs of LSTM–CNN
are higher than CNN-with-LSTM. Overall, compared with
LSTM and 1D-CNN, we could draw the conclusion that the
hybrid models have limited practical value in soil moisture
prediction.

Hydrol. Earth Syst. Sci., 28, 917–943, 2024 https://doi.org/10.5194/hess-28-917-2024



Y. Wang et al.: Deep learning for soil moisture prediction 929

Table 2. The values of R2 between the predictions (1, 3, and 7 d) of RF, ELM, and SVR and the ground truth for 10 sites at 5 depths.

Depth (m) RF ELM SVR

R2 R2 R2

1 d 3 d 7 d 1 d 3 d 7 d 1 d 3 d 7 d

0.05 0.924 0.874 0.797 0.889 0.735 (−) 0.910 0.816 (−)
0.10 0.930 0.886 0.815 0.922 0.823 0.459 0.920 0.814 (−)
0.20 0.929 0.891 0.832 0.927 0.809 0.361 0.914 0.759 (−)
0.50 0.898 0.814 0.725 0.914 0.503 (−) 0.860 0.528 (−)
1.00 0.903 0.818 0.671 0.909 0.805 0.170 0.768 (−) (−)

Table 3. The values of R2 between the predictions (1, 3, and 7 d) generated by CNN, LSTM, and Transformer and the ground truth across
10 sites at 5 depths.

Depth (m) CNN LSTM Transformer

R2 R2 R2

1 d 3 d 7 d 1 d 3 d 7 d 1 d 3 d 7 d

0.05 0.939 0.884 0.793 0.943 0.895 0.816 0.933 0.886 0.805
0.10 0.956 0.909 0.826 0.954 0.909 0.838 0.949 0.906 0.839
0.20 0.961 0.912 0.823 0.963 0.916 0.842 0.952 0.912 0.843
0.50 0.909 0.702 0.532 0.937 0.873 0.749 0.917 0.840 0.716
1.00 0.919 0.811 0.547 0.944 0.878 0.746 0.939 0.879 0.758

4.4 Comparisons of attention mechanisms and LSTM
hybrid models

To investigate the impact of different attention mechanisms
on models, this section compares these three models: FA-
LSTM, TA-LSTM, and FTA-LSTM. Figure 11a–e display
the average RMSE values of the soil moisture predictions for
1, 3, and 7 d ahead generated by these three models and the
standard LSTM at the 30 sites. Table 5 records the R2 values
between the soil moisture predictions of three models and the
ground truth across 10 sites and 5 depths.

Based on the results, the prediction accuracy of the three
models ranked from high to low is FA-LSTM, FTA-LSTM,
and TA-LSTM in most situations. It can be found that the fea-
ture attention mechanism has a stable gain effect on LSTM,
potentially because it assigns the appropriate feature impor-
tance weights to various influencing factors, especially in
deep-soil-moisture prediction tasks. On the contrary, the im-
provement in the temporal attention mechanism is not evi-
dent and may lead to deterioration. TA-LSTM differs from
LSTM in its output post-processing, as it is trained to weigh
the LSTM output at each time step to make predictions. The
reason why TA-LSTM is worse may be that LSTM already
encodes enough past features for predictions in the last hid-
den state. Moreover, the FTA-LSTM model, which combines
both feature and temporal attention mechanisms, is the most
complex but not necessarily the optimal model among the

three. From the results, we can also infer the effective feature
learning ability of attention mechanisms.

According to Fig. 11g–h, attention mechanisms introduce
some acceptable computational costs. Notably, FA-LSTM re-
quires more training steps to reach convergence. However,
despite this computational requirement, we believe that the
implementation of FA-LSTM is still advantageous for soil
moisture prediction tasks.

Figure 12 provides visualizations of the input feature im-
portance and temporal importance weights learned by FA-
LSTM and TA-LSTM for soil moisture prediction at the
AAMU-jtg site across five depths. The feature importance
in Fig. 12a–e shows a reasonable adaptation to the varying
depth, demonstrating the effective feature selection capabil-
ity of attention mechanisms. Moreover, the temporal impor-
tance in Fig. 12f–j indicates the high utilization of recent
temporal features, which is consistent with real situations.
This indicates the effective feature learning capacity of at-
tention mechanisms. Moreover, these results contribute to a
deeper understanding of the utilization mechanisms of fea-
ture and temporal information within the model.

