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Abstract. In the light of the ongoing global climate crisis
and the related increases in extreme hydrological events, it
is crucial to assess ecosystem resilience and – in agricultural
systems – to ensure sustainable management and food se-
curity. For this purpose, a comprehensive understanding of
ecosystem water cycle budgets and spatiotemporal dynam-
ics is indispensable. Evapotranspiration (ET) plays a pivotal
role in returning up to 90 % of incoming precipitation back
to the atmosphere. Here, we studied the impacts of soil types
and management on an agroecosystem’s seasonal cumulative
ET (ETsum) and agronomic water use efficiency (WUEagro,
the dry matter per unit of water used by the crop). To do
so, a plot experiment with winter rye (17 September 2020 to
30 June 2021) was conducted in an eroded cropland which
is located in the hilly and dry ground moraine landscape
of the Uckermark region in northeastern Germany. Along
the experimental plot (110 m× 16 m), two closed chambers
were mounted on a robotic gantry crane system (FluxCrane
as part of the AgroFlux platform) and used to determine
ET. Three soil types representing the full soil erosion gradi-
ent related to the hummocky ground moraine landscape (ex-
tremely eroded: Calcaric Regosol; strongly eroded: Nudiar-
gic Luvisol; non-eroded: Calcic Luvisol) and additional top-
soil dilution (topsoil removal and subsoil admixture) were
investigated (randomized block design, three replicates per
treatment). Five different modeling approaches were used
and compared in the light of their potential for reliable

ETsum over the entire crop cultivation period and to repro-
duce short-term (e.g., diurnal) water flux dynamics. While
machine-learning approaches such as support vector ma-
chines (SVMs) and artificial neural networks (with Bayesian
regularization; ANN_BR) generally performed well during
calibration, SVMs also provided a satisfactory prediction
of measured ET during validation (k-fold cross-validation,
k = 5).

We found significant differences in dry biomass (DM)
and small trends in ETsum between soil types, resulting in
different WUEagro. The extremely eroded Calcaric Regosol
showed an up to 46 % lower ETsum and up to 54 % lower
WUEagro compared to the non-eroded Calcic Luvisol. The
key period contributing to 70 % of ETsum spanned the begin-
ning of stem elongation in April to the harvest in June. How-
ever, differences in the ETsum between soil types and topsoil
dilution resulted predominantly from small differences be-
tween the treatments throughout the cultivation rather than
only during this short period of time.

1 Introduction

Only 12 % of the world’s land area is suitable for food and
fiber production due to its highly productive soils (Blum,
2013). Much of this land is already in use to ensure food se-
curity, mandated by a still-growing human population paired
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with the ongoing climate crisis (Searchinger et al., 2018).
Worldwide, land area is largely affected by soil degradation
(Jie et al., 2002) and agriculture is closely related, since at
least six degradation processes (e.g., erosion or compaction)
are associated with it (Louwagie et al., 2011). In hummocky
landscapes, erosion and associated topsoil dilution caused by,
e.g., wind, water or tillage affects the crop yields (Bakker et
al., 2007; Den Biggelaar et al., 2003). In addition, weaker
rootability on eroded soils suggests a higher susceptibility to
droughts (Schneider and Don, 2019). However, methodolog-
ically studying the influence of small-scale soil heterogene-
ity (e.g., soil erosion) and land use (e.g., soil management)
on the dynamics of the water balance (especially evapotran-
spiration – ET) separately has been challenging. The effect
of both factors can be significantly different with complex
interactions; e.g., soil erosion can lead to differences in soil
water storage capacity, and management affects soil organic
matter and water retention (Bakker et al., 2007; Den Bigge-
laar et al., 2003). Thus, a separate response analysis is an in-
dispensable prerequisite for the development of site-specific
land use procedures adapted to the changing climate condi-
tions. Moreover, the climate crisis is affecting the amount
and spatiotemporal distribution of precipitation worldwide,
leading to more frequent and stronger precipitation events in
high-precipitation regions (e.g., an increase of 10 %–40 % in
northern Europe; DWD, 2019) and fewer and weaker events
in low-precipitation regions (e.g., an up to 20 % decrease
in the Mediterranean region and southeastern Europe; Tren-
berth, 2011). In Germany, annual precipitation is more than
800 mm in most regions of western and southern Germany
but only 400–500 mm yr−1 in the northeast (e.g., areas in
Brandenburg and Mecklenburg-Western Pomerania; Schap-
pert, 2018). Here, dry hydrological conditions and erosion-
shaped landscapes meet. As crop yields and the related crop
productivity depend on various factors such as soil properties
or water availability, such agriculturally used precipitation-
limited regions could face increasing problems.

