Articles | Volume 27, issue 21
https://doi.org/10.5194/hess-27-3851-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-3851-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Benefits of a robotic chamber system for determining evapotranspiration in an erosion-affected, heterogeneous cropland
Isotope Biogeochemistry and Gas Fluxes, Leibniz Centre for Agricultural Landscape Research, 15374 Müncheberg, Germany
Mathias Hoffmann
Isotope Biogeochemistry and Gas Fluxes, Leibniz Centre for Agricultural Landscape Research, 15374 Müncheberg, Germany
Gernot Verch
Experimental Infrastructure Platform (EIP), Leibniz Centre for Agricultural and Landscape Research, 17291 Prenzlau, Germany
Marten Schmidt
Isotope Biogeochemistry and Gas Fluxes, Leibniz Centre for Agricultural Landscape Research, 15374 Müncheberg, Germany
Michael Sommer
Landscape Pedology, Leibniz Centre for Agricultural Landscape Research, 15374 Müncheberg, Germany
Institute of Geography and Environmental Science, University of Potsdam, 14476 Potsdam, Germany
Jürgen Augustin
Isotope Biogeochemistry and Gas Fluxes, Leibniz Centre for Agricultural Landscape Research, 15374 Müncheberg, Germany
Maren Dubbert
Isotope Biogeochemistry and Gas Fluxes, Leibniz Centre for Agricultural Landscape Research, 15374 Müncheberg, Germany
Related authors
Adrian Dahlmann, John D. Marshall, David Dubbert, Mathias Hoffmann, and Maren Dubbert
Atmos. Meas. Tech., 18, 2607–2618, https://doi.org/10.5194/amt-18-2607-2025, https://doi.org/10.5194/amt-18-2607-2025, 2025
Short summary
Short summary
Water-stable isotopes are commonly used in hydrological and ecological research. Until now, measurements have been obtained either destructively or directly in the field. Here, we present a novel, affordable, and easy-to-use approach to measure the stable isotope signatures of soil water. Our gas bag approach demonstrates a high accuracy and extends usability by allowing water vapor samples to be collected and stored in the field without the need for an instrument or a permanent power supply.
Adrian Dahlmann, John D. Marshall, David Dubbert, Mathias Hoffmann, and Maren Dubbert
Atmos. Meas. Tech., 18, 2607–2618, https://doi.org/10.5194/amt-18-2607-2025, https://doi.org/10.5194/amt-18-2607-2025, 2025
Short summary
Short summary
Water-stable isotopes are commonly used in hydrological and ecological research. Until now, measurements have been obtained either destructively or directly in the field. Here, we present a novel, affordable, and easy-to-use approach to measure the stable isotope signatures of soil water. Our gas bag approach demonstrates a high accuracy and extends usability by allowing water vapor samples to be collected and stored in the field without the need for an instrument or a permanent power supply.
Mélissa Laurent, Mackenzie R. Baysinger, Jörg Schaller, Matthias Lück, Mathias Hoffmann, Torben Windirsch, Ruth H. Ellerbrock, Jens Strauss, and Claire C. Treat
EGUsphere, https://doi.org/10.5194/egusphere-2025-1792, https://doi.org/10.5194/egusphere-2025-1792, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Palsas are peat permafrost mounds underlain by ice-rich permafrost. Due to climate change, they could disappeare by the end of the century. When palsas thaw, changes occur in hydrological conditions affecting the carbon (C) cycle. In our study, we simulated permafrost thaw under different water treatments using 1-meter soil columns from a palsa. We measured CH4 and CO2 emissions for 3-month incubation. Our results show that following thaw, flooding the cores leads to increased CO2 emissions.
Luis Alfredo Pires Barbosa, Martin Leue, Marc Wehrhan, and Michael Sommer
EGUsphere, https://doi.org/10.5194/egusphere-2025-746, https://doi.org/10.5194/egusphere-2025-746, 2025
Short summary
Short summary
Healthy soils need plant biomass, especially roots, to function properly. Our study examined how different wheat varieties and soil erosion impact root growth and carbon storage. We found that tillage erosion significantly reduced total wheat biomass, while newer wheat varieties produced more grain but contributed less carbon to the soil. Simulations showed that modern varieties are more sensitive to dry conditions, highlighting a trade-off between higher yields and long-term soil health.
Wael Al Hamwi, Maren Dubbert, Jörg Schaller, Matthias Lück, Marten Schmidt, and Mathias Hoffmann
Biogeosciences, 21, 5639–5651, https://doi.org/10.5194/bg-21-5639-2024, https://doi.org/10.5194/bg-21-5639-2024, 2024
Short summary
Short summary
We present a fully automatic, low-cost soil–plant enclosure system to monitor CO2 and evapotranspiration fluxes within greenhouse experiments. It operates in two modes: independent, using low-cost sensors, and dependent, where multiple chambers connect to a single gas analyzer via a low-cost multiplexer. This system provides precise, accurate measurements and high temporal resolution, enabling comprehensive monitoring of plant–soil responses to various treatments and conditions.
