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Abstract. Uncertainty estimates are fundamental to assess
the reliability of predictive models in hydrology. We use the
framework of conformal prediction to investigate the impact
of temporal and spatial information on uncertainty estimates
within hydrological predictions. Integrating recent informa-
tion significantly enhances overall uncertainty predictions,
even with substantial gaps between updates. While local in-
formation yields good results on average, it proves to be in-
sufficient for peak-flow predictions. Incorporating global in-
formation improves the accuracy of peak-flow bounds, cor-
roborating findings from related studies. Overall, the study
underscores the importance of continuous data updates and
the integration of global information for robust and efficient
uncertainty estimation.

1 Introduction

Uncertainty estimates are the basis for actionable predictions
(e.g., Krzysztofowicz, 2001; Beven, 2016a). For example,
the decision to provide a flood warning depends not only on
the size of a given peak but also on how likely one thinks the
event is to occur. For a modeler, it is therefore natural to ask
what information is necessary or useful in providing high-
quality uncertainty estimates. In this contribution, we take a
data-centric perspective to investigate this question. Specifi-
cally, we analyze how temporal (recency) and spatial (local
vs. global) information impacts the quality of uncertainty es-
timates. The focus on temporal and spatial information is mo-

tivated by findings in the existing literature, indicating that
information from different regions could compensate for a
lack in temporal richness (Bertola et al., 2023; Nearing et al.,
2024; Kratzert et al., 2024). With machine learning, we con-
duct investigations on the level of information content with
respect to different tasks rather than on the level of process
representations. For our study, we utilize conformal predic-
tion (CP; Vovk et al., 2005), a model-agnostic framework that
adds uncertainty intervals to existing predictions. In contrast
to many ad hoc approaches for uncertainty estimation, CP is
motivated in a rigorous, probabilistic manner. Under the right
conditions, CP intervals will always achieve finite-sample
marginal coverage (Vovk et al., 2005). Further, the model-
agnostic nature of CP enables the separation of a model’s
point prediction quality from its uncertainty prediction qual-
ity. This is, for example, not possible with the deep learning
baselines from Klotz et al. (2022), which serve as a reference
wherever adequate. Specifically, we apply HopCPT (Auer
et al., 2023), the state-of-the-art CP model for time series.
The HopCPT memory-based architecture determines which
data points drive the uncertainty prediction during inference.
The identification of data points that are relevant for uncer-
tainty can be exploited to analyze the impact of selected in-
formation on the predictive outcomes in an indirect yet flex-
ible way.

To our knowledge, we are the first to introduce CP to hy-
drology. Our goal is to use CP as a tool to empirically study
the research questions (RQs) outlined below.
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— RQI: Does up-to-date information improve uncertainty
estimation? We show that continual updates greatly ben-
efit the general uncertainty prediction, even if the updat-
ing happens in batches (i.e., discontinuously).

— RQII: Are the data from a given basin required to get
good uncertainty estimates for that basin? Our results
suggest that, in the general case, local information is in-
deed beneficial for uncertainty estimation since it will
generally result in tighter prediction intervals. In a PUB
(prediction in ungauged basins) setting, while larger in-
tervals are necessary, it is still possible to achieve quite
a good performance in terms of uncertainty prediction.

— RQIII: Are data from a single basin enough to get good
uncertainty predictions for peak flows? Our results indi-
cate that it is necessary to use data from different basins
to provide good uncertainty predictions for peak flows
at a given basin.

Uncertainty estimation in hydrology. Uncertainty has long
been recognized as a crucial part of hydrological modeling
(e.g., Krzysztofowicz, 2001; Beven, 2016b). Thus, there al-
ready exists a wide range of approaches for uncertainty es-
timation in hydrological modeling. As of today, approaches
include — but are not limited to — ensemble-based methods
that define and sample probability distributions around dif-
ferent model inputs, structures, or outputs (e.g., Li et al.,
2017; Demargne et al., 2014; Clark et al., 2016); Bayesian
and Bayesian-inspired techniques, which weight different
parameters, models, or outcomes (e.g., Kavetski et al., 2006;
Beven and Binley, 2014); neural-network-based methods,
which estimate the parameters (of mixtures) of probabil-
ity distributions (Klotz et al., 2022, e.g.,); and even ex-
plicit post-processing methods (e.g., Shrestha and Soloma-
tine, 2008; Montanari and Koutsoyiannis, 2012; Koutsoyian-
nis and Montanari, 2022). Good overviews can, for example,
be found in Nearing et al. (2016) or Gupta and Govindaraju
(2023).

Trading space for time in hydrological modeling. Mul-
tiscale parameter regionalization (MPR; Samaniego et al.,
2017; Schweppe et al., 2022) is a technique that allows us
to calibrate hydrological models using a scale-independent,
global parametrization. MPR thus uses all available data to
provide an estimation for the parameters of a given basin (the
possible parametrization is, however, still strongly restricted
by a priori knowledge in the form of the model structure and
the functions that link the spatial information to the model
parameters). Similarly, Kratzert et al. (2019b) introduced a
long short-term memory (LSTM) rainfall-runoff model that
is globally parameterized. In terms of predictive fidelity,
this LSTM-based approach outperformed many classical
rainfall-runoff models (e.g., Kratzert et al., 2019a, 2021; Mai
et al., 2022). Klotz et al. (2022) showed how this LSTM-
based approach can directly provide predictive uncertainty
estimations. An inspection of the importance of data for the
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LSTM-based approach can be found in Gauch et al. (2021).
They concluded that adding multiple basins (i.e., the spa-
tial part of the data) is key for reaching good model perfor-
mances. In time series prediction in general, Montero-Manso
and Hyndman (2021) found that global modeling approaches
— such as the one discussed here — tend to outperform local
ones. A different research direction with similar implications
is the contribution made by Bertola et al. (2023), who ana-
lyzed how floods from different regions are informative of
each other. They show that many observed floods fall within
the envelope values estimated from previous floods in other
basins. This suggests that local flood predictions can benefit
from information from different places. We are not aware of
any publications that explicitly examine the space-and-time
relationship for uncertainty estimations.

CP for time series. The current state of the art in con-
formal time series prediction is HopCPT, a CP approach
based on deep learning (Auer et al., 2023). To provide a
prediction interval for a given basin and time step, HopCPT
learns to retrieve historical time steps that belong to similar
regimes — i.e., time steps that had similar error patterns. Intu-
itively, the CP model performs a soft nearest-neighbor search
with a learned similarity measure. This leads to tighter and
more accurate uncertainty estimates than with existing ap-
proaches as the CP model incorporates knowledge not just
about the marginal distribution but also about the current
system state. HopCPT’s regime definition, which considers
regime changes within a time series, is loosely related to
regimes in the hydrological-modeling sense (Haines et al.,
1988; Harris et al., 2000), which classify rivers according to
the overall flow behavior. The definitions of Quandt (1958)
and Hamilton (1990), which model time series with multiple
regimes where the distribution parameters are conditional on
the active regime, are closer to our actual use of the regime
term.

The remainder of this paper is structured as follows: first,
Sect. 2.1 provides an introduction to CP geared towards hy-
drologists and time series prediction. Section 2.2 describes
the methods relevant to this study (HopCPT, CMAL; Klotz
et al., 2022), and Sect. 2.3 describes the metrics used for
comparing the different approaches. In Sect. 3, we present
our experiments and corresponding data. Section 4 details
and discusses the results. Finally, we present our conclusions
in Sect. 5.

2 Methods
2.1 Conformal prediction

This section provides a brief overview of CP. For a thorough
introduction to conformal prediction, we refer the reader to
Angelopoulos and Bates (2021).

A CP procedure consists of two steps: first, CP estimates
the “unusualness”, here called non-conformity, of data points

https://doi.org/10.5194/hess-28-4099-2024



A. Auer et al.: A data-centric perspective on hydrological uncertainty predictions 4101

within a calibration set, which contains previous hold-out
data that are not used for training the prediction model. Then,
CP uses this information directly to construct an uncertainty
region that consists of the most “usual” values of the calibra-
tion set.

A definitive function to measure non-conformity does not
exist. As a matter of fact, there are infinitely many non-
conformity measures. Even a function that randomly assigns
a value of an arbitrary distribution would allow the coverage
guarantee of CP to hold — as long as the distribution does
not change between calibration and test samples. However,
choosing a non-conformity measure that yields good pre-
diction intervals — in the sense that they are not too broad
— is part of the challenge when applying CP. Vovk et al.
(2005), for instance, point out that whether any particular
approach is an appropriate way to measure non-conformity
depends greatly on contextual factors. In a regression setting
a straightforward example of a non-conformity measure is
the absolute error of the prediction.