ET describes the total amount of water that evaporates
from a given area and is thus defined as the sum of soil evap-
oration (E), transpiration (T ) and interception evaporation
(Fohrer et al., 2016; Rothfuss et al., 2021). Generally, ET is
one of the most important components of the hydrological
cycle in terrestrial ecosystems, accounting for up to 100 % of
ingoing precipitation (Hanson, 1991). Due to the expected in-
creasing dependency of a system’s productivity on sufficient
water supply with an accelerating climate crisis, quantifying
the ET plays an important role in achieving a process-based
understanding of the mitigation potential of different crops
for drought in the future and, e.g., establishing a more effi-
cient supplemental irrigation. Moreover, there is a tight link
of carbon and water cycling in precipitation-limited systems
because water loss by ET and the water use efficiency of a
system can largely define its productivity (Tallec et al., 2013).

A particular challenge in current ET research is combining
high-frequency and multi-treatment approaches. At the field

scale, for example, eddy covariance systems provide high-
frequency estimates of the ET of a homogeneous system
(e.g., Ding et al., 2021), while manual chamber approaches
are able to precisely capture multi-treatment effects (< 1 m2)
on ET at the plot scale (e.g., Hamel et al., 2015). However,
the data frequency obtained by manual chamber observations
is often too small to achieve reliable flux budget calculations
in combination with data-driven modeling. In this regard,
modern automated chamber systems allow a combination
of multi-treatment observations with a higher frequency of
measurements compared to manual chambers. They provide
a unique opportunity to test data-driven modeling strategies
using empirical, statistical or machine-learning approaches,
with the aim of reproducing the diurnal variability in ET and
the seasonal cumulative ET (ETsum). In particular, modeling
approaches based on machine learning (e.g., artificial intelli-
gence and neural network approaches) have previously been
limited to eddy covariance measurements. Coupling such ad-
vanced modeling strategies with modern automatic cham-
ber systems might be an ideal fusion of measurement fre-
quency and the ability to capture treatment effects like small-
scale soil differences (Falge et al., 2001a; Kiši and Çimen,
2009). AgroFlux – a newly developed sensor platform cen-
tered around closed chambers mounted on a robotic gantry
crane (FluxCrane) – was initially built to capture the effect of
soil type and management on greenhouse gas (GHG) emis-
sions and in particular CO2 fluxes with high spatial and tem-
poral resolution (Vaidya et al., 2021). The adaption of the
system to measure ET provided us with the opportunity to
analyze stand-scale ET fluxes including the development of
a data analysis tool for measured ET fluxes and to test dif-
ferent modeling strategies. We tested five different modeling
strategies including basic statistic and advanced approaches,
including machine-learning approaches. During the cultiva-
tion period of winter rye from mid-September 2020 to the
end of June 2021, ET and the relevant environmental and
plant growth parameters were measured to identify the corre-
sponding drivers of crop ET and productivity. The FluxCrane
system covers a field where three different soil types are
present, which reflect the erosion gradient typical of the hill-
side of the hummocky ground moraine landscape of north-
eastern Germany. This made it possible to evaluate the im-
pact of soil type and soil management on ETsum, seasonal
development and agronomic water use efficiency (WUEagro;
dry matter per unit of water used by the crop).

In the following, we will examine (i) soil type and topsoil
dilution effects on crop yield, ETsum and WUEagro; (ii) the
spatiotemporal variability of ET fluxes over the growing
season; and (iii) the suitability of various modeling strate-
gies. The paper’s aim is to establish an approach that would
provide reliable predictions of ET fluxes in terms of both
ETsum and diurnal trends of ET fluxes. We hypothesize that
(i) eroded soils and topsoil dilution lead to decreased ET con-
trolled by weaker plant growth; (ii) WUEagro declines from
least- to most-eroded soil types and with topsoil dilution;

Hydrol. Earth Syst. Sci., 27, 3851–3873, 2023 https://doi.org/10.5194/hess-27-3851-2023



A. Dahlmann et al.: Benefits of a robotic chamber system for determining evapotranspiration 3853

(iii) and the automated, continuous FluxCrane measurements
result in unique insights into small-scale dynamics such as
nighttime ET fluxes and ET fluxes during the non-growing
season. Here, we hypothesize that (iv) the uncommonly large
data set (compared to manual chamber systems) allows for
robust use of modeling strategies based on machine learn-
ing. We envisage that this will greatly improve ETsum and
subsequently WUEagro based on automated closed-chamber
systems.