Marco M. Lehmann, Josie Geris, Ilja van Meerveld, Daniele Penna, Youri Rothfuss, Matteo Verdone, Pertti Ala-Aho, Matyas Arvai, Alise Babre, Philippe Balandier, Fabian Bernhard, Lukrecija Butorac, Simon Damien Carrière, Natalie C. Ceperley, Zuosinan Chen, Alicia Correa, Haoyu Diao, David Dubbert, Maren Dubbert, Fabio Ercoli, Marius G. Floriancic, Teresa E. Gimeno, Damien Gounelle, Frank Hagedorn, Christophe Hissler, Frédéric Huneau, Alberto Iraheta, Tamara Jakovljević, Nerantzis Kazakis, Zoltan Kern, Karl Knaebel, Johannes Kobler, Jiří Kocum, Charlotte Koeber, Gerbrand Koren, Angelika Kübert, Dawid Kupka, Samuel Le Gall, Aleksi Lehtonen, Thomas Leydier, Philippe Malagoli, Francesca Sofia Manca di Villahermosa, Chiara Marchina, Núria Martínez-Carreras, Nicolas Martin-StPaul, Hannu Marttila, Aline Meyer Oliveira, Gaël Monvoisin, Natalie Orlowski, Kadi Palmik-Das, Aurel Persoiu, Andrei Popa, Egor Prikaziuk, Cécile Quantin, Katja T. Rinne-Garmston, Clara Rohde, Martin Sanda, Matthias Saurer, Daniel Schulz, Michael Paul Stockinger, Christine Stumpp, Jean-Stéphane Venisse, Lukas Vlcek, Stylianos Voudouris, Björn Weeser, Mark E. Wilkinson, Giulia Zuecco, and Katrin Meusburger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-409, https://doi.org/10.5194/essd-2024-409, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
This study describes a unique large-scale isotope dataset to study water dynamics in European forests. Researchers collected data from 40 beech and spruce forest sites in spring and summer 2023, using a standardized method to ensure consistency. The results show that water sources for trees change between seasons and vary by tree species. This large dataset offers valuable information for understanding plant water use, improving ecohydrological models, and mapping water cycles across Europe.
Reena Macagga, Michael Asante, Geoffroy Sossa, Danica Antonijević, Maren Dubbert, and Mathias Hoffmann
Atmos. Meas. Tech., 17, 1317–1332, https://doi.org/10.5194/amt-17-1317-2024, https://doi.org/10.5194/amt-17-1317-2024, 2024
Short summary
Short summary
Using only low-cost microcontrollers and sensors, we constructed a measurement device to accurately and precisely obtain atmospheric carbon dioxide and water fluxes. The device was tested against known concentration increases and high-cost, commercial sensors during a laboratory and field experiment. We additionally tested the device over a longer period in a field study in Ghana during which the net ecosystem carbon balance and water use efficiency of maize cultivation were studied.
Peter Stimmler, Mathias Goeckede, Bo Elberling, Susan Natali, Peter Kuhry, Nia Perron, Fabrice Lacroix, Gustaf Hugelius, Oliver Sonnentag, Jens Strauss, Christina Minions, Michael Sommer, and Jörg Schaller
Earth Syst. Sci. Data, 15, 1059–1075, https://doi.org/10.5194/essd-15-1059-2023, https://doi.org/10.5194/essd-15-1059-2023, 2023
Short summary
Short summary
Arctic soils store large amounts of carbon and nutrients. The availability of nutrients, such as silicon, calcium, iron, aluminum, phosphorus, and amorphous silica, is crucial to understand future carbon fluxes in the Arctic. Here, we provide, for the first time, a unique dataset of the availability of the abovementioned nutrients for the different soil layers, including the currently frozen permafrost layer. We relate these data to several geographical and geological parameters.
Aaron Smith, Doerthe Tetzlaff, Jessica Landgraf, Maren Dubbert, and Chris Soulsby
Biogeosciences, 19, 2465–2485, https://doi.org/10.5194/bg-19-2465-2022, https://doi.org/10.5194/bg-19-2465-2022, 2022
Short summary
Short summary
This research utilizes high-spatiotemporal-resolution soil and vegetation measurements, including water stable isotopes, within an ecohydrological model to partition water flux dynamics and identify flow paths and durations. Results showed high vegetation water use and high spatiotemporal dynamics of vegetation water source and vegetation isotopes. The evaluation of these dynamics further revealed relatively fast flow paths through both shallow soil and vegetation.
Jessica Landgraf, Dörthe Tetzlaff, Maren Dubbert, David Dubbert, Aaron Smith, and Chris Soulsby
Hydrol. Earth Syst. Sci., 26, 2073–2092, https://doi.org/10.5194/hess-26-2073-2022, https://doi.org/10.5194/hess-26-2073-2022, 2022
Short summary
Short summary
Using water stable isotopes, we studied from which water source (lake water, stream water, groundwater, or soil water) two willows were taking their water. We monitored the environmental conditions (e.g. air temperature and soil moisture) and the behaviour of the trees (water flow in the stem). We found that the most likely water sources of the willows were the upper soil layers but that there were seasonal dynamics.