4.5 Comparisons of GAN-LSTM and LSTM

In this section, we evaluate the impact of the GAN struc-
ture and adversarial training strategy on the standard LSTM
model. LSTM and GAN-LSTM for soil moisture prediction
are compared. The R2 values for the following 1, 3, and 7 d
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Figure 9. Average RMSE comparisons between CNN, LSTM, and Transformer at five depths: (a) 0.05 m, (b) 0.10 m, (c) 0.20 m, (d) 0.50 m,
and (e) 1.00 m. Comparisons of the (g) training epoch and (h) training time for the three models.

Table 4. The values of R2 between the predictions (1, 3, and 7 d) of LSTM–CNN, CNN–LSTM, and CNN-with-LSTM and the ground truth
for 10 sites at 5 depths.

Depth (m) LSTM–CNN CNN–LSTM CNN-with-LSTM

R2 R2 R2

1 d 3 d 7 d 1 d 3 d 7 d 1 d 3 d 7 d

0.05 0.939 0.889 0.809 0.936 0.885 0.800 0.936 0.880 0.792
0.10 0.950 0.901 0.820 0.943 0.895 0.821 0.951 0.899 0.810
0.20 0.959 0.906 0.822 0.952 0.899 0.816 0.950 0.891 0.795
0.50 0.916 0.814 0.683 0.867 0.715 0.546 0.886 0.782 0.644
1.00 0.908 0.788 0.546 0.908 0.821 0.651 0.897 0.787 0.575

across 10 sites at different depths are recorded in Table 6.
Figure 13a–e show the RMSE results of LSTM and GAN-
LSTM at the Weslaco site.

The results demonstrate that GAN-LSTM achieves bet-
ter performance than the standard LSTM in most situations,
particularly in 3–7 d prediction tasks. The application of the
GAN structure and training strategies enhances the predic-
tion accuracy of LSTM. The adversarial training of GAN-
LSTM allows the model to not only learn from the data but
also extract additional information embedded in the data.
This helps address performance degradations due to over-
fitting on the data mean-square error. We can regard this
training strategy as a general principle to enhance the per-
formance of neural networks. However, the selection of hy-
perparameters in the loss function of GAN is crucial and cur-
rently requires manual adjustments. In future work, adaptive
methods can be adopted to automatically adjust the GAN-

LSTM loss function to increase training flexibility and pre-
diction accuracy.

Based on the computational cost comparisons presented
in Fig. 13g–h, both LSTM and GAN-LSTM exhibit simi-
lar computational costs. Consequently, in most scenarios, it
is advisable to apply the GAN-LSTM model to predict soil
moisture dynamics. It improves the stability and prediction
ability of the model without imposing a significant increase
in computational costs.

4.6 Visualization analysis

In this study, we employ the SHAP method (Lundberg et al.,
2018) to quantify the contributions of input features to inves-
tigate the distinct mechanisms of data utilization in differ-
ent network structures. Brief introductions to SHAP are pro-
vided in Appendix B. Figure 14 illustrates the SHAP sum-
mary plots of these 10 deep learning models utilizing sam-
ples from the test set of the Monahans-6-ENE site. The y axis
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Figure 10. Average RMSE comparisons between LSTM–CNN, CNN–LSTM, and CNN-with-LSTM at five depths: 0.05 m (a), 0.10 m (b),
0.20 m (c), 0.50 m (d), and 1.00 m (e). Comparisons of the training epoch (g) and training time (h) for the three models.

Figure 11. Average RMSE comparisons between FA-LSTM, TA-LSTM, and FTA-LSTM at five depths: 0.05 m (a), 0.10 m (b), 0.20 m (c),
0.50 m (d), 1.00 m (e). Comparisons of the training epoch (g) and training time (h) for the three models.

represents the input features ranked by importance. Each
point shows the Shapley value of a specific feature in a sam-
ple, with the color indicating the value of the input feature.
The plot clearly shows the identified main influential factors
and established correlations between input features and soil
moisture by the models. We aim to analyze different ways of
using data across various models. For soil moisture predic-
tions, a SHAP analysis visualization for a high-performing
model should reflect its emphasis on influential features for
improved results in surface soil moisture or short-term pre-

dictions. Simultaneously, it can illustrate the model’s capa-
bility to avoid overlearning irrelevant features. This avoid-
ance can prevent false correlations that can degrade long-
term forecast performance.