2 Material and methods

2.1 Study site and experimental design

The AgroFlux experimental platform is located in Branden-
burg, a federal state in northeastern Germany, near Dede-
low within the Uckermark region (53◦23′ N, 13◦47′ E;∼ 50–
60 m a.s.l.). Brandenburg, which includes some of the dri-
est regions in Germany, uses 48.6 % or about 1.44 million
hectares of its area for agriculture (Amt für Statistik Berlin-
Brandenburg, 2022). It is located in the continental climate
zone and has a water deficit of about 150 mm during the
growing season (Wessolek and Asseng, 2006). The long-term
(1991 to 2020; ZALF) mean annual air temperature in this
region is 8.8 ◦C with a mean annual precipitation and po-
tential evapotranspiration of 467 and 637 mm, respectively
(ZALF research station, Dedelow). The focus of agriculture
in Brandenburg is on grain production, which faces a variety
of challenges due to increasingly dry conditions during the
main growing season (Amt für Statistik Berlin-Brandenburg,
2022). The Uckermark region is the most productive region
for agriculture within Brandenburg. It is shaped by glaciation
with a hilly to flat–wavy ground moraine landscape whose
soils are strongly influenced by soil erosion (Nudiargic Lu-
visol, Calcaric Regosols, Colluvic Regosols) and redoxi-
morphic soils (Stagnosols, Gleysols) (MLUK, 2020). The
strong soil heterogeneity and ongoing soil erosion, mainly
by tillage, have a great influence on the productivity of the
cultivated areas (Sommer et al., 2016). Today, only 20 % of
the land is not affected by past and present soil erosion due to
tillage and water (Sommer et al., 2008; Wilken et al., 2020),
resulting in a very high spatial variability of soils (Wehrhan
and Sommer, 2021) and associated growing conditions for
crops (Wehrhan et al., 2016). In combination with the ongo-
ing climate crisis, it is proving difficult to develop land use
methods that allow reliable and sustainable arable farming
under these challenging conditions.

The study was carried out on the 100× 16 m FluxCrane
experimental field, an integral part of the AgroFlux sen-
sor platform located in the interdisciplinary research area
CarboZALF-D (Fig. 1a). There is an elevation difference of
1 m, and all relevant local erosion stages are covered (Schad,
2016): non-eroded Calcic Luvisol (LV-cc), strongly eroded
Nudiargic Luvisol (LV-ng) and extremely eroded Calcaric

Regosol (RG-ca; see Fig. 1b and c; Sommer et al., 2008;
Wehrhan et al., 2016; Vaidya et al., 2021). Here we used
18 plots in total, 6 per soil type (Fig. 1d). For the six plots
per soil type, a randomized, full-factorial design repeated
threefold was adopted for topsoil dilution vs. non-topsoil di-
lution (first 8 to 9 cm). During the study period from Septem-
ber 2020 to June 2021 (286 d), winter rye of the hybrid va-
riety SU Piano was grown with a density of 200 plants per
square kilometer in an area of 0.176 ha. The novel gantry
crane automatic chamber system (Fig. 1e) was installed at
this study site in 2019 (Vaidya et al., 2021). The attached
gas exchange chambers were lowered on each plot on round
structural steel frames with a diameter of 1.59 m and a basal
area of 1.99 m2.