Marc Wehrhan, Daniel Puppe, Danuta Kaczorek, and Michael Sommer
Biogeosciences, 18, 5163–5183, https://doi.org/10.5194/bg-18-5163-2021, https://doi.org/10.5194/bg-18-5163-2021, 2021
Short summary
Short summary
UAS remote sensing provides a promising tool for new insights into Si biogeochemistry at catchment scale. Our study on an artificial catchment shows surprisingly high silicon stocks in the biomass of two grass species (C. epigejos, 7 g m−2; P. australis, 27 g m−2). The distribution of initial sediment properties (clay, Tiron-extractable Si, nitrogen, plant-available potassium) controlled the spatial distribution of C. epigejos. Soil wetness determined the occurrence of P. australis.
Youri Rothfuss, Maria Quade, Nicolas Brüggemann, Alexander Graf, Harry Vereecken, and Maren Dubbert
Biogeosciences, 18, 3701–3732, https://doi.org/10.5194/bg-18-3701-2021, https://doi.org/10.5194/bg-18-3701-2021, 2021
Short summary
Short summary
The partitioning of evapotranspiration into evaporation from soil and transpiration from plants is crucial for a wide range of parties, from farmers to policymakers. In this work, we focus on a particular partitioning method, based on the stable isotopic analysis of water. In particular, we aim at highlighting the challenges that this method is currently facing and, in light of recent methodological developments, propose ways forward for the isotopic-partitioning community.
Daniel A. Frick, Rainer Remus, Michael Sommer, Jürgen Augustin, Danuta Kaczorek, and Friedhelm von Blanckenburg
Biogeosciences, 17, 6475–6490, https://doi.org/10.5194/bg-17-6475-2020, https://doi.org/10.5194/bg-17-6475-2020, 2020
Short summary
Short summary
Silicon is taken up by some plants to increase structural stability and to develop stress resistance and is rejected by others. To explore the underlying mechanisms, we used the stable isotopes of silicon that shift in their relative abundance depending on the biochemical transformation involved. On species with a rejective (tomato, mustard) and active (wheat) uptake mechanism, grown in hydroculture, we found that the transport of silicic acid is controlled by the precipitation of biogenic opal.
Florian Wilken, Michael Ketterer, Sylvia Koszinski, Michael Sommer, and Peter Fiener
SOIL, 6, 549–564, https://doi.org/10.5194/soil-6-549-2020, https://doi.org/10.5194/soil-6-549-2020, 2020
Short summary
Short summary
Soil redistribution by water and tillage erosion processes on arable land is a major threat to sustainable use of soil resources. We unravel the role of tillage and water erosion from fallout radionuclide (239+240Pu) activities in a ground moraine landscape. Our results show that tillage erosion dominates soil redistribution processes and has a major impact on the hydrological and sedimentological connectivity, which started before the onset of highly mechanised farming since the 1960s.
Matthias Beyer, Kathrin Kühnhammer, and Maren Dubbert
Hydrol. Earth Syst. Sci., 24, 4413–4440, https://doi.org/10.5194/hess-24-4413-2020, https://doi.org/10.5194/hess-24-4413-2020, 2020
Short summary
Short summary
Water isotopes are a scientific tool that can be used to identify sources of water and answer questions such as
From which soil depths do plants take up water?, which are highly relevant under changing climatic conditions. In the past, the measurement of water isotopes required tremendous effort. In the last decade methods have advanced and can now be applied in the field. Herein, we review the current status of direct field measurements of water isotopes and discuss future applications.
Cited articles
Abudu, S., Bawazir, A. S., and King, J. P.: Infilling Missing Daily Evapotranspiration Data Using Neural Networks, J. Irrig. Drain Eng., 136, 317–325, https://doi.org/10.1061/(ASCE)IR.1943-4774.0000197, 2010.
Al-Kaisi, M. M. and Grote, J. B.: Cropping Systems Effects on Improving Soil Carbon Stocks of Exposed Subsoil, Soil Sci. Soc. Am. J., 71, 1381–1388, https://doi.org/10.2136/sssaj2006.0200, 2007.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M. (Eds.): Crop evapotranspiration: Guidelines for computing crop water requirements, Irrig. Drain. Paper 56, FAO, Rome, Italy, 300 pp., ISBN 92-5-104219-5, 1998.
Amt für Statistik Berlin-Brandenburg: Ernteberichterstattung über Feldfrüchte und Grünland im Land Brandenburg 2019, https://www.statistik-berlin-brandenburg.de/ (last access: 18 August 2022), 2022.
Anapalli, S. S., Fisher, D. K., Reddy, K. N., Wagle, P., Gowda, P. H., and Sui, R.: Quantifying soybean evapotranspiration using an eddy covariance approach, Agr. Water Manage., 209, 228–239, https://doi.org/10.1016/j.agwat.2018.07.023, 2018.
