Articles | Volume 28, issue 17
https://doi.org/10.5194/hess-28-4099-2024
https://doi.org/10.5194/hess-28-4099-2024
Research article
 | 
12 Sep 2024
Research article |  | 12 Sep 2024

A data-centric perspective on the information needed for hydrological uncertainty predictions

Andreas Auer, Martin Gauch, Frederik Kratzert, Grey Nearing, Sepp Hochreiter, and Daniel Klotz

Related authors

On the predictability of turbulent fluxes from land: PLUMBER2 MIP experimental description and preliminary results
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin G. De Kauwe, Samuel Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig R. Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony P. Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
Biogeosciences, 21, 5517–5538, https://doi.org/10.5194/bg-21-5517-2024,https://doi.org/10.5194/bg-21-5517-2024, 2024
Short summary
Technical note: An approach for handling multiple temporal frequencies with different input dimensions using a single LSTM cell
Eduardo Acuña Espinoza, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, Ralf Loritz, and Uwe Ehret
EGUsphere, https://doi.org/10.5194/egusphere-2024-3355,https://doi.org/10.5194/egusphere-2024-3355, 2024
Short summary
GRDC-Caravan: extending Caravan with data from the Global Runoff Data Centre
Claudia Färber, Henning Plessow, Simon Mischel, Frederik Kratzert, Nans Addor, Guy Shalev, and Ulrich Looser
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-427,https://doi.org/10.5194/essd-2024-427, 2024
Preprint under review for ESSD
Short summary
HESS Opinions: Never train a Long Short-Term Memory (LSTM) network on a single basin
Frederik Kratzert, Martin Gauch, Daniel Klotz, and Grey Nearing
Hydrol. Earth Syst. Sci., 28, 4187–4201, https://doi.org/10.5194/hess-28-4187-2024,https://doi.org/10.5194/hess-28-4187-2024, 2024
Short summary
Technical Note: The divide and measure nonconformity – how metrics can mislead when we evaluate on different data partitions
Daniel Klotz, Martin Gauch, Frederik Kratzert, Grey Nearing, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 28, 3665–3673, https://doi.org/10.5194/hess-28-3665-2024,https://doi.org/10.5194/hess-28-3665-2024, 2024
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Uncertainty analysis
On the importance of discharge observation uncertainty when interpreting hydrological model performance
Jerom P. M. Aerts, Jannis M. Hoch, Gemma Coxon, Nick C. van de Giesen, and Rolf W. Hut
Hydrol. Earth Syst. Sci., 28, 5011–5030, https://doi.org/10.5194/hess-28-5011-2024,https://doi.org/10.5194/hess-28-5011-2024, 2024
Short summary
A decomposition approach to evaluating the local performance of global streamflow reanalysis
Tongtiegang Zhao, Zexin Chen, Yu Tian, Bingyao Zhang, Yu Li, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 28, 3597–3611, https://doi.org/10.5194/hess-28-3597-2024,https://doi.org/10.5194/hess-28-3597-2024, 2024
Short summary
How much water vapour does the Tibetan Plateau release into the atmosphere?
Chaolei Zheng, Li Jia, Guangcheng Hu, Massimo Menenti, and Joris Timmermans
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-55,https://doi.org/10.5194/hess-2024-55, 2024
Revised manuscript accepted for HESS
Short summary
Technical note: Complexity–uncertainty curve (c-u-curve) – a method to analyse, classify and compare dynamical systems
Uwe Ehret and Pankaj Dey
Hydrol. Earth Syst. Sci., 27, 2591–2605, https://doi.org/10.5194/hess-27-2591-2023,https://doi.org/10.5194/hess-27-2591-2023, 2023
Short summary
Technical note: The CREDIBLE Uncertainty Estimation (CURE) toolbox: facilitating the communication of epistemic uncertainty
Trevor Page, Paul Smith, Keith Beven, Francesca Pianosi, Fanny Sarrazin, Susana Almeida, Liz Holcombe, Jim Freer, Nick Chappell, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 27, 2523–2534, https://doi.org/10.5194/hess-27-2523-2023,https://doi.org/10.5194/hess-27-2523-2023, 2023
Short summary

Cited articles

Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017a. a
Addor, N., Newman, A., Mizukami, M., and Clark, M. P.: Catchment attributes for large-sample studies data repository: Boulder, CO, UCAR/NCAR [data set], https://gdex.ucar.edu/dataset/camels/file.html 2017b. a
Angelopoulos, A. N. and Bates, S.: A gentle introduction to conformal prediction and distribution-free uncertainty quantification, arXiv [preprint], https://doi.org/10.48550/arXiv.2107.07511, 2021. a
Auer, A.: Code – A data-centric perspective on the information needed for hydrological uncertainty predictions, Zenodo [code], https://doi.org/10.5281/zenodo.10674231, 2024a. a
Auer, A.: Models and Model States – A data-centric perspective on the information needed for hydrological uncertainty predictions, Zenodo [data set], https://doi.org/10.5281/zenodo.10653863, 2024b. a
Download
Short summary
This work examines the impact of temporal and spatial information on the uncertainty estimation of streamflow forecasts. The study emphasizes the importance of data updates and global information for precise uncertainty estimates. We use conformal prediction to show that recent data enhance the estimates, even if only available infrequently. Local data yield reasonable average estimations but fall short for peak-flow events. The use of global data significantly improves these predictions.