2.2 Cultivation and topsoil dilution

The AgroFLUX sensor platform site is located on a conven-
tionally farmed agricultural area that is intended to repre-
sent a variety of soils in the region. Hence, topsoil dilution,
tillage, cultivation and fertilizer application measures were
implemented before and during the experiment. The manipu-
lative field experiment was originally established to study the
feedbacks of a dynamic disequilibrium in the carbon cycle of
arable lands. Deep tillage or soil erosion lead to an admixture
of subsoil material into the plow layer (Doetterl et al., 2016),
which alters topsoil properties (such as SOC or clay content).
The resulting changes in the main rooting zone might reduce
crop growth (Öttl et al., 2021). We mimic these common
landscape processes in our topsoil dilution experiment un-
der controlled conditions (Vaidya et al., 2021). After topsoil
removal (1.2 t per plot; first 8–9 cm; three of the six plots per
soil; 14–15 July 2020), we added the equivalent mass (1.2 t)
of the respective subsoil horizons (E, Bt, Ck) taken from a
large soil pit nearby. Thus, an E horizon was applied to the
prepared plots of the non-eroded Calcic Luvisol (LV-cc), the
Bt horizon on the strongly eroded Nudiargic Luvisol (LV-ng)
and the Ck horizon on the extremely eroded Calcaric Regosol
(RG-ca). Subsequently, we mixed the added subsoil material
with the remaining local Ap horizon. Finally, the chamber
frames were reinstalled. In the following, the resulting treat-
ments of the same soil types are labeled as non-diluted (n-
d) and diluted (d). The actual tillage prior to sowing took
place just before seeding on 17 September 2020. For this, the
frames were removed, and the soil was loosened to a depth
of 25 cm in the west–east direction. Sowing was done with a
power harrow–drill combination. Fertilization was applied to
all plots per soil type before and during the growing season
using digestate from Pflanzenbauhof GbR (Uckermark, Ger-
many), triple super phosphate (TSP) and grain potash (Ta-
ble S1 in the Supplement). Due to initial changes in the top-
soil structure (after the addition of subsoil material), germi-
nation differed between manipulated and non-manipulated
plots. In order to achieve similar plant densities in all the
plots, replanting had to be done in all n-d plots within the
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Figure 1. (a) AgroFLUX research site in the CarboZALF-D experimental area with (b) the 110×16 m field with (c) three different soil types
(LV-cc: non-eroded Calcic Luvisol; LV-ng: highly eroded Nudiargic Luvisol; RG-ca: extremely eroded calcaric Regosol). (d) 18 measurement
plots on which (e) the FluxCrane operates. Soil moisture and precipitation measurements were taken in the marked area (black circle, b).
The separation of non-diluted (unframed green) and diluted (framed light-green) plots can be seen in panel (d).

frames (LV-cc: 13 plants per plot; LV-ng: 40 plants per plot;
RG-ca: 82 plants per plot). For general plant protection and
soil treatment, herbicides were applied to the field prior to
the growing season (e.g., glyphosate; 3 September 2020).

2.3 Gantry crane system description and gas exchange
measurements

The ET flux measurements were carried out by a novel auto-
mated chamber system (FluxCrane) using a 5 m high gantry
crane traveling on two 110 m tracks, which has been de-
scribed in detail (Vaidya et al., 2021). Briefly, the system
designed by Pfannenstiel ProProject GmbH (Bad Tölz, Ger-
many) is capable of moving in three dimensions: the x axis
for movement along the track, the y axis for movement per-
pendicular to the track and the z axis for vertical cham-
ber movement. FluxCrane carries two transparent chambers
made of polymethyl methacrylate (PMMA; A: 1.986 m2;
V : 3.756 m3). Since the two chambers do not move inde-
pendently of each other along the track, frames were ar-
ranged in rows, from which each half was measured by one
chamber. To ensure airtight sealing during chamber deploy-
ment, steel frames with a diameter of 1.59 m and a depth of

5 cm were installed in the soil and equipped with an approxi-
mately 10 cm wide foam ring to further increase the chamber-
bearing surface while deployed. ET fluxes were determined
by measuring the development of chamber headspace H2O
concentrations (4 s frequency) over 7 min in a flow-through
non-steady-state (FT-NSS) mode (Livingston and Hutchin-
son, 1995) using two infrared gas analyzers (one per cham-
ber; LI-COR 850, Licor Biosciences, UK). The chambers
have an average light transmittance of about 76 % (74 %
for chamber 1 and 78 % for chamber 2), but the experi-
ment was designed to minimize a reduction in ET due to
reduced light availability (fastest possible ET calculation af-
ter chamber closure; short closing times and ventilation). In
addition, Pape et al. (2009) concluded that the photosyntheti-
cally active radiation (PAR) reduction only had a minor effect
(< 5 %) on photosynthesis for this type of chamber, which
should be comparable or smaller for transpiration. Tempera-
ture differences during chamber closure were minimized by
the short measurement time and ventilation (< 1.5 ◦C) with
two small axial-flow fans (5.61 m3 min−1) used to homoge-
nize the chamber headspace air. To compensate for the differ-
ence in tubing length between the chambers and the analyzer
(chamber 1: 15 m vs. chamber 2: 22 m), flow rates of 2.3 and
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3.6 L min−1 were set to obtain a similar sensor death time
of 13 s. A CR6 data logger and a CDM-A116 analog mul-
tiplexer (Campbell Scientific Inc., USA) were used for data
recording and storage. The plots were measured hourly up
to 24 times a day in order to be able to detect daily varia-
tions. Due to the randomized measurement design, each plot
was measured approximately twice per week, which would
theoretically result in approximately 2200 measurements per
plot throughout the entire season. However, the system was
designed to shut down under high winds and cold tempera-
tures, resulting in a true average of only 724 measurements
per plot per season. Diurnal ET daytime and nighttime fluxes
considered in this study were calculated for the cultivation
period from 17 September 2020 (sowing of winter rye) until
harvest of winter rye on 30 June 2021.