Antonijević, D., Hoffmann, M., Prochnow, A., Krabbe, K., Weituschat, M., Couwenberg, J., Ehlert, S., and Augustin, J.: The unexpected long period of elevated CH4 emissions from an inundated fen meadow ended only with the occurrence of cattail (Typha latifolia), Global Change Boil., 29, 3678–3691, https://doi.org/10.1111/gcb.16713, 2023.
Arriaga, F. J. and Lowery, B.: Corn production on an eroded soil: effects of total rainfall and soil water storage, Soil Till. Res., 71, 87–93, https://doi.org/10.1016/S0167-1987(03)00040-0, 2003.
Bakker, M. M., Govers, G., Jones, R. A., and Rounsevell, M. D. A.: The Effect of Soil Erosion on Europe's Crop Yields, Ecosystems, 10, 1209–1219, https://doi.org/10.1007/s10021-007-9090-3, 2007.
Bishop, C. M.: Neural networks for pattern recognition, Clarendon Press, Oxford, 482 pp., ISBN 9780198538646, 1995.
Blum, W. E. H.: Soil and Land Resources for Agricultural Production: General Trends and Future Scenarios-A Worldwide Perspective, Int. Soil Water Conserv. Res., 1, 1–14, https://doi.org/10.1016/S2095-6339(15)30026-5, 2013.
Boudhina, N., Zitouna-Chebbi, R., Mekki, I., Jacob, F., Ben Mechlia, N., Masmoudi, M., and Prévot, L.: Evaluating four gap-filling methods for eddy covariance measurements of evapotranspiration over hilly crop fields, Geosci. Instrum. Method. Data Syst., 7, 151–167, https://doi.org/10.5194/gi-7-151-2018, 2018.
Bundesanstalt für Gewässerkunde: 2.12 Mean Annual Potential Evaporation Depth as Grass Reference Evapotranspiration, https://geoportal.bafg.de/dokumente/had/212GrassReferenceEvapotraspiration.pdf (last access: 10 March 2023), 2023.
Chia, M. Y., Huang, Y. F., and Koo, C. H.: Support vector machine enhanced empirical reference evapotranspiration estimation with limited meteorological parameters, Comput. Electron. Agr., 175, 105577, https://doi.org/10.1016/j.compag.2020.105577, 2020.
Den Biggelaar, C., Lal, R., Wiebe, K., and Breneman, V.: The Global Impact Of Soil Erosion On Productivity: I: Absolute and Relative Erosion-induced Yield Losses, Adv. Agron., 81, 1–48, 2003.
Deseano Diaz, P. A., van Dusschoten, D., Hubert, A., Brüggemann, N., Javaux, M., Merz, S., Vanderborght, J., Vereecken, H., Dubbert, M., and Rothfuss, Y.: Response of a grassland species to dry environmental conditions from water stable isotopic monitoring: no evident shift in root water uptake to wetter soil layers, Plant Soil, 482, 491–512, https://doi.org/10.1007/s11104-022-05703-y, 2023.
Ding, J., Li, S., Wang, H., Wang, C., Zhang, Y., and Yang, D.: Estimation of Evapotranspiration and Crop Coefficient of Chinese Cabbage Using Eddy Covariance in Northwest China, Water, 13, 2781, https://doi.org/10.3390/w13192781, 2021.
Doetterl, S., Berhe, A. A., Naidu, E., Wang, Z., Sommer, M., and Fiener, P.: Erosion, deposition and soil carbon: A review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes, Earth-Sci. Rev. 154, 102–122, https://doi.org/10.1016/j.earscirev.2015.12.005, 2016.
Dubbert, M., Piayda, A., Cuntz, M., Correia, A. C., Costa e Silva, F., Pereira, J. S., and Werner, C.: Stable oxygen isotope and flux partitioning demonstrates understory of an oak savanna contributes up to half of ecosystem carbon and water exchange, Front. Plant Sci., 5, 530, https://doi.org/10.3389/fpls.2014.00530, 2014.
DWD: Klimareport Brandenburg, 1st Edn., German Weather Service, Germany, Offenbach am Main, 40 pp., ISBN 978-3-88148-518-0, 2019.
DWD: Climatological maps of Germany, https://www.dwd.de/EN/ourservices/klimakartendeutschland/klimakartendeutschland.html (last access: 10 March 2023), 2022.
Ehlers, W.: Zum Transpirationskoeffizienten von Kulturpflanzen unter Feldbedingungen, Pflanzenbauwissenschaften, 1, Verlag Eugen Ulmer GmbH & Co., Stuttgart, 97–108, 1997.
Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C., Burba, G., Ceulemans, R., Clement, R., Dolman, H., Granier, A., Gross, P., Grünwald, T., Hollinger, D., Jensen, N. O., Katul, G., Keronen, P., Kowalski, A., Lai, C. T., Law, B. E., Meyers, T., Moncrieff, J., Moors, E., Munger, J. W., Pilegaard, K., Rannik, Ü., Rebmann, C., Suyker, A. E., Tenhunen, J., Tu, K., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: Gap filling strategies for defensible annual sums of net ecosystem exchange, Agr. Forest Meteorol., 107, 43–69, https://doi.org/10.1016/S0168-1923(00)00225-2, 2001a.
Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C., Burba, G., Ceulemans, R., Clement, R., Dolman, H., Granier, A., Gross, P., Grünwald, T., Hollinger, D., Jensen, N. O., Katul, G., Keronen, P., Kowalski, A., Lai, C. T., Law, B. E., Meyers, T., Moncrieff, J., Moors, E., Munger, J. W., Pilegaard, K., Rannik, Ü., Rebmann, C., Suyker, A. E., Tenhunen, J., Tu, K., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: Gap filling strategies for long term energy flux data sets, Agr. Forest Meteorol., 107, 71–77, https://doi.org/10.1016/S0168-1923(00)00235-5, 2001b.
Feng, Q., An, C., Chen, Z., and Wang, Z.: Can deep tillage enhance carbon sequestration in soils? A meta-analysis towards GHG mitigation and sustainable agricultural management, Renew. Sustain. Energ. Rev., 133, 110293, https://doi.org/10.1016/j.rser.2020.110293, 2020.
Fohrer, N., Bormann, H., Miegel, K., Casper, M., Schumann, A., Bronstert, A., and Weiler, M.: Hydrologie, in: 1st Edn., Utb Basics, Haupt Verlag, Bern, Switzerland, 320 pp., https://doi.org/10.36198/9783838545134, 2016.
Ghiat, I., Mackey, H. R., and Al-Ansari, T.: A Review of Evapotranspiration Measurement Models, Techniques and Methods for Open and Closed Agricultural Field Applications, Water, 13, 2523, https://doi.org/10.3390/w13182523, 2021.
Görres, C.-M., Kutzbach, L., and Elsgaard, L.: Comparative modeling of annual CO2 flux of temperate peat soils under permanent grassland management, Agr. Ecosyst. Environ., 186, 64–76, https://doi.org/10.1016/j.agee.2014.01.014, 2014.
Groh, J., Diamantopoulos, E., Duan, X., Ewert, F., Herbst, M., Holbak, M., Bahareh Kamali, B., Kersebaum, K.-C., Kuhnert, M., Lischeid, G., Nendel, C., Priesack, E., Steidl, J., Sommer, M., Pütz, T., Vereecken, H., Wallor, E., Weber, T. K. D., Wegehenkel, M., Weihermüller, L., and Gerke, H. H.: Crop growth and soil water fluxes at erosion-affected arable sites: Using weighing lysimeter data for model intercomparison, Vadose Zone J., 19, e20058, https://doi.org/10.1002/vzj2.20058, 2020.
Hagan, M. T., Demuth, H. B., Beale, M., and De Jesus, O.: Neural Network Design, in: 2nd Edn., USA, 800 pp., ISBN 978-0971732117, 2014.
Hamel, P., Mchugh, I., Coutts, A., Daly, E., Beringer, J., and Fletcher, T. D.: Automated Chamber System to Measure Field Evapotranspiration Rates, J. Hydrol. Eng., 20, 04014037, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001006, 2015.
Hanks, R. J., Gardner, H. R., and Florian, R. L.: Plant Growth–Evapotranspiration Relations for Several Crops in the Central Great Plains, Agron. J., 61, 30–34, https://doi.org/10.2134/agronj1969.00021962006100010010x, 1969.
Hanson, R. L.: Evapotranspiration and droughts, US Geological Survey Water-Supply Paper, USA, National Water Summary 1988-89 2375, Hydrologic Events and Floods and Droughts, US Geological Survey, 99–104, https://doi.org/10.3133/wsp2375, 1991.
Hatfield, J. L. and Dold, C.: Water-Use Efficiency: Advances and Challenges in a Changing Climate, Front. Plant Sci., 10, 103, https://doi.org/10.3389/fpls.2019.00103, 2019.
Herbrich, M., Gerke, H. H., and Sommer, M.: Root development of winter wheat in erosion-affected soils depending on the position in a hummocky ground moraine soil landscape, J. Plant Nutr. Soil Sci., 181, 147–157, https://doi.org/10.1002/jpln.201600536, 2018.
Hoffmann, M., Jurisch, N., Albiac Borraz, E., Hagemann, U., Drösler, M., Sommer, M., and Augustin, J.: Automated modeling of ecosystem CO2 fluxes based on periodic closed chamber measurements: A standardized conceptual and practical approach, Agr. Forest Meteorol., 200, 30–45, https://doi.org/10.1016/J.AGRFORMET.2014.09.005, 2015.
Hu, Z., Yu, G., Zhou, Y., Sun, X., Li, Y., Shi, P., Wang, Y., Song, X., Zheng, Z., Zhang, L., and Li, S.: Partitioning of evapotranspiration and its controls in four grassland ecosystems: Application of a two-source model, Agr. Forest Meteorol., 149, 1410–1420, https://doi.org/10.1016/J.AGRFORMET.2009.03.014, 2009.
Hui, D., Wan, S., Su, B., Katul, G., Monson, R., and Luo, Y.: Gap-filling missing data in eddy covariance measurements using multiple imputation (MI) for annual estimations, Agr. Forest Meteorol., 121, 93–111, https://doi.org/10.1016/S0168-1923(03)00158-8, 2004.