Even the most basic CP approaches do not pose specific
assumptions with regard to the underlying data distribution
(for comparison, CMAL, as proposed by Klotz et al. (2022),
assumes a mixture of asymmetric Laplacians) except that the
data are exchangeable (i.e., the joint distribution is invariant
in relation to permutations of the data). Hydrological tasks
— such as streamflow prediction — typically violate this ex-
changeability assumption since errors are highly correlated
in time and exhibit different behaviors for different situations
—e.g., amodel might have much larger errors in a flood situa-
tion than in a low-flow situation. On top of that, environmen-
tal processes, especially when considering long time periods,
likely exhibit shifts in the data distribution. These can arise
from a spectrum of factors, ranging from gradual changes,
such as those induced by climate change, to more acceler-
ated transformations, like those stemming from infrastruc-
ture projects. Since the prediction interval of CP is based
on the calibration set, i.e., based on past observations, such
shifts can lead to unreliable prediction intervals. Formally,
we can also view this as a break from the exchangeability
assumption. Besides that, standard CP generates prediction
intervals that provide marginal coverage, which produces un-
necessarily wide or too-small prediction intervals when dif-
ferent error patterns exist. For example, in time series re-
gression, given the absolute error as a simple non-conformity
score, the prediction interval would have the same width over
the whole time sequence. Recent advances in CP methods
have tackled these inherent problems and have thus made
it possible to use CP for time series uncertainty estimation.
Typically, they adapt the calibration distribution based on ei-
ther the temporal proximity and/or the time series covariates
(Auer et al., 2023; Foygel Barber et al., 2022; Xu and Xie,
2022a, b). Other variants propose an adaptive prediction in-
terval (Gibbs and Candes, 2021; Zaffran et al., 2022; Bhatna-
gar et al., 2023) that operates in an online fashion and there-
fore needs access to the label measurements after prediction.
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To be more explicit, we consider a setting where we have
a calibration dataset D = {(x1; y2)(x2, ¥2), ..., (Xn, yn)}. Ap-
plying a prediction model p : X — Y gives us the (abso-
lute) errors of the calibration data E = {eq, 3, ...¢,} — these
errors represent the non-conformity scores as a higher error
refers to a more “unusual” sample (Fig. 1a). Our goal is to
create a prediction interval for a new sample (X,41; Yn+1)
which covers the unknown error e,41 with probability 1 —«,
where « represents the specified mis-coverage rate. The stan-
dard CP procedure is as follows: (1) we use the 1 —a em-
pirical quantile of E to estimate the score for which a 1 —«
ratio of the samples have a lower score —i.e., are less unusual
(Fig. 1b). (2) Because we assume the data are exchangeable,
the non-conformity score of the new sample is represented
by the same distribution. Therefore, we can simply define
the prediction by adding and subtracting the quantile score
to and from the model prediction to arrive at the lower and
upper bound, respectively (Fig. 1c.

In a classical CP setting, it is important that the calibration
set is not part of the training data of the model w. This is be-
cause the fit on the training data is biased: models can, for
example, overfit. Therefore, the non-conformity score distri-
bution of the training data will likely not generalize to new
data. Also, many CP approaches assume that the model itself
is already capable of providing uncertainty estimates. This is,
however, not a necessity. Conformal prediction can be used
in classification or regression settings for point, interval, and
distributional predictions.

2.2 Uncertainty estimation models

This section introduces the models and metrics used to an-
swer our research questions. We introduce HopCPT and its
“global” variant, HopCPT-G, in Sect. 2.2.1 and 2.2.2, respec-
tively. Section 2.2.3 presents CMAL.

2.2.1 HopCPT

Why are modeling systems often successfully used for
decision-making even if they do not provide uncertainty pre-
dictions? We believe that this is because decision-makers im-
plicitly consider the model behavior over time and compare
a given forecast to the recent performance and the model be-
havior in similar situations. We thus design HopCPT (Auer
et al., 2023) to explicitly capture this notion in a quantitative
way.

HopCPT is the current state-of-the-art approach for con-
formal time series prediction. The uncertainty of time se-
ries data often varies heavily between certain periods. One
reason is seasonal patterns. For example, for many alpine
rivers, long-lasting periods of low flows in winter exhibit
lower predictive uncertainty than large events in late spring,
where glacier melt and convectional precipitation events in-
teract. Another reason is the occurrence of irregular but re-
curring events such as those induced by torrential rain. Note
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Figure 1. Illustration of standard conformal prediction applied to a regression setting. (a) The black line shows the prediction of a model.
The colored points show the real observation — the darker the color, the bigger the prediction residual, i.e., the non-conformity score. (b) CDF
of the non-conformity score distribution and the respective cut-off quantile at @ = 0.1. (¢) The prediction of ., with the CP interval defined

by the value on the cut-off quantile, based on the test data.

that shifts also play an important role within events as their
frequency and intensity can change over time. HopCPT ad-
dresses these challenges by viewing the time series as a soft
partitioning of time periods, where each partition element ex-
hibits individual uncertainty properties. We refer to such a set
of time points as a regime (Quandt, 1958; Hamilton, 1990)
and assume that one can identify them by the covariates and
the lagged target of the time series. HopCPT learns to weight
which past observations of the calibration data —i.e., calibra-
tion points — are likely to be from the same regime as the cur-
rent point. We want to emphasize that, here and throughout
the paper, the phrase “calibration data” refers to data that are
not utilized in training the underlying point prediction model.
This aligns with the conventional terminology in probabilis-
tic applications in general and in the CP literature in par-
ticular.! Based on this information, the different calibration
points are weighted differently when constructing the predic-
tion interval. Since the considered time steps in the interval
calculation are from the same regime, one can assume that
exchangeability is given and that, therefore, the validity of
the prediction interval holds. Yet, since time points from un-
related regimes are disregarded, HopCPT results in tighter
intervals than, for example, standard CP.

More formally, HopCPT assigns a weight a; ; € R to a past
time step i € M in the memory M given the current time step
t. The weight reflects the similarity between the given time
step i and the current time step ¢. Intuitively, we can say that
the weight should be high when i is from the same regime as
t and should otherwise be low. These weights are constructed
with the modern Hopfield network component of HopCPT as

IThe calibration data are not part of the training data of the un-
derlying prediction model, as is standard in CP. This property is
very important because the prediction model can arbitrarily overfit
the training data. If we were to estimate error bands or probabil-
ities on top of that, we would get overconfident uncertainty esti-
mates (i.e., very thin bars). Notably, this is not a specific limitation
of conformal prediction or HopCPT as such since predictions based
on the training data are, in general, distorted because of overfitting
phenomena.
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follows:

ari = Bm(z;) Wy Wrm(z;), (D
_ et .

asi = —ZjeMea"j VieM, )

where z; € R? is the representation input for time step i, m :
R? — R represents an encoding module, and W, € RY*¢'
and Wy, € RY*4" are learned weight matrices; B is a hyper-
parameter that represents the inverse of the so-called soft-
max temperature, which adjusts the sharpness of softmax-
generated probability distributions (low temperatures push
all the attention to a single value, while high temperatures
distribute the attention uniformly). The model parameters of
HopCPT are estimated using a standard gradient-based learn-
ing procedure, optimized with an MSE (mean square error)-
like loss function. For the sake of completeness, Appendix D
provides a more detailed review of the original loss function.

The weights form the basis for the weighted conformal
prediction interval (Foygel Barber et al., 2022). Besides the
weighting, HopCPT deviates from standard CP as it does not
consider the one-sided quantile of the absolute errors (non-
conformity scores) but instead follows Xu and Xie (2022a)
and excludes the lower and upper quantiles of the relative
errors. Formally,? the prediction interval of time step 7 is cal-
culated by

C¥ (2, M) = [ (X)) + 04 <Zat,,~8€,.) :

ieM

AK) + 015 (Zal,iae,) |

3)

ieM

where Q; is the T quantile, and §, is a point mass distribu-
tion (i.e., a degenerate distribution where all the mass is con-
centrated at a single point) at the prediction error at time step

ZNote that we use the alternative proposal presented in Ap-
pendix E of the original work as it is computationally more efficient.
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i. This essentially means we compute the T quantile across a
mixture of M distributions, each corresponding to a distinct
time step i in the memory, characterized by a point mass in
relation to its prediction error €;. Thus, each of these distri-
butions is concentrated at €;, with density 1 and O elsewhere.

HopCPT retrieves the calibration data points during the
prediction from the modern Hopfield memory (Ramsauer
et al., 2021) of the model. Thus, one can simply add ev-
ery new and available observation to the memory. This cor-
responds to an automatic recalibration, which accounts for
shifts in the data distribution. In addition, HopCPT allows
us to add a so-called temporal encoding to the time steps.
This encoding adds information about the time difference be-
tween the predicted time step and the previous time steps.
Given this information, HopCPT can learn to weight recent
points more highly, which further helps to address distribu-
tion shifts. This retrieval via the modern Hopfield memory is
closely related to transformer attention (Vaswani et al., 2017,
Appendix E).

HopCPT has already exhibited good performance in
streamflow uncertainty prediction (Auer et al., 2023). In this
work, we use HopCPT approach as a tool to explore the ef-
fects of data availability on uncertainty prediction.

Memory update. In Auer et al. (2023), HopCPT updates
the Hopfield memory after each prediction with the — then —
previous prediction error. However, this requires access to the
target label of this time step to calculate the error of the pre-
diction model. In streamflow modeling, we often do not have
direct access to the target label (i.e., the streamflow measure-
ment) before a new prediction has to be issued. Therefore, we
adapt HopCPT to use a fixed memory that is only based on
the calibration data by default. We refer to this adaptation as
the “offline mode” in contrast to the original “online mode”.
Given the notation from Eq. (3), this means that, in online
mode, the memory M contains all time steps up to time step
t — 1, while, in offline mode, the memory is fixed per time
series and only includes the calibration data.

In practice, one could expect that the memory may be
updated intermittently whenever new data become avail-
able. Hence, we explore the influence of different updating
schemes (Sect. 3.2).

Input features. Auer et al. (2023) concatenate (static and
dynamic) time series covariates, model predictions, and
lagged targets as input features to generate the representa-
tion z; of a time step i. However, the use of the lagged tar-
get requires access to the target label right after the predic-
tion, which is typically not possible in streamflow prediction.
A straightforward solution would be to simply exclude the
lagged target as an input feature. However, since most current
rainfall-runoff models follow a state-space approach, we also
explore how a lack of labels can be compensated for by using
the model state. We hypothesize that this state should include
most of the relevant information that would have been pro-
vided by the streamflow observations, as well as additional
information that is not available to HopCPT in the original
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publication. Note that (a) the model states potentially contain
more information than just the model prediction because the
prediction is some projection of its state?, and (2) the state
likely encodes important historical information beyond the
current time step. Figure 2 shows an example hydrograph of
a random basin with the predictions of HopCPT.

2.2.2 HopCPT-G

We hypothesize that the union of the existing calibration data
represents not only the included streamflow time series but a
general set of existing streamflow regimes. In this scenario,
one could utilize the error information from similar situations
in other basins to best model the current situation in a specific
basin. This global information sharing could be especially
beneficial if (calibration) data in individual basins are scarce.
Further, the application to ungauged basins should be pos-
sible. In a simple case, where the error information is only
relevant within a certain time series, HopCPT can learn to
fall back to the local setting and only up-weight the calibra-
tion data of its own time series. To examine the potential of
global memory, we modify HopCPT so that it operates based
on global memory for both training and inference. We refer
to this new model as HopCPT-G.