Figure 14a–c display the Shapley values of three basic
deep learning models: CNN, LSTM, and Transformer. It can
be observed that CNN shows a broader range of Shapley val-
ues compared with the others, indicating its greater feature
expression capacity. This suggests that CNN focuses more
on specific local features, whereas LSTM emphasizes cap-
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Table 5. The values of R2 between the predictions (1, 3, and 7 d) of FA-LSTM, TA-LSTM, and FTA-LSTM and the ground truth for 10 sites
at 5 depths.

Depth (m) FA-LSTM TA-LSTM FTA-LSTM

R2 R2 R2

1 d 3 d 7 d 1 d 3 d 7 d 1 d 3 d 7 d

0.05 0.944 0.902 0.827 0.937 0.888 0.809 0.942 0.897 0.823
0.10 0.960 0.921 0.848 0.950 0.899 0.826 0.950 0.906 0.839
0.20 0.965 0.925 0.849 0.957 0.909 0.823 0.954 0.907 0.825
0.50 0.949 0.881 0.770 0.923 0.869 0.745 0.870 0.773 0.653
1.00 0.947 0.896 0.794 0.927 0.854 0.703 0.915 0.842 0.672

Figure 12. Feature importance and temporal importance for soil moisture prediction at the AAMU-jtg site across five depths.

turing global features. However, both CNN and LSTM tend
to learn incorrect correlations. For instance, the learned pos-
itive correlation between the feature ST3 and soil moisture
is contrary to the facts. The Transformer model, which ag-
gregates features from all other inputs, appears to perform
better in this aspect. Although the Shapley value of the Trans-
former exhibits the lowest range, the important features iden-
tified are derived from the recent input time series, which
aligns better with real situations. This reflects the effective
feature learning ability of attention mechanisms. Overall,
each of these models – CNN, LSTM, and Transformer –
possesses unique advantages in terms of data utilization. No-
tably, LSTM aligns most consistently with the above criteria.

Figure 14d–f compare the hybrid models of CNN and
LSTM models. The CNN–LSTM keeps high Shapley values
in important features while showing minimal response to the
others. This suggests that CNN–LSTM tends to sequentially
process the extracted crucial features, enabling itself to ef-
fectively capture both local data features and long-range de-
pendencies, more closely resembling the CNN. LSTM–CNN
shows similar Shapley values to LSTM. By employing CNN
to extract sequential modeling features, LSTM–CNN em-
phases global features more, resembling the characteristics
of the LSTM. The Shapley value of the CNN-with-LSTM
is the highest, displaying a heightened sensitivity to feature
perturbations. This can be attributed to the repeated utiliza-
tion of features in parallel networks. These three models rep-
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Figure 13. Average RMSE comparisons between LSTM and GAN-LSTM at five depths: 0.05 m (a), 0.10 m (b), 0.20 m (c), 0.50 m (d), and
1.00 m (e). Comparisons of the training epoch (g) and training time (h).

Table 6. The R2 values between the predictions (1, 3, and 7 d) gen-
erated by LSTM and GAN-LSTM and the ground truth across 10
sites at 5 depths.

Depth (m) LSTM GAN-LSTM

R2 R2

1 d 3 d 7 d 1 d 3 d 7 d

0.05 0.943 0.895 0.816 0.944 0.897 0.819
0.10 0.954 0.909 0.838 0.956 0.910 0.838
0.20 0.963 0.916 0.842 0.963 0.919 0.846
0.50 0.937 0.873 0.749 0.946 0.893 0.777
1.00 0.944 0.878 0.746 0.948 0.896 0.793

resent different degrees of fusion between CNN and LSTM
models, and the hybrid architecture design depends on the
specific task requirements and data characteristics.

In the case of hybrid models that integrate attention mech-
anisms with LSTM, FA-LSTM, TA-LSTM, and FTA-LSTM,
their Shapley values in Fig. 14g–i are found to differ slightly
from that of LSTM. Considering the attention importance
analysis discussed in Sect. 4.4, we can infer that the atten-
tion mechanisms introduce slight adjustments to the time and
feature attributions on the basis of the LSTM. Figure 14j
also presents the Shapley value of GAN-LSTM. Through the
Shapley value, we can infer that the GAN-LSTM model in-
troduces slight modifications during adversarial training, in-
fluencing some feature contributions to improve the predic-
tion accuracy of the LSTM model. This demonstrates that ad-

versarial training strategies contribute to the refinement and
enhancement of models.