Huth, V., Vaidya, S., Hoffmann, M., Jurisch, N., Günther, A., Gundlach, L., Hagemann, U., Elsgaard, L., and Augustin, J.: Divergent NEE balances from manual-chamber CO2 fluxes linked to different measurement and gap-filling strategies: A source for uncertainty of estimated terrestrial C sources and sinks?, J. Plant Nutr. Soil Sci., 180, 302–315, https://doi.org/10.1002/jpln.201600493, 2017.
Ichii, K., Ueyama, M., Kondo, M., Saigusa, N., Kim, J., Alberto, M. C., Ardö, J., Euskirchen, E. S., Kang, M., Hirano, T., Joiner, J., Kobayashi, H., Marchesini, L. B., Merbold, L., Miyata, A., Saitoh, T. M., Takagi, K., Varlagin, A., Bret-Harte, M. S., Kitamura, K., Kosugi, Y., Kotani, A., Kumar, K., Li, S. G., Machimura, T., Matsuura, Y., Mizoguchi, Y., Ohta, T., Mukherjee, S., Yanagi, Y., Yasuda, Y., Zhang, Y., and Zhao, F.: New data-driven estimation of terrestrial CO2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression, J. Geophys. Res.-Biogeo., 122, 767–795, https://doi.org/10.1002/2016JG003640, 2017.
Jie, C., Jing-Zhang, C., Man-Zhi, T., and Zi-Tong, G.: Soil degradation: a global problem endangering sustainable development, J. Geogr. Sci., 12, 243–252, https://doi.org/10.1007/BF02837480, 2002.
Kandel, T. P., Elsgaard, L., and Laerke, P. E.: Measurement and modelling of CO2 flux from a drained fen peatland cultivated with reed canary grass and spring barley, GCB Bioenergy, 5, 548–561, https://doi.org/10.1111/gcbb.12020, 2013.
Katerji, N., Mastrorilli, M., and Rana, G.: Water use efficiency of crops cultivated in the Mediterranean region: Review and analysis, Eur. J. Agron., 28, 493–507, https://doi.org/10.1016/j.eja.2007.12.003, 2008.
Kim, Y., Johnson, M. S., Knox, S. H., Black, T. A., Dalmagro, H. J., Kang, M., Kim, J., and Baldocchi, D.: Gap-filling approaches for eddy covariance methane fluxes: A comparison of three machine learning algorithms and a traditional method with principal component analysis, Global Change Biol., 26, 1499–1518, https://doi.org/10.1111/GCB.14845, 2020.
Kişi, O. and Çimen, M.: Evapotranspiration modelling using support vector machines/Modélisation de l'évapotranspiration à l'aide de `support vector machines', Hydrolog. Sci. J., 54, 918–928, https://doi.org/10.1623/hysj.54.5.918, 2009.
Kubat, M.: Neural networks: a comprehensive foundation by Simon Haykin, Knowl. Eng. Rev., 13, 409–412, https://doi.org/10.1017/S0269888998214044, 1999.
Kübert, A., Götz, M., Kuester, E., Piayda, A., Werner, C., Rothfuss, Y., and Dubbert, M.: Nitrogen Loading Enhances Stress Impact of Drought on a Semi-natural Temperate Grassland, Front. Plant Sci., 10, 1051, https://doi.org/10.3389/fpls.2019.01051, 2019.
Kübert, A., Paulus, S., Dahlmann, A., Werner, C., Rothfuss, Y., Orlowski, N., and Dubbert, M.: Water Stable Isotopes in Ecohydrological Field Research: Comparison Between In Situ and Destructive Monitoring Methods to Determine Soil Water Isotopic Signatures, Front. Plant Sci., 11, 387, https://doi.org/10.3389/fpls.2020.00387, 2020.
Kühnhammer, K., Kübert, A., Brüggemann, N., Deseano Diaz, P., van Dusschoten, D., Javaux, M., Merz, S., Vereecken, H., Dubbert, M., and Rothfuss, Y.: Investigating the root plasticity response of Centaurea jacea to soil water availability changes from isotopic analysis, New Phytol., 226, 98–110, https://doi.org/10.1111/nph.16352, 2020.
Livingston, G. P. and Hutchinson, G. L.: Enclosure-based measurement of trace gas exchange: applications and sources of error, in: Biogenic trace gases: measuring emissions from soil and water, edited by: Matson, P. A. and Harris, R. C., Blackwell Science Ltd., Oxford, UK, 14–51, ISBN 978-0-632-03641-7, 1995.
Louwagie, G., Gay, S. H., Sammeth, F., and Ratinger, T.: The potential of European Union policies to address soil degradation in agriculture, Land Degrad. Dev., 22, 5–17, https://doi.org/10.1002/ldr.1028, 2011.
Macagga, R., Asante, M., Sossa, G., Antonijevic, D., Dubbert, M., and Hoffmann, M.: Validation and field application of a low-cost device to measure CO2 and ET fluxes, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-553, 2023.