During inference, the association weights and prediction
interval calculations of HopCPT-G are very similar to those
of HopCPT. Equations (1) and (3) are still applicable; how-
ever, the memory M consists of all available time steps of
all time series — in contrast to HopCPT, where only the time
series of the predicted basin is used.

Figure 3 illustrates the difference. While, in HopCPT, only
the learned weights are shared between different time steps,
in HopCPT-G, both the learned weights and the memory vec-
tors are shared between different time series.

This change is also reflected in the training loss. N time
steps are drawn without replacement from K randomly se-
lected time series. The loss for this batch is then calculated
as

L=N""l(ler:nl — Alern D111 4)
A,‘j ERNXN _ ajj fori # 7, 5)
0 else.

To ensure that the samples of our own time series (which
are likely to be the most relevant) are in the batch, we choose
N and K in such a way that all samples of the K series are
in the batch.

PUB training. It is crucial for HopCPT-G to learn a time
step representation which captures rich information about the
error regime. As shown in multiple works, machine learning
models often suffer from shortcut learning (Lapuschkin et al.,
2019; Geirhos et al., 2020). For HopCPT-G, a potential short-
cut might be just to learn to distinguish the different time

3Here, we assume that the model state at time ¢ already considers
the input features of time step ¢.

Hydrol. Earth Syst. Sci., 28, 4099-4126, 2024
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Hydrograph: 2002-09-30 to 2003-09-30
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Figure 2. The observed streamflow (blue), the prediction (gold), and HopCPT’s prediction interval (light gold; offline mode and model states
as input) for a random basin (ID no. 02077200) from October 2002 to October 2003. For the prediction interval, we set « = 0.05. HopCPT
generates wider prediction intervals where the prediction model is uncertain. Hence, it also covers the observed streamflow for values where
the predicted and the real streamflows are quite different. In confident areas, the prediction interval is much narrower.
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Figure 3. Illustration of the difference between HopCPT and
HopCPT-G. The shared weights and vectors are outlined in green,
and the vectors that are specific to a specific time series are in ma-
genta. HopCPT-G also shares the memory vectors and incorporates
all available time steps.

series. This result would harm the PUB prediction perfor-
mance in particular as it relies on representations which gen-
eralize over individual time series. To facilitate more robust
representations that avoid this learning shortcut, we propose
a training loss that masks out all observations of the time se-
ries to which the predicted time step belongs. In other words,
HopCPT-G can only use the error observations from the other
time series to form its prediction in the training phase. This
way, the shortcut of only learning to consider its “own” time
series is impossible. Formally, this changes the association
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matrix A to
fori # j ANid(i) #Z1d(j),

aii
Ajj e RVN = 17V 6
Y {0 else, ©)

where id maps a time step to an identifier of its corresponding
time series.

2.2.3 CMAL

CMAL (Klotz et al., 2022) is an LSTM-based mixture den-
sity network (Bishop, 1994). The model predicts the param-
eters of asymmetric Laplacian distributions. This choice of
distribution allows the modeling of asymmetric uncertainties
that are typical for many hydrological variables. The direct
comparison to HopCPT is slightly problematic as CMAL
does not operate on top of an existing prediction model.
However, as one of the best models for uncertainty estima-
tion in streamflow prediction, CMAL is a good performance
yardstick in our evaluation.

2.3 Maetrics

The evaluation focuses on the validity and efficiency of the
prediction intervals of the models. Validity means that, when
a certain coverage, e.g., 90 %, is specified, 90 % of the test
data are also actually covered by the prediction interval. This
criterion is measured by the A Cov metric, which represents
the difference between the specified and the empirical cover-
age. A Cov is, at best, zero, while a notably negative A Cov
diminishes the utility of the model. A positive A Cov is less
problematic but is a sign that the model could provide more
efficient intervals. Here, efficiency refers to the width of the
prediction interval: a more narrow prediction interval is more
efficient than a wider one. We evaluate this property with the
PI width metric, which simply corresponds to the average
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width of the prediction interval over the evaluation period. A
smaller PI width value is therefore better. Additionally, we
evaluate the Winkler score, which jointly elicits both criteria
and thus allows an easy comparison between different mod-
els. The Winkler score is calculated as

WSa(z:, M, yr)

IW® (2, M) + 2 (3, — C%%(z,, M) if y; > C%V(2,, M),
= 1 IW (2, M) + 2(C*N @ M) — ) if yr < C¥Mz M), (7)
IW(z;, M) else.

The score corresponds to the interval width IW}' = cov —
C “’Lwhenever the observed value y; is within the interval
of C{(z;4+1) — otherwise, the score gives a penalty that is
weighted by the warranted coverage level «.* The Winkler
score as such is calculated for each individual time step f,
but we report the average over all time steps and basins (as is
common in time series literature).

3 Data and experiments

Experiment I, II, and III address the respective research ques-
tions of this paper. In addition, we conduct a performance
comparison of different uncertainty models in Appendix B.
Specifically, we compare HopCPT with CMAL (Klotz et al.,
2022), Bluecat (Koutsoyiannis and Montanari, 2022), and a
kNN-based approach (Wani et al., 2017; Auer et al., 2023).
We evaluate all approaches based on the predictions of an
LSTM-based rainfall-runoff model with three coverage lev-
els: o« = {0.05,0.10, 0.15}. Appendix G provides the techni-
cal details of our experimental setup, and Appendix H de-
scribes our hyperparameter search.

3.1 Data

All experiments are based on the public Catchment
Attributes and Meteorology for Large-Sample Studies
(CAMELS) dataset (Newman et al., 2015; Addor et al.,
2017a). CAMELS comprises basis-averaged daily meteoro-
logical forcings derived from three different gridded data
products across the United States of America. We used the
same 531 basins which were used in the original bench-
mark (Newman et al., 2017) and in related follow-up work
(Kratzert et al., 2019a; Klotz et al., 2022). This subset con-
tains basins ranging in size from 4 to 2000 km?. The dataset
contains daily meteorological forcings (precipitation, tem-
perature, shortwave radiation, humidity) from three different
data sources (NLDAS, Maurer, DayMet); daily streamflow
discharge data from the US Geological Survey; and basin-
averaged catchment attributes related to soil, geology, vege-
tation, and climate. The dataset is split into three parts across
the time axis. These parts represent (1) the training data for

40 and C*! refer to the upper and lower bounds of the inter-
val, respectively.
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the prediction model, (2) the calibration data used by the
uncertainty model, and (3) the test data for evaluation. For
CMAL, which does not need any calibration data, both the
training and calibration split are used for training.

3.2 Experiment I

This experiment assesses how recent measurements affect
the performance of HopCPT. We split it into two parts.

Experiment I-a compares identical HopCPT models once
with offline memory and once with online memory (see
Sect. 2.2.1). We examine two different input feature configu-
rations — one using the time series covariates and the model
prediction and one using the model state and model predic-
tion (see Sect. 2.2.1). In addition to the quantitative compar-
ison, we qualitatively analyze the individual time series for
which the performance gap between online and offline is the
greatest. This yields insights into potential shifts in the pre-
diction error in such cases.

Experiment I-b analyzes intermediate memory update
strategies that fall between fully offline and fully online. In
real-world scenarios, gathering the labels with some delay
might sometimes be feasible and at least partially help to
mitigate the impact of distribution shifts. Therefore, we eval-
uate HopCPT with a memory update frequency of 1 week,
1 month, 3 months, 6 months, 1 year, and 2 years (note that
the sampling frequency of the series is 1d, and the overall
test period is 9 years) and compare the results to the offline
and fully online models (i.e., frequency of 1d).

3.3 Experiment II

In Experiment II, we investigate how much the data from
a given basin contribute towards the uncertainty predictions
for said basin itself. We do so by first comparing HopCPT
with HopCPT-G in a gauged setting (Experiment II-a) and
then comparing HopCPT-G with CMAL in an ungauged set-
ting (Experiment II-b). The details for both comparisons are
explained in the following.

Experiment II-a compares HopCPT-G to the originally
proposed HopCPT in the gauged setting. We focus on the
HopCPT feature configuration which includes the model
state and prediction as we hypothesize that this configura-
tion is less likely to simply down-weight samples from time
series that are different from the predicted one. We addition-
ally evaluate HopCPT-G with PUB training, i.e., the adapted
training loss (see Eq. 6). Although we do not evaluate on un-
gauged basins in this setting, PUB training can increase the
tendency of HopCPT to incorporate data from other basins
— and that could potentially lead to more robust representa-
tions.

Experiment II-b investigates if uncertainty estimates are
also possible without any local information from the pre-
dicted basin. To examine this scenario, we loosely follow the
PUB setting from Kratzert et al. (2019a): the set of time se-
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ries is split into 11 mutually exclusive subsets of equal size.
The principle is similar to k-fold cross-validation (but not
on a per-sample basis): we define that for the kth fold; the
gauged basins are the union of all but the kth subset, while the
kth subset represents the ungauged basins. We reserve one
of the folds for hyperparameter tuning and exclude it from
the evaluation. For the other 10 folds, we individually train
the prediction and uncertainty model on the gauged basins
(9 out of 10 subsets) and evaluate them based on the un-
gauged basins from the remaining subset. Note that, within
each subset, each time series is (as in the standard case) split
into training, calibration, and test data. CMAL’s training data
encompass both the training and calibration split to ensure
that, in total, each model has the same amount of data avail-
able. We evaluate only the test period of the ungauged basins
(this avoids information leakage from the training and cali-
bration periods of the gauged basins). We evaluate two vari-
ants of HopCPT: (1) HopCPT-G with normal training and
(2) HopCPT-G with PUB training. For both variants, we use
the model state and prediction as input features.