Besides, t-SNE (Van der Maaten and Hinton, 2008), a di-
mension reduction and visualization method is employed to
discover the structure and patterns in the high-dimensional
data. When mapping data onto a two-dimensional space,
t-SNE retains the relative distance relationships between
the original data points, ensuring that similar samples are
mapped closer to each other. The details of t-SNE can be
found in Appendix B. Figure 15 presents the t-SNE visual-
izations of the input data and the last encoded hidden states
from 10 models. The input data in Fig. 15a denotes the flat-
tened form of the inputs I for the 4 d. When conducting t-
SNE visualizations, the x and y axes make no sense. Only the
relative distance between sample points matters. The color
of each point corresponds to the soil moisture content value.
It is evident that, through training, the low-dimensional em-
beddings of the encoded hidden states gradually transition
from an initially irregular pattern to a more structured shape.
However, the visualization shapes vary across the different
models. For a soil moisture prediction regression task, we
discover that the sample points can be arranged vertically
from light to dark in color in t-SNE visualizations of mod-
els with great forecasting capacity, such as the Fig. 15h. Ad-
ditionally, these visualizations enable us to discern the im-
pact of the attention mechanism and adversarial training on
LSTM in Fig. 15k–h, ultimately leading to enhanced accu-
racy. However, LSTM–CNN, CNN-with-LSTM, and FTA-
LSTM exhibit distinct clustering patterns in their embedding
plots, rather than a vertical arrangement. This reflects their
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Figure 14. SHAP summary plots for 10 deep learning models. The samples are from the test set of the Monahans-6-ENE site at 0.05 m.

advanced data processing capabilities but is less beneficial
for soil water prediction tasks. Generally, from the t-SNE vi-
sualizations, it can be summarized that different deep learn-
ing models capture distinct intrinsic characteristics of input
data and encode them into various vectors for making predic-
tions. To gain a more comprehensive understanding of their
differences, further research is warranted in the future.

5 Conclusions

In this research, we have conducted a comprehensive analy-
sis of traditional machine learning models and various deep
learning models for soil moisture predictions across differ-
ent sites at five depths. Based on our comparisons of these
models, we draw the conclusions outlined in the following.

In traditional machine learning, RF seems to be the most
stable method in soil moisture prediction tasks. However,
deep learning models have been found to possess stronger
capabilities with respect to processing time series’ data for
better predictions. Among the three basic deep learning mod-
els, LSTM demonstrates a high level of accuracy because
of its temporal information modeling capability, while 1D-
CNN exhibits the lowest computational cost. Transformer
also shows a stable weekly forecasting ability. When con-
sidering the hybrid models, three combinations of CNN and
LSTM did not enhance the prediction abilities in this task.
Despite the attractiveness of hybridizing the benefits of CNN
and LSTM, the results did not find notable advantages for soil
moisture prediction in terms of accuracy and computational
costs. However, the feature attention mechanism has a con-
stant positive effect on LSTM, whereas temporal attention
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Figure 15. The t-SNE visualizations of the original input data (a) and encoded hidden states of 10 models (b–k) obtained from the LittleRiver
site test set. The colors of the points indicate the corresponding soil moisture content values.

mechanisms have little significance. In addition, incorporat-
ing generative adversarial network structures and training
strategies into LSTM models (GAN-LSTM) has been found
to improve prediction accuracy, especially in 7 d predictions.
To summarize, FA-LSTM and GAN-LSTM are found to be
the most stable and effective models for soil moisture pre-
diction. Furthermore, this study attempts to provide a thor-
ough analysis of models’ performance and advance the un-
derstanding of machine learning in soil moisture prediction.
Through the Shapley analysis, we can infer the different data
utilization methods of the 10 models. Furthermore, the t-
SNE visualizations illustrate the varying encoding capabil-
ities of different models.