Massmann, A., Gentine, P., and Lin, C.: When Does Vapor Pressure Deficit Drive or Reduce Evapotranspiration?, J. Adv. Model. Earth Syst., 11, 3305–3320, https://doi.org/10.1029/2019MS001790, 2019.
Meena, R. S., Kumar, S., and Yadav, G. S.: Soil Carbon Sequestration in Crop Production, in: Nutrient Dynamics for Sustainable Crop Production, edited by: Meena, R. S., Springer, Singapore, 1–39, https://doi.org/10.1007/978-981-13-8660-2, 2020.
MLUK: Steckbriefe Brandenburger Böden. Sammelmappe, Ministerium für Ländliche Entwicklung, https://mluk.brandenburg.de/sixcms/media.php/9/Steckbriefe-BB-Boeden-Textteil.pdf (last access: 27 October 2023), 2020.
Moffat, A. M., Papale, D., Reichstein, M. S., Hollinger, D. Y., Richardson, A. D., Barr, A. G., Beckstein, C., Braswell, B. H., Churkina, G., Desai, A. R., Falge, E., Gove, J. H., Heimann, M., Hui, D., Jarvis, A. J., Kattge, J., Noormets, A., and Stauch, V. J.: Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes, Agr. Forest Meteorol., 147, 209–232, https://doi.org/10.1016/j.agrformet.2007.08.011, 2007.
Moriasi, D. N., Gitau, M. W., Pai, N., and Daggupati, P.: Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria, T. ASABE, 58, 1763–1785, https://doi.org/10.13031/TRANS.58.10715, 2015.
Noble, W. S.: What is a support vector machine?, Nat. Biotechnol., 24, 1565–1567, https://doi.org/10.1038/nbt1206-1565, 2006.
Öttl, L. K., Wilken, F., Auerswald, K., Sommer, M., Wehrhan, M., and Fiener, P.: Tillage erosion as an important driver of in-field biomass patterns in an intensively used hummocky landscape, Land Degrad Dev., 32, 3077–3091, https://doi.org/10.1002/LDR.3968, 2021.
Pape, L., Ammann, C., Nyfeler-Brunner, A., Spirig, C., Hens, K., and Meixner, F. X.: An automated dynamic chamber system for surface exchange measurement of non-reactive and reactive trace gases of grassland ecosystems, Biogeosciences, 6, 405–429, https://doi.org/10.5194/bg-6-405-2009, 2009.
Pimentel, D. and Kounang, N.: Ecology of Soil Erosion in Ecosystems, Ecosystems, 1, 416–426, https://doi.org/10.1007/s100219900035, 1998.
Raz-Yaseef, N., Yakir, D., Schiller, G., and Cohen, S.: Dynamics of evapotranspiration partitioning in a semi-arid forest as affected by temporal rainfall patterns, Agr. Forest Meteorol., 157, 77–85, https://doi.org/10.1016/J.AGRFORMET.2012.01.015, 2012.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 27 October 2023), 2021.
Rojas, R. (Ed.): Neural Networks, Springer, Berlin, Heidelberg, Germany, ISBN 9783642610684, 1996.
Rothfuss, Y., Quade, M., Brüggemann, N., Graf, A., Vereecken, H., and Dubbert, M.: Reviews and syntheses: Gaining insights into evapotranspiration partitioning with novel isotopic monitoring methods, Biogeosciences, 18, 3701–3732, https://doi.org/10.5194/bg-18-3701-2021, 2021.
Schad, P.: The international soil classification system WRB, 2014, in: Novel methods for monitoring and managing land and water resources in Siberia, edited by: Mueller, L., Sheudshen, A. K., and Eulenstein, F., Springer International Publishing, 563–571, https://doi.org/10.1007/978-3-319-24409-9_25, 2016.
Schappert, S.: Wie wird Niederschlag beim DWD gemessen und wo fällt am meisten?, https://www.dwd.de/DE/wetter/thema_des_tages/2018/11/28.html (last access: 18 August 2022), 2018.
Schmidt, A., Creason, W., and Law, B. E.: Estimating regional effects of climate change and altered land use on biosphere carbon fluxes using distributed time delay neural networks with Bayesian regularized learning, Neural Networks, 108, 97–113, https://doi.org/10.1016/j.neunet.2018.08.004, 2018.
Schneider, F. and Don, A.: Root-restricting layers in German agricultural soils. Part I: extent and cause, Plant Soil, 442, 433–451, https://doi.org/10.1007/s11104-019-04185-9, 2019.
Schneider, F., Don, A., Hennings, I., Schmittmann, O., and Seidel, S. J.: The effect of deep tillage on crop yield – What do we really know?, Soil Till. Res., 174, 193–204, https://doi.org/10.1016/j.still.2017.07.005, 2017.
Searchinger, T. D., Wirsenius, S., Beringer, T., and Dumas, P.: Assessing the efficiency of changes in land use for mitigating climate change, Nature, 564, 249–253, https://doi.org/10.1038/s41586-018-0757-z, 2018.