3.4 Experiment III

Experiment III examines the uncertainty estimation for peak
flows specifically. Peak-flow uncertainties are especially hard
to capture. Firstly, because prediction models tend to make
larger errors (i.e., high aleatoric uncertainty) and, secondly,
because the occurrence of peak-flow events is limited (i.e.,
high epistemic uncertainty). To measure the respective per-
formance, we calculate the metrics only using time steps
where the streamflow observations are in the top x % of
the corresponding basin. Specifically, we evaluate for x €
{2,5,10,20,30,50,100} (and 100 comprises all data and
hence corresponds to the standard evaluation) within the
gauged-basin setting of Experiment II. For the sake of com-
pleteness, Appendix J3 also presents the peak-flow evalua-
tion for the other experiments.

4 Results and discussion
4.1 Experiment I

Experiment I-a compares the offline and online modes of
HopCPT. Table 1 shows that the main performance advan-
tage of the online setting is its better coverage. This holds es-
pecially true for the HopCPT variant, which uses the model
states as features. The width of the prediction interval stays
almost constant between offline and online approaches. This
suggests that the change in Winkler score is a direct effect of
the lower or higher coverage. We argue that the slight loss in
coverage for the offline setting is due to a distribution shift in
some basins (Fig. 4): while the coverage distribution of the
basins with the highest coverage is very similar between the
offline and online cases, the biggest change happens in the
10 %—-20 % of basins with the lowest coverage.
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A particularly striking examples of this shift is shown in
Fig. 5: in the prediction year 2000 (approximately 1 year
after the memory end), the offline setting provides reason-
able intervals. However, in the year 2004, the real streamflow
seems to be shifted upwards for low flows and downwards for
some higher flows. Since the output of the prediction model
remains roughly constant, we suggest that the phenomenon at
hand is a shift in the runoff that is not visible in the input pat-
terns. The online model can accommodate for this shift since
the new information (in the form of the shifted observations)
are incorporated into the memory. The offline model simply
has no mechanism to account for that and to construct invalid
intervals. Figures J1 and J2 in the Appendix show additional
examples of this error shift behavior.

Experiment I-b investigates the effect of HopCPT with in-
frequent memory updates as intermediate settings between
the edge cases of fully online and offline settings. Table 2
presents the results. The slight coverage loss increases grad-
ually with a higher update delay — as illustrated in Fig. 6.
However, an update frequency of 1 year already halves the
coverage loss compared to the offline setting. The changes in
the PI width are less clear and non-monotonic; however, the
variation is negligible anyway.

Regarding the answer to RQI (does up-to-date information
improve the general uncertainty estimation?), our results in-
deed suggest that a continuous incorporation of new data im-
proves uncertainty predictions. For the center of the predic-
tive distribution (associated with large o values; Table 1), our
results are less pronounced than for the tails (associated with
small « values; Table 1). Further, continuously updating the
uncertainty estimates as new data come along is very use-
ful, given that environmental processes are associated with
all kinds of distribution shifts. In our experiments, a memory
update mechanism was advantageous even in cases where
real-world constraints only allow for very infrequent updates
(Table 2).

4.2 Experiment IT

Experiment II-a probes the effect of global data in the
gauged-basin setting. Table 3 shows the result of HopCPT-
G (with and without PUB training) and compares it to the
non-global HopCPT. Surprisingly, the shared memory of
HopCPT-G (no PUB training) does not improve the results.
However, it also does not do any notable harm. We hypoth-
esize that the calibration data of each basin are already so
comprehensive that all relevant error regimes for the respec-
tive basin are covered with sufficient resolution. The slight
degradation in performance could result from either (i) the
additional challenge of learning to disregard all non-relevant
basins or (ii) the missing temporal encoding in HopCPT-G.
The PUB training procedure, on the other hand, notably im-
proves the coverage. However, this improvement comes at
the cost of efficiency. Hence, the resulting Winkler score is
similar to that of the other approaches.
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Table 1. HopCPT performance of the two evaluated input combinations in offline and online mode for the mis-coverage levels o =
{0.05,0.10,0.15}. The values represent the average over all basins. Bold numbers correspond to the best result for the respective metric
in the experiment (PI width and Winkler score); the significance is tested with a Mann—Whitney U test at p < 0.005. For PI width and
Winkler score, lower values are better — for A, Cov non-negative values close to 0 are best. The values in parentheses represent the standard
deviation over the different seeds.

o 0.05 \ 0.10 \ 0.15
A Cov Plwidth Winkler | ACov Plwidth Winkler | A Cov PIwidth Winkler
X/YHat offline —0-005 2.88 1.21 | —0.011 2.15 0.94 | —0.017 1.75 0.80
(0.002)  (0.09)  (0.02) | (0.003)  (0.06)  (0.01) | (0.003)  (0.05)  (0.01)
online 005 2.87 1.16 004 2.14 0.91 001 1.74 0.78
(0.002)  (0.09)  (0.02) | (0.002)  (0.06)  (0.01) | (0.002)  (0.05)  (0.01)
Model states/ ..~ —0.017 1.92 1.02 | —0.029 1.44 0.78 | —0.039 1.17 0.66
YHat (0.003)  (0.06)  (0.02) | (0.004)  (0.05)  (0.01) | (0.005)  (0.04)  (0.01)
online 005 1.96 0.90 002 1.46 0.71 | —0.004 119 0.61
(0.002)  (0.06)  (0.01) | (0.003)  (0.04)  (0.01) | (0.004)  (0.04)  (0.00)
(@) offline - « =0.05 (b) offline - o = 0.10 (c) offline a = 0.15
1.0

.
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Figure 4. CDF of A Cov over individual basins for the models evaluated in Experiment I-a. Panels (d—f) show the results for the online mode,
i.e., where the memory gets updated after each prediction, and panels (a—c) show the results for the offline mode, i.e., where the memory

does not get updated during the test period. For A Cov, non-negative values close to 0 are best.

Figure 7 shows the coverage distribution over the indi-
vidual basins. The distributions of HopCPT and HopCPT-
G are very similar. This indicates that HopCPT-G cannot
profit from the cross-time-series information but successfully
learns to exclude irrelevant basins in order to arrive at the
right error distribution.

Experiment II-b investigates the PUB setting. Table 4
shows the result of the evaluation. CMAL, which has very
good coverage in a gauged-basin setting (see Appendix B),
exhibits a noticeable under-coverage. HopCPT-G, on the
other hand, only slightly loses coverage compared to the non-
PUB setting. HopCPT-G with PUB training reduces the cov-
erage loss notably. Its efficiency is comparable to CMAL and
HopCPT-G. CMAL achieves the best Winkler score despite
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its high under-coverage. This suggests that the uncovered
samples are relatively close to the border of the prediction
interval. Figure 8 shows the distribution of A Cov over the
individual time series. Since the PUB setting does still yield
acceptable performances but does not allow us to use infor-
mation from a given basin, one can conclude that the global
setting is able to transfer uncertainty information about the
uncertainty from other basins to the unseen basins. Quan-
titative metrics for the individual folds can be found in the
Appendix in Table J1.

Regarding the answer to RQII (are the data from a given
basin required to get good uncertainty estimates?), our re-
sult suggests that local information is beneficial for efficient
uncertainty intervals. Given that enough local information is
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Figure 5. The real streamflow (blue), the prediction (gold), and HopCPT’s prediction interval (light gold) for a basin (ID no. 12447390) in
October 2000 and October 2004. The two plots on the left show HopCPT in offline mode, and the two plots on the right show HopCPT in
online mode. The online mode allows HopCPT to account for the distribution shift in October 2004.

Table 2. Performance of HopCPT with different memory update behaviors for the mis-coverage levels « = {0.05,0.10, 0.15}. The “delay”
column indicates the update frequency of the memory. The values represent the average over all basins. Bold numbers correspond to the best
result for the respective metric in the experiment (PI width and Winkler score). For PI width and Winkler score, lower values are better; for
A Cov, non-negative values close to 0 are best. The values in parentheses represent the standard deviation over the different seeds.

0.05 \ 0.10 \ 0.15
Delay A Cov Plwidth Winkler \ A Cov Plwidth Winkler \ A Cov Plwidth Winkler
Online 0.005 1.96 0.900 0.002 1.46 0.710 | —0.004 1.19 0.610
(0.002) (0.06)  (0.010) | (0.003) 0.04)  (0.010) | (0.004) 0.04)  (0.000)
1 week 0.002 1.98 0.922 | —0.002 1.47 0.719 | —0.009 1.20 0.617
(0.002) (0.05)  (0.009) | (0.002) (0.04)  (0.006) | (0.003) 0.03)  (0.004)
1 month  —0.002 1.97 0.943 | —0.007 1.47 0.731 | —0.014 1.20 0.625
(0.002) (0.05)  (0.010) | (0.003) (0.04)  (0.006) | (0.003) 0.03)  (0.004)
3months —0.005 1.97 0.956 | —0.011 1.47 0.739 | —0.019 1.20 0.631
(0.002) (0.05)  (0.010) | (0.003) 0.04)  (0.006) | (0.003) 0.03)  (0.004)
6 months  —0.006 1.97 0.961 | —0.013 1.47 0.742 | —0.021 1.20 0.633
(0.002) (0.05)  (0.010) | (0.003) 0.04)  (0.006) | (0.003) 0.03)  (0.004)
1 year —0.007 1.97 0.964 | —0.014 1.47 0.743 | —0.023 1.20 0.634
(0.002) (0.05)  (0.010) | (0.003) (0.04)  (0.006) | (0.003) (0.03)  (0.004)
2 years —0.008 1.97 0.969 | —0.016 1.47 0.747 | —0.025 1.20 0.637
(0.002) (0.05)  (0.011) | (0.003) 0.04)  (0.007) | (0.003) 0.03)  (0.005)
Offline —0.017 1.92 1.020 | —0.029 1.44 0.780 | —0.039 1.17 0.660
(0.003) (0.06)  (0.020) | (0.004) (0.05)  (0.010) | (0.005) 0.04)  (0.010)

available and the average quality of the estimate is the focus
(in contrast to RQIII), it is also sufficient to provide reason-
able uncertainty estimates (Experiment II-a). However, local
information is not strictly necessary to produce sensible un-
certainty estimations, and information transfer via global in-
formation is possible (Experiment II-b).

