

Supplement of

Benefits of a robotic chamber system for determining evapotranspiration in an erosion-affected, heterogeneous cropland

Adrian Dahlmann et al.

Correspondence to: Adrian Dahlmann (adrian.dahlmann@zalf.de)

The copyright of individual parts of the supplement might differ from the article licence.

Supplement:

Figure S1: RVI fit (colored lines) of the different treatments with the standard deviation between replicates (light gray) and the corresponding averages of the daily measurements (points).

5

Figure S2: Schematic representation of the main steps of the presented data processing: raw data preparation was followed by a campaign-specific ET-flux calculation. Then, environmental parameters were used for modeling using five different approaches. After calibration and validation, the most accurate approach was used for ET flux modeling.

Figure S3: LUT predicted daily mean ET sums (colored lines) of the different treatments and seasonal cumulative ET (ET_{sum}; dashed lines) with standard deviation between replicates (light and dark gray).

Figure S4: MDV predicted daily mean ET sums (colored lines) of the different treatments and seasonal cumulative ET (ET_{sum}; dashed lines) with standard deviation between replicates (light and dark gray).

Figure S5: NLR predicted daily mean ET sums (colored lines) of the different treatments and seasonal cumulative ET (ET_{sum}; dashed lines) with standard deviation between replicates (light and dark gray).

Figure S6: ANN_BR predicted daily mean ET sums (colored lines) of the different treatments and seasonal cumulative ET (ET_{sum}; dashed lines) with standard deviation between replicates (light and dark gray).

 Table S1: Fertilization information for the field.

Date	Amount	Details
15.10.2020	161 kg P ₂ O ₅ ha ⁻¹	applied on 6 plots of LL as TSP
22.03.2020	77 kg P_2O_5 ha ⁻¹	as Triple Super Phosphate (TSP)
22.03.2020	259 kg K ₂ O ha ⁻¹	as 40% grain potash
16.09.2020	30 kg N ha ⁻¹	10 m ³ ha ⁻¹ digestate
10.03.2021	91 kg N ha ⁻¹	30 m ³ ha ⁻¹ digestate
08.04.2021	45 kg N ha ⁻¹	12 m ³ ha ⁻¹ digestate

Table S2: The number of measurements per treatment and the percentage of modeling data.

Plot		Measurements [n]	modelled [%]	
LV-cc n-d	1	990	85.63	
LV-cc n-d	2	624	90.94	
LV-cc n-d	3	996	85.54	
LV-cc d	1	624	90.94	
LV-cc d	2	735	89.33	
LV-cc d	3	989	85.64	
LV-ng n-d	1	1210	82.43	
LV-ng n-d	2	1210	82.43	
LV-ng n-d	3	705	89.76	
LV-ng d	1	718	89.58	
LV-ng d	2	1215	82.36	
LV-ng d	3	1205	82.51	
RG-ca n-d	1	657	90.46	
RG-ca n-d	2	772	88.79	
RG-ca n-d	3	669	90.29	
RG-ca d	1	669	90.29	
RG-ca d	2	1130	83.59	
RG-ca d	3	1129	83.61	

15	Table 53: Used R packages and associated sources.			
	package	source		
	Akima	Akima & Gebhardt (2021)		
	Andrews	Myslivec (2012)		
	Base	R Core Team (2021)		
	Boot	Davison & Hinkley (1997)		
50	Caret	Kuhn (2021)		
	data.table	Dowle & Srinivasan (2021)		
	e1071	Meyer et al. (2021)		
	FSA	Ogle et al. (2022)		
	ggplot2	Wickham (2016)		
	gridExtra	Auguie (2017)		
55	gt	Iannone et al. (2022)		
	hydroGOF	Mauricio Zambrano-Bigiarini (2020)		
	Kernlab	Karatzoglou et al. (2004)		
	Lattrice	Sarkar (2008)		
	Lmtest	Zeileis & Hothorn (2002)		
	lookupTable	Jia & Maier (2015)		
60	Lubridate	Grolemund & Wickham (2011)		
	Neuralnet	Fritsch et al. (2019)		
	Nortest	Gross & Ligges (2015)		
	Plotrix	J (2006)		
	Plyr	Wickham (2011)		
	Reshape	Wickham (2007)		
55	Shape	Soetaert (2021)		
	Tibble	Müller & Wickham (2021)		
	tidyr	Wickham & Girlich (2022)		
	Vioplot	Adler & Kelly (2020)		
	webshot	Chang (2022)		
~	Zoo	Zeileis & Grothendieck (2005)		
0				

Table S3: Used R packages and associated sources.

Table S4: Calibration mean error (ME) for different rangesof ET fluxes (less than 2, between 2 and 4 and greater than4 mmol $m^{-2} s^{-1}$) for all modeling approaches.

< 2	2 - 4	>4
-0.05	0.05	0.4
-0.03	0.06	0.29
-0.03	0.08	0.33
-0.2	0.39	1.14
-0.01	0.01	0.12
	< 2 -0.05 -0.03 -0.03 -0.2 -0.01	< 2 2 - 4 -0.05 0.05 -0.03 0.06 -0.03 0.08 -0.2 0.39 -0.01 0.01