The results emphasize the importance of appropriate and
effective neural network structure design for a given task. For
soil moisture prediction, several principles of effective net-
work design can be concluded. Firstly, leveraging the tempo-
ral modeling capability of LSTM is well suited for soil mois-
ture forecasting. Secondly, incorporating attention mecha-
nisms properly facilitates efficient feature learning. The fea-
ture selection capability of attention mechanisms has been
proven through the performance of the Transformer and the
attention mechanisms and LSTM hybrid models. Lastly, ap-
plying special GAN structures and adversarial training strate-
gies in models helps extract additional information embed-
ded within data, which could also potentially improve soil
moisture dynamics simulation.

This study provides a reference and lays the groundwork
for the development of specialized deep learning models for
soil moisture dynamics simulation. However, although data-
driven models have shown satisfactory performance, they
cannot make long-term predictions precisely due to their lack
of physical laws. In the future, the integration of known phys-
ical laws with deep learning models will become a promising
research direction for soil moisture dynamics simulation.
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Appendix A: Parameters used in machine learning and
deep learning models

Table A1. Parameters settings of the deep learning models.

Network type Layers Kernel_size Hidden_size (L) Activation function

1D-CNN Convolution 2 32 Tan h
Convolution 2 64 Tan h
Flatten
Fully connected 1 Tan h

CNN–LSTM Convolutional 2 32 Tan h
Convolutional 2 64 Tan h
LSTM 16 Sigmoid, Tan h

LSTM–CNN LSTM 16 Sigmoid, Tan h
Convolutional 3 32 Tan h
Convolutional 3 64 Tan h
Flatten
Fully connected 1 Tan h

CNN-with-LSTM CNN

Convolutional 3 32 Tan h
Convolutional 3 64 Tan h
Flatten
Fully connected 1 Tan h

LSTM

LSTM 16 Sigmoid, Tan h
Fully connected 1 Tan h

CNN-with-LSTM

CONCAT
Fully connected 10 Tan h
Fully connected 1 Tan h

FA-LSTM F -attention 8 Sigmoid
LSTM 16 Sigmoid, Tan h

TA-LSTM LSTM 16 Sigmoid
T -attention 8 Relu

Network type Layers Kernel_size Hidden_size (L) Activation function

FTA-LSTM F -attention 8 Sigmoid
LSTM 16 Sigmoid, Tan h
T -attention 8 Relu
Fully connected 1 Tan h

GAN-LSTM Generator

LSTM 16 Sigmoid, Tan h
Fully connected 1 Tan h

Discriminator

Fully connected 1 Sigmoid

RF: the default parameter values in RandomForestRegressor of the scikit-learn library. SVR: C = 1.0, ε = 0.1, kernel γ =
“poly”. ELM: Hidden_size (L)= 20. LSTM: num_layers= 2, Hidden_size (L)= 16. Transformer: d_k= d_v= 4,
d_model= feature= 8, d_ ff= 20, n_heads= 1.
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Appendix B: Shapley additive explanations (SHAP)

SHAP (Lundberg et al., 2018) is a game theory approach to
explain the output of machine learning models. It measures
the impact of the input feature on the prediction of an indi-
vidual sample. SHAP employs the additive feature attribution
method to provide a specific explanation:

f (x)= g
(
x′
)
= φ0+

M∑
i=1

φix
′, (B1)

where f (x) denotes the original model; g (x) represents the
explanation model with simplified input x′,x′ ∈ {0,1}M ; M
is the number of input features; through a mapping function,
x = hx

(
x′
)
; and φi denotes the feature attribution of feature

i. The explanation model g has a unique solution:

φi (f,x)=
∑
z′⊆x′

∣∣z′∣∣ !(M − ∣∣z′∣∣− 1
)
!

M!

[
fx
(
z′
)
− fx

(
z′\i

)]
, (B2)

where
∣∣z′∣∣ is the nonzero entry number in z′, z′ ⊆ x′; f

(
x′
)
=

f
(
hx
(
z′
))
= E

[
f (z) |zs

]
; and S denotes the nonzero in-

dexes set in z′.

Appendix C: The t-distributed stochastic neighbor
embedding (t-SNE) visualization

The t-SNE is a nonlinear dimension reduction technique that
assumes the presence of a low-dimensional nonlinear mani-
fold within the high-dimensional data. Its primary task is to
bring similar neighboring points close together in the low-
dimensional representation. The working process of t-SNE
can be divided into several steps: (1) calculate the similar-
ity between data points in high-dimensional space and then
(2) calculate the corresponding probability of points in low-
dimensional space. The similarity of points is calculated as
conditional probability. If readers are interested, more infor-
mation can be found in the work of Van der Maaten and Hin-
ton (2008). The following outlines the formulae for calcu-
lating the respective similarity Pij and probability qij of the
points.