4.3 Experiment III
In contrast to our results from Experiment II, the peak-

flow performance exhibits a notable difference between the
HopCPT variants (Fig. 9). HopCPT-G provides better cov-
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erage than HopCPT, and PUB training boosts this further.
The coverage difference between the HopCPT variants also
increases with increasing «. CMAL, which is also a fully
global model, achieves the best Winkler scores in the peak-
flow setting. This indicates that the information from other
basins is beneficial for peak-flow regimes — even when plenty
of past information for the basin is available. We argue that
this is because the data are more scarce in these regimes, and
certain situations might not be available in the observed past
of the individual basin. Thus, in this situation, it becomes
useful to leverage information from the other basins in or-
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Table 3. Performance of the different HopCPT variants for the mis-coverage levels o« = {0.05, 0.10, 0.15}. The values represent the average
over all basins. Bold numbers correspond to the best result for the respective metric in the experiment (PI width and Winkler score); the
significance is tested with a Mann—Whitney U test at p < 0.005. For PI width and Winkler score, lower values are better; for A Cov,
non-negative values close to 0 are best. The values in parentheses represent the standard deviation over the different seeds.

@ 0.05 \ 0.10 \ 0.15
ACov Plwidth Winkler | ACov Plwidth Winkler | ACov PIwidth Winkler
HopCPT ~ —0.017 1.92 102 | —0.029 1.44 0.78 | —0.039 117 0.66
(0.003)  (0.06)  (0.02) | (0.004)  (0.05)  (0.01) | (0.005  (0.04)  (0.01)
HopCPT-G  —0.023 2.10 1.06 | —0.031 1.61 0.81 | —0.036 1.35 0.68
(0.003)  (0.07)  (0.01) | (0.004)  (0.05)  (0.00) | (0.004)  (0.05)  (0.00)
HopCPT-G 018 3.16 1.04 021 236 0.81 019 1.93 0.69
(PUB train) ~ (0.006)  (0.18)  (0.07) | (0.008)  (0.13)  (0.04) | (0.011)  (0.11)  (0.02)

Table 4. Performance of different models in the PUB experiment for the mis-coverage levels o = {0.05, 0.10, 0.15}. The values represent the
average over all test basins of all splits. Bold numbers correspond to the best result for the respective metric in the experiment (PI width and
Winkler score); the significance is tested with a Mann—Whitney U test at p < 0.005. For PI width and Winkler score, lower values are better;
for A, Cov non-negative values close to O are best. The values in parentheses represent the standard deviation over the different seeds.

a 0.05 \ 0.10 \ 0.15
A Cov Plwidth Winkler ‘ A Cov Plwidth Winkler ‘ A Cov Plwidth Winkler
HopCPT-G  —0.052 2.15 1.78 | —0.070 1.57 1.29 | —0.080 1.27 1.05
(0.001) (0.01) (0.02) | (0.001) (0.01) (0.01) | (0.002) (0.01) (0.01)
HopCPT-G  —0.007 3.00 1.34 | —0.017 2.27 1.04 | —0.026 1.87 0.89
(PUB train)  (0.003) (0.08) (0.04) | (0.005) (0.07) (0.03) | (0.006) (0.06) (0.02)
CMAL —0.119 2.44 1.18 | —0.155 1.91 093 | —0.172 1.61 0.80
(0.008) (0.08) (0.03) | (0.009) (0.06) 0.02) | (0.009) (0.05) (0.02)

Offine 9 Yeal 4 Yol \ponth, \ponthSy Mont™ 4 \Neek  qqline
Memory Update Frequency

Figure 6. A Cov of HopCPT for different memory update fre-
quency settings. Increasing update frequency monotonically im-
proves the coverage for each evaluated coverage level. For A Cov,
non-negative values close to 0 are best.

der to obtain good uncertainty estimates (we note that this is
in contrast to the results from Experiment II, which showed
that, for the average runoff predictions, no improvement is
obtained by considering global information).
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Regarding the answer to RQIII (are data from a single
basin enough to get good uncertainty predictions for peak
flows?), our results indicate that using only data from a single
basin — that is, only considering the local information — leads
to worse uncertainty estimates for peak-flow settings. The
more restricted the peak-flow categorization that is chosen,
the more pronounced this effect gets (Fig. 9). Using global
information — i.e., information from other basins — improves
the uncertainty estimates. In particular, this holds in terms of
the reliability of the estimate (i.e., coverage).

5 Conclusions and outlook

This contribution investigates how the temporal (recency)
and spatial (local vs. global) dimensions of information im-
pact the quality of uncertainty estimates. To conduct our
study, we apply the conformal prediction (CP) framework in
the form of the Hopfield conformal prediction for time series
(HopCPT) approach, which extends the CP framework for
time series predictions. In short, we find that (a) the inclu-
sion of the most recent information has notable benefits for
the general uncertainty predictions, and (b) global informa-
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Figure 8. CDF and PDF of A Cov over all individual test basins of all PUB folds for models evaluated in Experiment II-b. For A Cov,

non-negative values close to 0 are best.

tion is not important for general uncertainty predictions but
is pivotal for the provision of good bounds for peak flows.

Regarding (a), our analysis suggests that incorporating re-
cent information helps to improve the uncertainty estimates.
This is even true if the information can only be provided
after longer periods (e.g., when, for technical reasons, only
yearly updates are possible). We could qualitatively link this
phenomenon to distribution shifts that appear over time. We
conclude that continuous monitoring and incorporation of the
newly obtained data in the prediction process are vital com-
ponents of prediction systems that strive to provide reliable
and efficient uncertainty estimations.

Hydrol. Earth Syst. Sci., 28, 4099-4126, 2024

Regarding (b), our results indicate that local information
is sufficient to provide good uncertainty estimates on aver-
age (assuming that a reasonable history over multiple years
is provided). However, for peak flows, it is not. We argue that
this is because the estimation problem is particularly hard
since high-flow situations are diverse, have a high measure-
ment variance, and happen very infrequently. Global infor-
mation is able to improve the estimates. These observations
are in accordance with the results from Frame et al. (2022)
and Bertola et al. (2023), which indicate that the signals from
different basins can be leveraged to make better predictions
for peak flows. This can be taken to the extreme for predic-
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Figure 9. Evaluation metrics for Experiment III. Only peak-flow time steps — defined via varying the share of the overall steps (x axis of the
plots) — are considered for the respective metric. For PI width and Winkler score, lower values are better; for A Cov, non-negative values

close to O are best.

tions in ungauged basins. Indeed, our experiments in this re-
gard suggest that reasonable uncertainty estimates can also
be provided without any local information. However, when-
ever global information is used for uncertainty estimation, it
is especially important that the respective model can selec-
tively consider the relevant information — i.e., it can decide
which parts of the overall information should be used for the
current estimation. HopCPT-G and CMAL are both able to
do that.
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In future work, experiments with more scarce local data
could reveal further advantages of approaches that incor-
porate global information. More broadly, CP offers a fresh
perspective to uncertainty-aware streamflow prediction. Ap-
pendix C shows a first exploration of how the principles from
CP can improve existing hydrological uncertainty estima-
tions with minimal interventions. In the future, we want to
explore how ideas from CP are able to refine other (perhaps
less formal) approaches that are currently used in practice.
Experiments with input perturbation techniques could give
orthogonal insights into how different input features impact
the uncertainty estimates of the models.
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Appendix A: Overview

The Appendix is structured as follows: Appendix B com-
pares the overall performance of different uncertainty meth-
ods, including HopCPT and CMAL. Appendix C investigates
the impact of applying the principles of CP to the existing
uncertainty estimation method Bluecat. Appendix F inves-
tigates how different input features influence the uncertainty
estimation performance —i.e., provides an orthogonal dimen-
sion to the spatial and temporal consideration of the main
paper. Appendices G and H provide details about the exper-
imental setup and the hyperparameter tuning, respectively.
Appendix I presents the point prediction metrics of the exper-
iments. Finally, Appendix J provides additional results from
the experiments in the main paper.

Appendix B: Model intercomparison

This section compares the performance of the different (non-
global) methods>. For HopCPT, we evaluate the model in of-
fline mode (i.e., without updating the memory as outlined
in Sect. 2.2.1). Two variants for the input features are ex-
amined: (1) the time series features and the model predic-
tion, similarly to the original work but without the lagged
target, and (2) the model states and prediction as proposed in
Sect. 2.2.1. For Bluecat, we selected the best model consid-
ering both the original Bluecat and the adapted version sug-
gested in Sect. C. We follow Auer et al. (2023) and also eval-
uate against kNN as a naive similarity-based baseline (see
Appendix B1). While Auer et al. (2023) show that the kNN
on the time series features is not sufficient, we analyze the
performance of kNN with (1) the model states and predic-
tion (corresponding to HopCPT) and (2) only the model pre-
diction (corresponding to Bluecat) as input. Additionally, we
evaluate CMAL as the current state-of-the-art approach.

B1 kNN as naive similarity approach

HopCPT uses the similarity representation that is learned by
the modern Hopfield network (MHN). A more naive way to
consider such a similarity would be to simply use a kNN
model based on the model inputs. Following the original
work, we use such a kNN model as a baseline in the ex-
periments. In hydrology, this approach was already proposed
as an uncertainty estimation technique for streamflow pre-
diction by Wani et al. (2017) and showed reasonable perfor-
mance.