2.4 Input parameters for modeling

2.4.1 Environmental parameters

Relative humidity (RH, %) (WXT520, Vaisala, FI) was mea-
sured during the ET flux measurements outside the cham-
bers, while temperature (T , ◦C) (109, Campbell Scientific
Ltd., USA) and incoming PAR (µmol m−2 s−1) (SKP 215;
Skye Instruments Ltd., UK) were measured both outside and
inside the chambers. Precipitation (Pr, mm) (Tipping Bucket
Rain Gauge 52203; R. M. Young Company, USA) and rela-
tive soil moisture (SM, 13 to 18 cm depth, %) (ML2x, Delta-
T Devices Ltd., UK) were measured at an adjacent field
(< 25 m; Fig. 1b).

2.4.2 Plant-specific parameters

Spectral plant indices, such as the ratio vegetation index
(RVI; also simple ratio – SR) were manually recorded weekly
for all 18 plots using a near-infrared (NIR) and visible-light
(VIS) double, two-channel sensor device (SKR 1850, Skye
Instruments Ltd., UK) mounted on a 1.8 m handheld pole
(Görres et al., 2014; Kandel et al., 2013) connected to a
CR1000 data logger (Campbell Scientific Ltd., USA). The
double, two-channel sensor device consisted of an upward-
and downward-facing sensor measuring the incoming (VISi)
and reflected (VISr) VIS at a wavelength of 656±10 nm and
incoming (NIRi) and reflected (NIRr) NIR at 780± 10 nm.
The upward sensor was fitted with a cosine-correction dif-
fusor for measurements of the incident radiation, while the
downward sensor, installed 1.8 m above the ground, had a
25◦ cone field of view, thus covering an area of 0.5 m2 during
measurements (Görres et al., 2014). Each plot was measured
once a week for 30 s, resulting in one mean value including
30 measurement points. The RVI was used as an indicator
of standing crop biomass and is close to zero for a fallow
surface and increases as plant cover increases. The RVI was
calculated following Eq. (1):

RVI=
NIRr
NIRi
VISr
VISi

. (1)

Since only weekly plot-wise RVI data were available, daily
RVI data were obtained by fitting a sigmoidal function
for initial plant growth in the fall up to stagnation due to
plant inactivity in the winter and a polynomial function for
shoot elongation and later senescence during spring growth
and summer maturation, respectively (Fig. S1 in the Sup-
plement). During the period from 24 November 2020 to
22 March 2021, which we refer to as the non-growing season,
no plant growth was assumed due to average daily tempera-
tures below 5 ◦C (< 3 consecutive days).

2.5 ET flux calculation and modeling

2.5.1 ET flux calculation

The workflow included various steps to preprocess data ob-
tained by FluxCrane, calculate ET fluxes and finally apply
and validate the different modeling procedures (Fig. S2). ET
flux calculation was performed based on the ideal gas equa-
tion (Eq. 2) modified by Hamel et al. (2015) using an adapted
R script based on those presented by Hoffmann et al. (2015).