The similarity between data points in high-dimensional
space is given by

Pij =
(
Pj |i +Pi|j

)
/2N. (C1)

The corresponding probability of points in low-
dimensional space is given by

qij =

(
1+

∥∥yi − yj∥∥2
)−1

∑
k 6=l

(
1+‖yk − yl‖2

)−1 . (C2)

Here, Pi|j denotes the conditional probability of point i pick-
ing point j as its neighbor if neighbors are chosen according
to their probability density under a Gaussian distribution cen-
tered at i, N denotes the data points number, yi denotes the
low-dimensional representation of point i, and

∥∥yi − yj∥∥ de-
notes the Euclidean distance between yi and yj .
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Appendix D: Detailed meteorological information on the
research sites

The soil moisture time series’ data and detailed meteorolog-
ical information are recorded in this Appendix.

Figure D1. Soil moisture content time series’ data at various depths for the 30 sites.
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Table D1. Statistical results of P and TA at the 30 sites.

Station Min Max Mean SD Training set∗ Validation set∗ Test set∗

Kingston-1-W P (mm) 0 144.5 3.37 9.40 2012/01/01– 2019/01/26– 2021/06/05–
TA (°C) −18.00 28.28 10.71 9.02 2019/01/26 2021/06/05 2023/10/14

HubbardBrook P (mm) 0 115.57 3.10 8.32 2003/01/01– 2014/06/02– 2018/03/23–
TA (°C) −25.73 27.13 7.16 10.22 2014/06/02 2018/03/23 2022/01/11

Monahans-6-ENE P (mm) 0 80.6 0.85 4.60 2010/04/21– 2017/08/25– 2020/02/05–
TA (°C) -12.78 36.53 19.18 8.86 2017/08/25 2020/02/05 2022/07/19

Necedah-5-WNW P (mm) 0 127.6 2.48 7.23 2009/10/13– 2017/08/27– 2020/04/11–
TA (°C) −28.87 30.47 7.92 11.69 2017/08/27 2020/04/11 2022/11/26

ShadowMtns P (mm) 0 762.25 1.06 20.00 2013/07/15– 2015/12/19– 2016/10/10–
TA (°C) −2.67 35.98 17.97 8.48 2015/12/19 2016/10/10 2017/08/02

Falkenberg P (mm) 0 35.34 0.73 1.95 2003/01/17– 2013/07/07– 2017/01/01–
TA (°C) −18.19 29.45 9.69 7.82 2013/07/07 2017/01/01 2020/06/30

Kenai-29-ENE P (mm) 0 35.7 1.25 3.08 2012/10/04– 2019/05/17– 2021/07/30–
TA (°C) −32.24 22.09 2.47 10.01 2019/05/17 2021/07/30 2023/10/14

AAMU-jtg P (mm) 0 175.26 2.44 9.42 2010/02/06– 2017/10/07– 2020/04/27–
TA (°C) −10.83 31.27 16.69 8.24 2017/10/07 2020/04/27 2022/11/18

Darrington-21-NNE P (mm) 0 119.2 5.91 11.64 2013/01/01– 2017/03/13– 2018/08/06–
TA (°C) −7.43 24.26 9.78 6.41 2017/03/13 2018/08/06 2019/12/30

Palestine-6-WNW P (mm) 0 143.7 2.56 9.73 2009/08/01– 2012/02/18– 2012/12/24–
TA (°C) −6.77 34.24 19.84 8.38 2012/02/18 2012/12/24 2013/10/31

Durham-11-W P (mm) 0 116.1 3.37 9.24 2011/01/01– 2018/09/07– 2021/03/31–
TA (°C) −10.48 29.60 15.45 8.24 2018/09/07 2021/03/31 2023/10/23

Cullman-NAHRC P (mm) 0 177.28 2.18 7.73 2006/05/18– 2016/04/19– 2019/08/10–
TA (°C) −10.07 30.61 16.00 8.28 2016/04/19 2019/08/10 2022/11/30

Cape-Charles-5-ENE P (mm) 0 159.10 2.94 9.19 2011/06/15– 2018/04/13– 2020/07/22–
TA (°C) −10.47 32.11 15.67 8.53 2018/04/13 2020/07/22 2022/11/01

