Articles | Volume 28, issue 3
https://doi.org/10.5194/hess-28-691-2024
https://doi.org/10.5194/hess-28-691-2024
Research article
 | 
16 Feb 2024
Research article |  | 16 Feb 2024

Seasonal prediction of end-of-dry-season watershed behavior in a highly interconnected alluvial watershed in northern California

Claire Kouba and Thomas Harter

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
On optimization of calibrations of a distributed hydrological model with spatially distributed information on snow
Dipti Tiwari, Mélanie Trudel, and Robert Leconte
Hydrol. Earth Syst. Sci., 28, 1127–1146, https://doi.org/10.5194/hess-28-1127-2024,https://doi.org/10.5194/hess-28-1127-2024, 2024
Short summary
Toward interpretable LSTM-based modeling of hydrological systems
Luis Andres De la Fuente, Mohammad Reza Ehsani, Hoshin Vijai Gupta, and Laura Elizabeth Condon
Hydrol. Earth Syst. Sci., 28, 945–971, https://doi.org/10.5194/hess-28-945-2024,https://doi.org/10.5194/hess-28-945-2024, 2024
Short summary
Flow intermittence prediction using a hybrid hydrological modelling approach: influence of observed intermittence data on the training of a random forest model
Louise Mimeau, Annika Künne, Flora Branger, Sven Kralisch, Alexandre Devers, and Jean-Philippe Vidal
Hydrol. Earth Syst. Sci., 28, 851–871, https://doi.org/10.5194/hess-28-851-2024,https://doi.org/10.5194/hess-28-851-2024, 2024
Short summary
What controls the tail behaviour of flood series: rainfall or runoff generation?
Elena Macdonald, Bruno Merz, Björn Guse, Viet Dung Nguyen, Xiaoxiang Guan, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci., 28, 833–850, https://doi.org/10.5194/hess-28-833-2024,https://doi.org/10.5194/hess-28-833-2024, 2024
Short summary
Glaciers determine the sensitivity of hydrological processes to perturbed climate in a large mountainous basin on the Tibetan Plateau
Yi Nan and Fuqiang Tian
Hydrol. Earth Syst. Sci., 28, 669–689, https://doi.org/10.5194/hess-28-669-2024,https://doi.org/10.5194/hess-28-669-2024, 2024
Short summary

Cited articles

Bunn, S. E. and Arthington, A. H.: Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity, Environ. Manage., 30, 492–507, https://doi.org/10.1007/s00267-002-2737-0, 2002. a
Burnham, K. P. and Anderson, D. R.: Multimodel inference: A Practical Information-Theoretic Approach, Sociolog. Meth. Res., 33, 261–304, 2004. a, b
California DWR – Department of Water Resources: Bulletin 118: Scott River Valley Groundwater Basin, Tech. rep., https://water.ca.gov/LegacyFiles/pubs/groundwater/bulletin_118/basindescriptions/1-5.pdf (last access: 5 February 2023), 2004. a, b
California DWR – Department of Water Resources: Sustainable Groundwater Management Act – Water Year Type Dataset Development Report, Tech. Rep. January, Department of Water Resources – Sustainable Groundwater Management Office, https://www.waterboards.ca.gov/water_issues/programs/gmp/docs/sgma/sgma_20190101.pdf (last access: 12 February 2024), 2021. a, b
California DWR – Department of Water Resources: Notice to State Water Project Contractors: 2022 State Water Project Table A Allocation Decrease from 15 to 5 Percent, https://water.ca.gov/-/media/DWR-Website/Web-Pages/Programs/State-Water-Project/Management/SWP-Water-Contractors/Files/22-03-2022-SWP-Allocation-Decrease-5-Percent-031822.pdf (last access: 30 September 2023), 2022. a
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
In some watersheds, the severity of the dry season has a large impact on aquatic ecosystems. In this study, we design a way to predict, 5–6 months in advance, how severe the dry season will be in a rural watershed in northern California. This early warning can support seasonal adaptive management. To predict these two values, we assess data about snow, rain, groundwater, and river flows. We find that maximum snowpack and total wet season rainfall best predict dry season severity.