SCMAL can be considered to be a global model
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B2 Model intercomparison — results

Table B1 shows the evaluation of the different models.
CMAL, closely followed by HopCPT, provides the best cov-
erage at all coverage levels. While HopCPT with the model
states and input reaches the most efficient — i.e., smallest —
prediction intervals, CMAL performs best in terms of the
Winkler score. This is slightly surprising, given that the Win-
kler score encompasses the coverage and PI width. However,
the fact that Winkler score additionally considers the distance
of the uncovered test samples leads us to the hypothesis that
CMAL, as it is optimized to maximize the likelihood of all
samples, results in smaller distances in that regard. In con-
trast, HopCPT and Bluecat do not consider the uncovered
samples in optimization and calibration. The comparison be-
tween the HopCPT evaluations with different input features
shows that adding the model states as inputs enhances the
efficiency of HopCPT while keeping an approximate cover-
age, which results in an overall lower Winkler score. A more
detailed analysis of the effect of different input modalities is
given in Appendix F. The best variant of Bluecat falls behind
HopCPT and CMAL in all three metrics. The KNN model,
as a naive similarity measure baseline, also results in high
under-coverage when considering the model states. This re-
inforces the motivation for a learned similarity measure, as
already mentioned in the original HopCPT paper.

Regarding individual basin analysis, Fig. Bl gives more
detailed insights into how the metrics are distributed around
the individual basins. CMAL, which archives the best overall
coverage, does not provide better coverage for all basins, but
the high mean is driven by the higher over-coverage of the
upper half of basins. This aligns with the analysis in Klotz
et al. (2022). Overall, the coverage distribution of HopCPT is
more centered around zero and better bounds the lowest cov-
erage. As the cumulative distribution plot in Fig. B2 shows,
for the 50 basins with the worst coverage (approximately
10% of all basins), HopCPT without model states performs
best, and the worst coverage is best for HopCPT (no matter
if it is with or without model states). The distribution of the
PI width (Fig. B3) is similar for all models; however, the ef-
ficiency advantage of HopCPT is most pronounced for the
basins with larger prediction intervals.
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Table B1. Performance of the evaluated models for the mis-coverage levels o« = {0.05,0.10, 0.15}. The values represent the average over all
basins. Bold numbers correspond to the best result for the respective metric in the experiment (PI width and Winkler score), given that A Cov
< —a, i.e., given that the specific algorithm reached reasonable coverage (the result are displayed in italics otherwise); the significance is
tested with a Mann—Whitney U test at p < 0.005. The values in parentheses represent the standard deviation over the different seeds (results
without these are from deterministic models).

« 0.05 \ 0.10 \ 0.15
ACov Plwidth Winkler | ACov Plwidth Winkler | A Cov PIwidth Winkler
HopCPT —0.005 2.88 1.21 | —0.011 2.15 0.94 | —0.017 1.75 0.80
(0.002)  (0.09)  (0.02) | (0.003)  (0.06)  (0.01) | (0.003)  (0.05)  (0.01)
HopCPT -0.017 1.92 1.02 | —0.029 1.44 0.78 | —0.039 117 0.66
(model states) ~ (0.003)  (0.06)  (0.02) | (0.004)  (0.05)  (0.01) | (0.005)  (0.04)  (0.01)
Bluecat’ —.050 2.72 1.19 | —0.057 2.00 0.90 | —0.061 1.63 0.76
(M = 100)
kNN —.176 1.95 184 | —.202 1.47 126 | —.215 119 101
(YHa)
kNN —.193 1.37 174 | —.219 1.04 115 | —231 0.85 0.90
(model states)
CMAL —0.004 2.40 0.78 | —0.004 1.89 0.63 | —0.006 1.60 0.55
(0.004)  (0.06)  (0.01) | (0.008)  (0.05)  (0.01) | (0.0I1)  (0.04)  (0.01)

a = 0.05 , a=0.10
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Figure B1. CDF and PDF of A Cov over individual basins for models with approximate average coverage (A Cov < —a«), as evaluated in
Appendix B.
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a=0.15

——

-0.2 0 -0.6 -0.4 -0.2 0

A Cov A Cov
—— HopCPT (Model states)

——— Bluecat’ (M=100) --- CMAL

Figure B2. CDF of A Cov over the 50 basins with the highest mis-coverage for models with approximate average coverage (A Cov < —a),

as evaluated in Appendix B.
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Figure B3. CDF and PDF of PI width over individual basins for models with approximate average coverage (A Cov < —a), as evaluated in

Appendix B.

Appendix C: Bluecat

Similarly to HopCPT, the hydrological uncertainty estima-
tion approach Bluecat (Koutsoyiannis and Montanari, 2022)
aims to provide a prediction interval given a point predic-
tion model and a set of data points (calibration data). Bluecat
first evaluates the calibration data. Then, for a new predic-
tion point, the calibration point with the most similar model
prediction and all points within a certain distance to this
point are considered. This can be seen as a special form of
kNN where (1) the distance metric between two points is the
distance of the model predictions and where (2) not only k
points but all points within a certain distance threshold are
considered (Rozos et al., 2022). Given this set of selected
calibration points, similarly to the CP framework, the spec-
ified quantiles are calculated and provide the bounds of the
confidence band.
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C1 The CP perspective on Bluecat (Bluecat’)

Viewing Bluecat through a CP lens suggests a relatively low-
effort improvement in the form of the introduction of a cal-
ibration set for the interval prediction. Bluecat only uses the
training data of the prediction model to determine the pre-
diction interval; i.e., prediction training data equate to cali-
bration data. However, the CP literature suggests that an in-
dependent calibration set can give a more unbiased estimate
since prediction models can easily overfit training data (and,
as a result, the prediction intervals might be overly optimistic
and therefore might not fulfill the specified coverage crite-
rion). We refer to this adaptation as Bluecat’ throughout the

paper.
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We evaluate Bluecat once as originally proposed (Bluecat)
and once with the adaption (Bluecat’). Bluecat requires set-
ting the hyperparameter M, which controls how many close
data points are considered. In the original publication, there
is no clear guidance on how to select the parameter for new
datasets, which is why we evaluate two variations: (1) tuning
the hyperparameters with the same model selection criteria
as in HopCPT (resulting in M = 225) and (2) using the hy-
perparameter value from the original publication (M = 100).

C2 Bluecat — results

Table C1 shows the results of the comparison. The adapta-
tion Bluecat® achieves considerably improved coverage. The
lower Winkler scores further indicate the overall better per-
formance of Bluecat’. These results support the hypothesis
that Bluecat intervals are overly optimistic since they are
based on the — most likely overfitted — training-data predic-
tions of the prediction model. Further, the hyperparameter-
tuned versions (M = 225) of both Bluecat variants enhance
the coverage of the models at the cost of lower interval effi-
ciency. This makes sense as the model selection favors mod-
els with better coverage as long as no model fully achieves
the specified coverage.

4115

Table C1. Performance of the evaluated Bluecat variants for the mis-coverage levels o = {0.05,0.10, 0.15}. The values represent the average
over all basins. Bold numbers correspond to the best result for the respective metric in the experiment (PI width and Winkler score). As

Bluecat is deterministic, no standard deviation is given.

a 0.05 \

0.10

0.15

ACov  Plwidth Winkler | A Cov

Pl width ~ Winkler | A Cov

PI width  Winkler

Bluecat —0.092  2.09 151 | —0.112  1.55 1.06 | —0.122  1.26 0.86
(M = 100)

Bluecat —0.071 222 1.55 | —0.091 1.60 .10 | —0.102  1.28 0.89
(M = 225)

Bluecat’ —0.050 272 119 | —0.057  2.00 090 | —0.061 1.63 0.76
(M = 100) ,

Bluecat’ —0.028  2.88 124 | —0.035  2.06 093 | —0.039  1.64 0.78
(M = 225)
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Appendix D: HopCPT - training

Auer et al. (2023) propose a gradient-based learning proce-
dure that utilizes a loss function that is based on the mean
squared error (MSE). The specific loss function £ is defined
as follows:

L=T""||(ler.r| — Arrarlerr)?1 (D1)

where Aj.r.1.r is a matrix representing the association
weights between each pair of time steps in a time series with
T points.6 The diagonal elements of Aj.7 1.7, which corre-
spond to the weights from a time step in relation to itself, are
set to zero (masked out). 1.7 is a vector of the prediction er-
ror of the T points. For HopCPT-G, we propose an adapted
version of this loss (see Sect. 2.2.2).

Appendix E: HopCPT, modern Hopfield networks, and
transformer attention

HopCPT employs a modern Hopfield network (MHN) to re-
trieve similar calibration points. MHNs are closely related
to transformers (Vaswani et al., 2017) through their asso-
ciation and attention mechanisms. In fact, Ramsauer et al.
(2021) show that the transformer attention is a special case
of the MHN association, at which we arrive when the queries
and keys are mapped in a certain way and given a spe-
cific inverse softmax temperature. However, the framework
of MHN highlights the associative memory mechanism as
HopCPT directly ingests encoded observations. This associa-
tive mechanism allows HopCPT to retrieve error information
from situations that are similar to the given one. In the global
variant (HopCPT-G), this even allows us to draw from the
error information of different basins. MHNSs further have the
advantageous properties of exponential storage capacity and
one-step update retrieval (Ramsauer et al., 2021).

Appendix F: Input information

This section assesses how different HopCPT inputs affect its
performance. The experiment compares all combinations of
the three potential feature components: time series covari-
ates (X), model prediction (YHat), and model state. We use
an LSTM prediction model. Hence, the model state refers to
the two internal state vectors of the LSTM, which are up-
dated in each new step and are — together with the current
input — the basis for the output of the model. Specifically,
we consider the state vectors right after the prediction since
these states already consider the current input features. We
tuned hyperparameters individually for each feature set com-
bination. Additionally, we analyze results where we include
the lagged target (Y) as a feature, as in the original HopCPT

paper.