Shrestha, N. K. and Shukla, S.: Support vector machine based modeling of evapotranspiration using hydro-climatic variables in a sub-tropical environment, Agr. Forest Meteorol., 200, 172–184, https://doi.org/10.1016/j.agrformet.2014.09.025, 2015.
Simpson, G., Runkle, B. R. K., Eckhardt, T., and Kutzbach, L.: Evaluating closed chamber evapotranspiration estimates against eddy covariance measurements in an arctic wetland, J. Hydrol., 578, 124030, https://doi.org/10.1016/j.jhydrol.2019.124030, 2019.
Sommer, M., Gerke, H. H., and Deumlich, D.: Modelling soil landscape genesis – A “time split” approach for hummocky agricultural landscapes, Geoderma, 145, 480–493, https://doi.org/10.1016/j.geoderma.2008.01.012, 2008.
Sommer, M., Augustin, J., and Kleber, M.: Feedbacks of soil erosion on SOC patterns and carbon dynamics in agricultural landscapes – The CarboZALF experiment, Soil Till. Res., 156, 182–184, https://doi.org/10.1016/j.still.2015.09.015, 2016.
Spinoni, J., Vogt, J. V., Naumann, G., Barbosa, P., and Dosio, A.: Will drought events become more frequent and severe in Europe?, Int. J. Climatol., 38, 1718–1736, https://doi.org/10.1002/joc.5291, 2018.
Stahr, A.: Bodentypen, http://www.ahabc.de/bodentypen/ (last access: 19 August 2022), 2022.
Sturges, H. A.: The choice of a class interval, J. Am. Stat. Assoc., 21, 65–66, https://doi.org/10.1080/01621459.1926.10502161, 1926.
Tallec, T., Béziat, P., Jarosz, N., Rivalland, V., and Ceschia, E.: Crops' water use efficiencies in temperate climate: Comparison of stand, ecosystem and agronomical approaches, Agr. Forest Meteorol., 168, 69–81, https://doi.org/10.1016/j.agrformet.2012.07.008, 2013.
Trenberth, K. E.: Changes in precipitation with climate change, Clim. Res., 47, 123–138, https://doi.org/10.3354/cr00953, 2011.
Vaidya, S., Schmidt, M., Rakowski, P., Bonk, N., Verch, G., Augustin, J., Sommer, M., and Hoffmann, M.: A novel robotic chamber system allowing to accurately and precisely determining spatio-temporal CO2 flux dynamics of heterogeneous croplands, Agr. Forest Meteorol., 296, 108206, https://doi.org/10.1016/j.agrformet.2020.108206, 2021.
Wang, L., D'Odorico, P., Evans, J. P., Eldridge, D. J., McCabe, M. F., Caylor, K. K., and King, E. G.: Dryland ecohydrology and climate change: critical issues and technical advances, Hydrol. Earth Syst. Sci., 16, 2585–2603, https://doi.org/10.5194/hess-16-2585-2012, 2012.
Wehrhan, M. and Sommer, M.: A Parsimonious Approach to Estimate Soil Organic Carbon Applying Unmanned Aerial System (UAS) Multispectral Imagery and the Topographic Position Index in a Heterogeneous Soil Landscape, Remote Sens., 13, 3557, https://doi.org/10.3390/rs13183557, 2021.
Wehrhan, M., Rauneker, P., and Sommer, M.: UAV-Based Estimation of Carbon Exports from Heterogeneous Soil Landscapes – A Case Study from the CarboZALF Experimental Area, Sensors, 16, 255, https://doi.org/10.3390/s16020255, 2016.
Wessolek, G. and Asseng, S.: Trade-off between wheat yield and drainage under current and climate change conditions in northeast Germany, Eur. J. Agron., 24, 333–342, https://doi.org/10.1016/j.eja.2005.11.001, 2006.
Wilken, F., Ketterer, M., Koszinski, S., Sommer, M., and Fiener, P.: Understanding the role of water and tillage erosion from 239+240Pu tracer measurements using inverse modelling, SOIL, 6, 549–564, https://doi.org/10.5194/soil-6-549-2020, 2020.
Xu, T., Guo, Z., Liu, S., He, X., Meng, Y., Xu, Z., Xia, Y., Xiao, J., Zhang, Y., Ma, Y., and Song, L.: Evaluating Different Machine Learning Methods for Upscaling Evapotranspiration from Flux Towers to the Regional Scale, J. Geophys. Res.-Atmos., 123, 8674–8690, https://doi.org/10.1029/2018JD028447, 2018.
Short summary
Evapotranspiration (ET) plays a pivotal role in terrestrial water cycling, returning up to 90 % of precipitation to the atmosphere. We studied impacts of soil type and management on an agroecosystem using an automated system with modern modeling approaches. We modeled ET at high spatial and temporal resolution to highlight differences in heterogeneous soils on an hourly basis. Our results show significant differences in yield and smaller differences in ET overall, impacting water use efficiency.
Evapotranspiration (ET) plays a pivotal role in terrestrial water cycling, returning up to 90 %...