LittleRiver P (mm) 0 154.68 2.95 9.62 2005/10/18– 2014/04/26– 2017/02/26–
TA (°C) −4.24 31.99 19.77 7.08 2014/04/26 2017/02/26 2020/01/01

Montrose-11-ENE P (mm) 0 36.9 1.32 3.55 2010/06/21– 2018/06/22– 2021/02/20–
TA (°C) −24.30 24.02 6.51 9.46 2018/06/22 2021/02/20 2023/10/23

Coshocton-8-NNE P (mm) 0 76.0 2.94 7.06 2009/09/18– 2013/11/30– 2015/04/25–
TA (°C) −20.84 29.58 10.78 10.23 2013/11/30 2015/04/25 2016/09/18

MahantangoCk P (mm) 0 53.09 1.12 4.89 2002/10/17– 2006/12/19– 2008/05/10–
TA (°C) −14.53 27.60 10.19 9.29 2006/12/19 2008/05/10 2009/10/01

Bodega-6-WSW P (mm) 0 129.6 1.86 7.07 2011/09/18– 2018/12/15– 2021/05/15–
TA (°C) 3.70 21.86 11.82 2.21 2018/12/15 2021/05/15 2023/10/14

GrouseCreek P (mm) 0 786.38 1.24 15.09 2016/01/01– 2020/09/02– 2022/03/25–
TA (°C) −18.475 28.25 7.58 10.27 2020/09/02 2022/03/25 2023/10/15

Aberdeen-35-WNW P (mm) 0 70.1 1.30 4.78 2012/01/01– 2019/01/31– 2021/06/12–
TA (°C) −31.07 28.97 6.13 12.81 2019/01/31 2021/06/12 2023/10/23

Goodwell-2-SE P (mm) 0 72.1 1.18 4.65 2011/08/17– 2018/11/09– 2021/04/08–
TA (°C) −21.85 33.65 14.01 10.24 2018/11/09 2021/04/08 2023/09/06
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Table D1. Continued.

Station Min Max Mean SD Training set∗ Validation set∗ Test set∗

FortAssiniboine#1 P (mm) 0 56.90 0.82 3.51 2010/10/01– 2017/11/04– 2020/03/17–
TA (°C) −33.08 30.24 6.94 12.05 2017/11/04 2020/03/17 2022/07/29

Cper P (mm) 0 177.04 1.12 6.01 2013/09/13– 2018/08/01– 2020/03/18–
TA (°C) −29.26 27.45 8.16 10.50 2018/08/01 2020/03/18 2021/11/03

Riley-10-WSW P (mm) 0 28.9 0.69 2.10 2011/01/01– 2017/07/02– 2019/09/02–
TA (°C) −20.34 29.27 7.98 9.49 2017/07/02 2019/09/02 2021/11/02

Spickard P (mm) 0 152.91 2.43 8.59 2010/10/08– 2018/01/18– 2020/06/22–
TA (°C) −22.13 32.31 11.64 11.17 2018/01/18 2020/06/22 2022/11/26

Joplin-24-N P (mm) 0 138.5 3.12 9.70 2010/01/01– 2016/08/06– 2018/10/18–
TA (°C) −16.72 34.26 13.88 9.92 2016/08/06 2018/10/18 2020/12/30

Weslaco P (mm) 0 294.89 1.65 11.66 2017/01/01– 2019/08/07– 2020/06/18–
TA (°C) −1.41 32.46 23.46 6.07 2019/08/07 2020/06/18 2021/05/01

UpperBethlehem P (mm) 0 156.20 2.78 10.12 2008/09/15– 2009/09/05– 2010/01/01–
TA (°C) 21.64 28.78 25.93 1.46 2009/09/05 2010/01/01 2010/05/01

Buffalo-13-ESE P (mm) 0 92.7 1.22 4.56 2010/08/19– 2018/07/15– 2021/03/03–
TA (°C) −31.14 30.74 7.18 11.77 2018/07/15 2021/03/03 2023/10/22

ClotdelesPeresII P (mm) 0 33.2 0.96 3.38 2021/07/21– 2022/08/14– 2022/12/22–
TA (°C) −1.34 31.36 13.09 8.28 2022/08/14 2022/12/22 2023/05/01

∗ Please note that dates are given in the following format: year/month/day.
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