6Only the calibration data are used.
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Table F1 shows the performance of HopCPT with the dif-
ferent input feature configurations. Interestingly, only using
the time series covariates results in the best coverage. How-
ever, the prediction intervals in these settings are rather large,
which is also reflected in notably higher Winkler scores.
Therefore, we argue that using the model states as input fea-
tures is indeed beneficial. This argument is further strength-
ened by the results in Sect. 4.1, where we see that the cov-
erage loss is likely due to distribution shifts. Accounting
for this shift by updating the memory leads to almost per-
fect coverage for the model state setting and unnecessary
over-coverage in the covariate-only setting. Adding both the
model prediction and the model state provides additional in-
formation. The model state does not only include information
about the current covariates but also includes history infor-
mation due to the recursive nature of the LSTM. The model
prediction, on the other hand, can be seen as a projection of
the model state where some relevant information could be
lost. Extending the model state with additional inputs hardly
changes the performance of HopCPT, which supports the hy-
pothesis that the model state already includes the vast major-
ity of the required information.

Table F2 shows the results when the lagged target variable
is included in the feature set, as done in the original work
Auer et al. (2023). Note that this is typically not feasible in
streamflow prediction. However, to show how this affects the
performance, we also evaluated these input combinations as
such inclusion is possible in the lab setting.
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Table F1. HopCPT performance of the evaluated input combinations for the mis-coverage levels « = {0.05,0.10, 0.15}. The values represent
the average over all basins. Bold numbers correspond to the best result for the respective metric in the experiment (PI width and Winkler
score); significance is tested with a Mann—Whitney U test at p < 0.005. The values in parentheses represent the standard deviation over the
different seeds.

« 0.05 \ 0.10 \ 0.15
ACov Plwidth Winkler | ACov Plwidth Winkler | A Cov PIwidth Winkler

X —0.003 3.50 1.61 | —0.005 2.35 1.17 | —0.007 1.80 0.96
(0.002) (0.15)  (0.02) | (0.003)  (0.10)  (0.01) | (0.005) 0.08)  (0.01)
X/YHat —0.005 2.88 121 | —0.011 2.15 0.94 | —0.017 1.75 0.80
(0.002) 0.09)  (0.02) | (0.003)  (0.06)  (0.01) | (0.003) 0.05)  (0.01)
Model states ~0.017 1.93 1.01 | —0.029 1.45 0.77 | —0.041 1.18 0.66
(0.004) 0.06)  (0.01) | (0.005)  (0.04)  (0.01) | (0.006) 0.03)  (0.00)
Model states/ -0.017 1.92 1.02 | —0.029 1.44 0.78 | —0.039 1.17 0.66
YHat (0.003) 0.06)  (0.02) | (0.004)  (0.05)  (0.01) | (0.005) 0.04)  (0.01)
X/Model states ~ —0.019 1.90 1.02 | —0.032 1.43 0.78 | —0.043 1.17 0.66
(0.003) 0.04)  (0.02) | (0.005)  (0.03)  (0.01) | (0.006) 0.03)  (0.01)
X/Model states/  —0.020 1.90 1.01 | —0.032 1.43 0.77 | —0.043 1.18 0.65
YHat (0.004) 0.05)  (0.01) | (0.005)  (0.04)  (0.01) | (0.005) 0.03)  (0.01)

Table F2. HopCPT performance with the input combinations which include the lagged target y for the mis-coverage levels o =
{0.05,0.10,0.15}. The values represent the average over all basins. Bold numbers correspond to the best result for the respective metric
in the experiment (PI width and Winkler score). The values in parentheses represent the standard deviation over the different seeds.

a 0.05 \ 0.10 \ 0.15
ACov Plwidth Winkler | ACov Plwidth Winkler | A Cov Plwidth Winkler

X/Y —0.004 2.69 1.27 | —0.007 1.92 0.96 | —0.010 1.54 0.81

(0.001) 0.05)  (0.01) | (0.003) 0.03)  (0.01) | (0.004) 0.03)  (0.01)
X/Y/YHat 011 2.75 0.96 012 2.16 0.77 .009 1.82 0.68

(0.008) 0.19)  (0.03) | (0.015) 0.14)  (0.02) | (0.019) 0.12)  (0.01)
X/Y/ —0.021 1.90 1.00 | —0.035 1.43 0.77 | —0.046 1.18 0.65
Model states  (0.003)  (0.04)  (0.01) | (0.004) 0.03)  (0.01) | (0.005) 0.02)  (0.00)
X/Y/YHat/  —0.018 1.91 1.00 | —0.030 1.44 0.76 | —0.041 1.19 0.65
Model states  (0.003) 0.06)  (0.01) | (0.004) 0.04)  (0.01) | (0.004) 0.03)  (0.00)

Appendix G: Experiment details

Each non-deterministic experiment, apart from experiments
with HopCPT-G, are repeated with 12 different seeds.
HopCPT-G experiments are repeated with eight different
seeds as the global models are computationally more de-
manding. For the latter experiments, we remove outlier runs
where the training does not converge.
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Appendix H: Hyperparameter search

We conducted a hyperparameter grid search for each model.
In the case of HopCPT, we did this individually for each
input feature set. Each hyperparameter search was repeated
with three seeds — the best average validation score was used
as the selection criterion. The validation score for the LSTM
and CMAL is the Nash—Sutcliffe efficiency (NSE) metric; for
HopCPT, Bluecat, and kNN, we followed (Auer et al., 2023)
and used the smallest PI width at an epoch with A Cov < 0.
To limit the number of grid search combinations for the
LSTM and CMAL models, we split the hyperparameter into
two sets which were tuned sequentially. The second set was
trained given the result from the first set. Table H1 shows the
parameters used in the hyperparameter search for the LSTM,
CMAL, HopCPT, and HopCPT-G models. For Bluecat, we
evaluated for M = {25, 50, 75, 100, 125, 150, 200}. For KNN,
we varied the share kg of samples, which defines the k param-
eter (i.e., k = k; - number of memory samples) and evaluated
for k; = {0.025,0.05,0.1,0.15,0.2,0.25, 0.3, 0.35}.

Table H1. Parameters used in the hyperparameter search.

Model Parameter Values
hidden size 60, 125, 250, 500
output dropout 0.4,0.5

Set 1 .

CMAL target noise 0.05,0.1,0.2

no. of distributions 1,3,5,10

Set 2 batch size 256, 512

learning rate 0.0005, 0.0001, 0.001

hidden size 60, 125, 250, 500

Set 1  output dropout 04,05

LSTM target noise 0.05,0.1,0.2
Set 2 batch size 256,512

learning rate 0.0005, 0.0001, 0.001

learning rate 0.001,0.001

encode hidden layer 1,2,3

HopCPT encode dropout 0,0.1
temporal encoding yes, no
learning rate 0.001,0.001

HopCPT-G encode hidden layer 0,1,2,3
encode dropout 0,0.1

Appendix I: Point prediction metrics

Table I1 shows the point prediction performance of LSTM
and CMAL for Experiment II-b. The performance for the
PUB prediction setting (Experiment II-b) is presented in
Table 12. As in Klotz et al. (2022), CMAL outperforms
the LSTM slightly. This could imply an advantage for the
interval prediction. However, this is justifiable considering
CMAL’s greater volume of training data due to the fact that
it does not need any calibration data.
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Table I1. Point prediction metrics for Experiment I and Experiment
II-a. NSE: Nash-Sutcliffe efficiency (—oo, 1] — high values are bet-
ter. MSE: mean squared error — low values are better. KGE: Kling—
Gupta efficiency (—oo, 1] — high values are better. The variability
of the metrics over the different basins and seeds is provided in the
form of the standard deviation for the mean aggregation and in the
form of the interquartile range (IQR) for the median aggregation.

LSTM CMAL

Mean 0717 0716

NSE 0.297)  (0.385)
. 0754  0.790

Median 4300 (0.157)

Mean 2363 2293

MSE (3.63)  (5.025)
. 1257 0.996

Median 955)  (1.769)

Mean 0754  0.733

KGE 0.254)  (0.215)
. 0817  0.786

Median 140y (0.168)

Table 12. Point prediction metrics Experiment I and Experiment
II-a (PUB). The values represent the average over all test basins
of all splits. NSE: Nash—Sutcliffe efficiency (—oo, 1] — high values
are better. MSE: mean squared error — low values are better. KGE:
Kling—Gupta efficiency (—oo, 1] — high values are better. The vari-
ability of the metrics over the different basins and seeds is provided
in the form of the standard deviation for the mean aggregation and
in the form of the interquartile range (IQR) for the median aggrega-
tion.

LSTM CMAL

Mean 0444 0472

NSE 2.111)  (2.394)
. 0703 0.690

Median 0 43)  (0.253)

Mean 3396 3.362

MSE (6.603)  (6.718)
. 1365  1.369

Median 50y (2.545)

Mean 0496  0.524

KGE (7.245)  (0.591)
. 0.654  0.638

Median —  376)  (0.280)
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Appendix J: Extended results
J1 Experiment I-b — additional shift examples

In Experiment I-b, we show an example where a shift in
the data highlights the advantages of the online mode for
HopCPT. Figure J1 and J2 show two additional examples,
both from the same basin, for different months.

J2 Experiment II-b — PUB results per fold

Table J1 shows the results of the PUB experiment for the
individual folds. The performance varies between the folds;
however, the ranking of the different models is consistent
over all folds.

Offline Online
(a) Nov 2000 (b) Nov 2004 (© Nov 2000 (d) Nov 2004
> 1.00
O
5 0.75 M '\/\r/\\_\/"‘—\_
&
2 0.50
&
Tg 025 e\~ ——anii S
S
< 0.00
t t t t

Figure J1. The real streamflow (blue), the prediction (gold), and HopCPT’s prediction interval (light gold) for a basin (ID no. 12447390) in
November 2000 and October 2004. Panels (a) and (b) show HopCPT in offline mode; panels (c) and (d) show it in online mode. The online
mode allows HopCPT to account for the distribution shift in November 2004.