ETflux =
cH2O×P ×MH2O

R× T
×

(
t ×

V

A

)[
mmd−1

]
(2)

ETflux

[
mmolm−2 s−1

]
=

ETflux
[
mmd−1]

(t × 1000)
·

(
1

MH2O

)
(3)

ETflux (mm d−1) is the evapotranspiration rate, cH2O is the
moles of water per total moles present, P is the gas pressure
(Pa), MH2O is the molar mass of water (18 g mol−1), R is the
gas constant (8.314 m3 Pa K−1 mol−1), T is the temperature
(K) inside the chamber, t is the time factor (86.4), V is the
chamber volume (m3) and A is the basal area (m2). The ET
flux (mmol m−2 s−1) (Eq. 3) was also calculated to ensure
comparability with other studies. The first 15 % of each mea-
surement was discarded prior to flux calculation to prevent
a disturbance due to initial homogenization of the chamber
headspace air. The temporal change was determined by lin-
ear regressions on several subsets of the data generated based
on a variable moving window with a starting window size
of 1 min and 20 s (20 consecutive data points) and a maxi-
mum length of 2 min (30 consecutive data points). This pro-
cedure resulted in several ET fluxes for each measurement,
from which the best flux was subsequently selected using a
set of soft and hard criteria. Soft criteria included (i) checking
whether the conditions for the application of a linear regres-
sion were fulfilled (normality, variance homogeneity, linear-
ity), (ii) no outliers were present (±6x interquartile range)
and (iii) temperature variation during the measurement was
< 1.5 ◦C. Calculated fluxes per measurement that did not
meet the quality criteria were discarded. Afterwards, applied
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hard criteria reduced potentially remaining multiple fluxes
per measurement further to the ideal ET flux. Since the air
in the chamber headspace reached a higher water saturation
with increasing time, hard criteria were based on the selec-
tion of the flux, which showed that the shortest temporal dis-
tance to the start of measurement had the maximum length.

During the measurements, various events could lead to
erroneous ET fluxes, e.g., fog (saturation of the chamber
interior), sensor failures or chamber leakage due to failure
in chamber deployment. Erroneous fluxes were hence dis-
carded. In addition, potential differences in the measure-
ments between the sensors of both chambers were evalu-
ated by the measurements of ambient air during periods of
no chamber deployment.

A complete data set of hourly data points for the 286 d
of the cultivation period would consist of 6888 measure-
ments per treatment. After the flux calculation and filtering
using the soft and hard criteria, a total of 13 011 ET flux
measurements was performed, resulting in approximately
2169 measurements per treatment. On individual plots, an
average of 723 measurements was available (Table S2, rang-
ing from 624 to 1210 and accounting for 10.5 % on average).

2.5.2 Modeling ET fluxes

To model ET fluxes, five different approaches were used
and compared with each other. Modeling procedures in-
cluded (1) a simple statistical approach, mean diurnal varia-
tion (MDV); two empirical approaches, (2) nonlinear regres-
sion (NLR) and (3) look-up tables (LUTs); and two machine-
learning approaches, (4) support vector machines (SVMs)
and (5) an artificial neural network with Bayesian regular-
ization (ANN_BR).

MDV (Falge et al., 2001b; Moffat et al., 2007) is used to
calculate missing hourly values through interpolation of val-
ues measured at the same hour during adjacent days. Thus,
for the season with 286 d, the missing values were calculated
for every hour, generating 24 values per day.

NLR is based on parameterized nonlinear equations using
the mean least-square method to express the relation between
the total seasonal data of ET and T , RH, SM, PAR and RVI.
Half-hourly values were predicted using the predictor vari-
ables and the obtained function parameters.

Modeling missing ET fluxes using the LUT approach is
based on the assumption of similar ET fluxes during sim-
ilar environmental conditions, whereby similarity is defined
through a number of thresholds for the different environmen-
tal variables. Thus, missing ET fluxes can be predicted based
on the environmental conditions as well as the RVI associ-
ated with the missing data. To do so, measured ET fluxes per
subplot were split into different classes (csturges) based on T ,
RH, SM, PAR and RVI, with their class limits determined by
the Sturges rule (Eq. 4, Sturges, 1926). Within this study, on
average, 12 classes of equal size were formed covering the
range of all parameters.

csturges =
1+ 3.32 · log(n)

log(10)
(4)

ET fluxes were subsequently assigned with the average ET
flux of the class corresponding to the obtained environmen-
tal parameters. In case no class could be attributed to the
measured environmental conditions, the average ET flux was
used.

SVM is a black-box model, where a computer algorithm
learns by teaching data to assign values to objects or classes
(Noble, 2006). As mentioned by Kim et al. (2020), the SVM
uses a slack variable to circumvent unseparated parameters
due to noise or extreme values in the data as well as the
radial-basis kernel function based on previous SVM studies
for upscaling fluxes (Ichii et al., 2017; Xu et al., 2018).