Offline Online

100 (a) Jun 2000 (b) Jun 2004 (© Jun 2000 (d) Jun 2004

0.0

Normalized Streamflow
ot
(o)

t t t t

Figure J2. The real streamflow (blue), the prediction (gold), and HopCPT’s prediction interval (light gold) for a basin (ID no. 12447390) in
June 2000 and October 2004. Panels (a) and (b) show HopCPT in offline mode; panels (c) and (d) show it in online mode. The online mode
allows HopCPT to account for the distribution shift in June 2004.
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Table J1. PUB performance over the individual folds for the mis-coverage levels o = {0.05,0.10, 0.15}. The values represent the average
over all test basins of the respective fold. Bold numbers correspond to the best result for the respective metric in the experiment (PI width
and Winkler score). The values in parentheses represent the standard deviation over the different seeds.

a 0.05 \ 0.10 \ 0.15
ACov Plwidth Winkler | ACov Plwidth Winkler | ACov PIwidth Winkler

HopCPT-G = —0.035 2.21 1.59 | —0.048 1.62 1.17 | —0.056 1.32 0.96

(0.003) (0.03) (0.04) | (0.005) (0.03) (0.02) | (0.005) (0.02) (0.02)

Fold1 HopCPT-G .000 3.13 1.23 | —0.008 2.34 0.97 | —0.018 1.92 0.84
(PUB train)  (0.006) (0.25) (0.03) | (0.009) (0.20) (0.02) | (0.012) (0.17) (0.01)

CMAL —0.097 2.37 1.10 | —0.125 1.86 0.87 | —0.140 1.57 0.76

(0.030) (0.15) (0.04) | (0.039) (0.12) (0.03) | (0.043) (0.11) (0.02)

HopCPT-G =~ —0.052 2.13 2.06 | —0.064 1.52 1.43 | —0.068 1.22 1.14

(0.005) (0.05) (0.04) | (0.006) (0.04) (0.02) | (0.008) (0.03) (0.01)

Fold2 HopCPT-G  —0.020 2.75 1.48 | —0.034 2.08 1.13 | —0.049 1.71 0.96
(PUB train)  (0.011) (0.24) (0.10) | (0.015) (0.17) (0.05) | (0.015) (0.14) (0.03)

CMAL —0.179 2.36 1.31 | —0.218 1.85 1.00 | —0.232 1.55 0.85

(0.026) (0.20) (0.12) | (0.027) (0.16) (0.07) | (0.028) (0.13) (0.05)

HopCPT-G ~ —0.050 1.95 1.39 | —0.072 1.41 1.02 | —0.089 1.13 0.84

(0.004) (0.04) (0.02) | (0.006) (0.03) (0.01) | (0.008) (0.03) (0.01)

Fold3 HopCPT-G  —0.011 2.53 1.16 | —0.020 1.92 0.88 | —0.032 1.58 0.74
(PUB train)  (0.002) (0.12) (0.02) | (0.003) (0.10) (0.01) | (0.007) (0.08) (0.01)

CMAL —0.121 1.98 0.90 | —0.155 1.55 0.71 | —0.170 1.30 0.62

(0.019) (0.14) (0.06) | (0.019) (0.11) (0.04) | (0.018) (0.10) (0.03)

HopCPT-G = —0.030 2.18 1.47 | —0.042 1.58 1.08 | —0.050 1.27 0.90

(0.005) (0.04) (0.02) | (0.007) (0.03) (0.01) | (0.008) (0.02) (0.01)

Fold4 HopCPT-G  —0.002 2.74 1.18 | —0.005 2.11 0.92 | —0.008 1.76 0.78
(PUB train)  (0.008) (0.23) (0.06) | (0.013) (0.18) (0.03) | (0.015) (0.15) (0.02)

CMAL —0.090 2.47 1.05 | —0.119 1.94 0.82 | —0.135 1.63 0.71

(0.011) (0.18) (0.05) | (0.015) (0.14) (0.03) | (0.018) (0.12) (0.03)

HopCPT-G  —0.079 2.34 2.59 | —0.106 1.72 1.82 | —0.119 1.39 1.46

(0.002) (0.04) (0.05) | (0.004) (0.02) (0.02) | (0.005) (0.02) (0.01)

Fold5 HopCPT-G  —0.035 3.32 1.79 | —0.057 2.51 1.41 | —0.073 2.07 1.20
(PUB train)  (0.006) (0.09) (0.08) | (0.010) (0.07) (0.05) | (0.011) (0.06) (0.03)

CMAL —0.128 2.92 1.58 | —0.170 2.30 1.26 | —0.189 1.94 1.09

(0.032) 0.27) (0.13) | (0.040) (0.20) (0.10) | (0.044) (0.17) (0.09)
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Table J1. Continued.

o 0.05 \ 0.10 \ 0.15
A Cov Plwidth Winkler ‘ A Cov Plwidth Winkler ‘ A Cov Plwidth Winkler

HopCPT-G  —0.050 225 1.58 | —0.078 1.66 1.19 | —0.093 1.34 1.00

0.005)  (0.03)  (0.03) | (0.006) 0.03)  (0.02) | (0.007) 0.03)  (0.01)

Fold6  HopCPT-G .004 3.18 1.28 | —0.007 2.41 1.01 | —0.020 1.99 0.87
(PUB train)  (0.011)  (0.32)  (0.04) | (0.016) 0.24)  (0.03) | (0.018) 0.19)  (0.02)

CMAL —0.103 2.55 1.18 | —0.143 2.00 0.93 | —0.161 1.68 0.81

0.021)  (0.22)  (0.07) | (0.023) 0.18)  (0.04) | (0.022) (0.15)  (0.03)

HopCPT-G  —0.050 2.15 1.77 | —0.065 1.55 127 | —0.072 1.25 1.04

0.006)  (0.04)  (0.04) | (0.006) 0.03)  (0.02) | (0.008) 0.02)  (0.01)

Fold7  HopCPT-G .000 3.14 1.34 | —0.001 2.34 1.05 | —0.001 1.91 0.90
(PUB train)  (0.011)  (0.33)  (0.08) | (0.014) 0.23)  (0.04) | (0.014) 0.18)  (0.03)

CMAL —0.105 2.46 1.17 | —0.142 1.92 0.93 | —0.163 1.62 0.81

0.018)  (0.23)  (0.07) | (0.025) 0.17)  (0.05) | (0.030) 0.14)  (0.05)

HopCPT-G  —0.046 2.15 1.66 | —0.064 1.58 122 | —0.072 1.28 1.01

0.004)  (0.04)  (0.03) | (0.005) 0.03)  (0.02) | (0.005) 0.02)  (0.01)

Fold8  HopCPT-G  —0.002 3.13 134 | —0.010 2.38 1.04 | —0.020 1.97 0.89
(PUB train)  (0.007)  (0.22)  (0.03) | (0.007) 0.17)  (0.01) | (0.010) 0.14)  (0.01)

CMAL —0.123 2.38 1.18 | —0.161 1.87 0.94 | —0.180 1.57 0.82

0.024)  (0.09)  (0.03) | (0.024) 0.08)  (0.03) | (0.023) 0.07)  (0.03)

HopCPT-G  —0.047 2.09 1.71 | —0.060 1.53 1.23 | —0.065 1.23 1.00

0.006)  (0.07)  (0.08) | (0.006) 0.05)  (0.04) | (0.006) 0.05)  (0.03)

Fold9  HopCPT-G .007 2.92 1.25 .004 221 0.97 | —0.002 1.82 0.83
(PUB train)  (0.008)  (0.15)  (0.04) | (0.017) 0.12)  (0.02) | (0.023) 0.10)  (0.02)

CMAL —0.122 2.34 1.15 | —0.162 1.82 0.90 | —0.178 1.53 0.77

0.031)  (0.17)  (0.05 | (0.034) (0.13)  (0.03) | (0.033) 0.11)  (0.02)

HopCPT-G  —0.079 2.10 1.96 | —0.100 1.55 1.39 | —0.109 1.26 1.13

0.007)  (0.07)  (0.08) | (0.010) 0.06)  (0.04) | (0.012) 0.05)  (0.03)

Fold 10 HopCPT-G  —0.020 3.18 1.42 | —0.035 2.41 1.12 | —0.047 1.99 0.96
(PUB train)  (0.011)  (0.18)  (0.03) | (0.012) 0.13)  (0.02) | (0.014) 0.11)  (0.01)

CMAL —0.127 2.62 124 | —0.157 2.06 0.96 | —0.168 1.74 0.82

0.031) (0200  (0.05) | (0.031) 0.16)  (0.04) | (0.030) 0.13)  (0.04)

J3 Experiment III — additional peak-flow evaluations

Figure J3 shows the peak-flow results for HopCPT with
different memory update frequencies (see Experiment I-b).
The coverage difference between different update frequen-
cies does not notably change when only peak flows are con-
sidered. Figure J4 presents the peak-flow results for the PUB
setting (see Experiment II-b). Similarly, as in the gauged-
basin setting, the PUB training improves the coverage of
HopCPT notably. CMAL coverage is rather constant over the
different peak-flow shares.
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Figure J3. Evaluation metrics for high flows with a varying share of considered time steps. The different runs represent different update

frequencies (setting of Experiment I-b).
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Code and data availability. The code repository is available
at  https://doi.org/10.5281/zenodo.10674231  (Auer, 2024a).
The trained base model (LSTM) and the utilized model
states, as well as the global HopCPT models, are available
at  https://doi.org/10.5281/zenodo.10653863  (Auer, 2024b).
The trained CMAL models for the non-PUB experiments are
available at https://doi.org/10.5281/zenodo.10654345  (Auer,
2024c), and the CMAL models for the PUB experiments

are  available at  https://doi.org/10.5281/zenodo.10654399
(Auer, 2024d). The data for CAMELS can be ac-
cessed for free on the NCAR’s official website (https:

//gdex.ucar.edu/dataset/camels/file.html, Addor et al., 2017b).
The expanded Maurer forcings, which include data on daily min-
imum and maximum temperatures, are available for download at
https://doi.org/10.4211/hs.17¢896843cf940339¢3¢c3496d0c1c077
(Kratzert, 2019).
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