In comparison, ANN_BR is a combination of a purely em-
pirical nonlinear regression model with a stochastic Bayesian
algorithm for regularizing the network training (Schmidt et
al., 2018). An artificial neural network (ANN) consists of
nodes connected by weights representing the regression pa-
rameters (Bishop, 1995; Hagan et al., 2014; Moffat et al.,
2007; Kubat, 1999; Rojas, 1996). The network is trained
by providing it with sets of input data such as the environ-
mental and plant-specific parameters mentioned earlier and
the associated output data in the form of, e.g., ET flux val-
ues. Similar to Moffat et al. (2007), all the techniques evalu-
ated use the classical back-propagation algorithm, where the
training of the ANN is performed by propagating the input
data through the nodes via the weighted connections and then
back-propagating the error and adjusting the weights so that
the network output optimally approximates the ET fluxes.
Subsequent to this training, the underlying dependencies of
the ET fluxes on the environmental and plant-specific input
variables are mapped to the weights, and the ANN is used to
predict half-hourly ET fluxes, where the performance of the
ANN depends on several criteria.

2.6 Seasonal cumulative ET, water use efficiency and
crop ET

ETsum was determined using half-hourly or hourly ET val-
ues predicted by all five modeling approaches. Daily aver-
ages (mm d−1) and ETsum (millimeters (mm) per cultivation
period) were formed in order to view the development over
the entire cultivation period. The amount of plant biomass
in dry mass (DM) (kg) was recorded during harvest for each
treatment, which in combination with ETsum yields the agri-
cultural water use efficiency WUEagro (Hatfield and Dold,
2019; Eq. 5). This is the WUEABG variant of WUEagro, as
the dry mass is the total aboveground biomass (Katerji et al.,
2008).

WUEagro =
DM

ETsum
(5)

Hydrol. Earth Syst. Sci., 27, 3851–3873, 2023 https://doi.org/10.5194/hess-27-3851-2023



A. Dahlmann et al.: Benefits of a robotic chamber system for determining evapotranspiration 3857

Table 1. Performance classes to evaluate modeling approaches.

Class MAE NRMSE NSE R2

Very good < 0.35 < 30 > 0.85 > 0.85
Good 0.35≤ 0.67 30≤ 40 0.85≥ 0.75 0.85≥ 0.75
Satisfactory 0.67≤ 1 40≤ 50 0.75≥ 0.5 0.75≥ 0.6
Not satisfactory > 1 > 50 < 0.5 < 0.6

To obtain a comparable value for the ETsum calculated by
FluxCrane, crop evapotranspiration (ETc) was calculated
(Allen et al., 1998). ETc (Eq. 6) was calculated from the
crop factor Kc (Kc,ini = 0.3; Kc,mid = 1.15; Kc,end = 0.4)
and the potential evapotranspiration ET0 using monthly av-
erages (DWD, 2022).

ETc =Kc×ET0 (6)

2.7 Statistical analysis

All calculations were performed using the statistical soft-
ware R (R Core Team, 2021) version 4.0.4. Therefore, sev-
eral packages (Table S3) were used to calculate the ET fluxes,
perform subsequent modeling and visualize the results.

To calibrate the modeling approaches, a comparison was
conducted between all the measured values and their corre-
sponding predicted values for each treatment. For validation,
the k-fold cross method (k = 5) was implemented using the
resulting ET data to evaluate the predictive performance of
the approaches and to ensure robust statistical analysis. To
accomplish this, each data set was divided into five subsets,
each comprising 20 % of the total data. The modeling pro-
cess was then repeated five times, utilizing 80 % of the data
to calculate the missing 20 % and to generate a complete data
set without relying on the original data. Subsequently, this
data set was compared against the measured data to evaluate
the modeling approaches. Finally, performance metrics in-
cluding the coefficient of determination (R2), mean absolute
error (MAE), normalized root mean square error (NRMSE)
and Nash–Sutcliffe efficiency (NSE) were calculated for both
calibration and validation. These metrics were used to define
performance classes (Table 1) for evaluating the accuracy
of the approaches in the given setup (Moriasi et al., 2015).
To determine parameter impact on ET, linear and nonlin-
ear models were used. Lastly, differences in ETsum, DM and
WUEagro between treatments were tested with the Kruskal–
Wallis test and the Dunn–Bonferroni post hoc test.

3 Results

3.1 Environmental parameters

The study year was significantly warmer (mean tempera-
ture 9.6 ◦C) and wetter (508 mm annual precipitation) be-
tween 1 July 2020 and 30 June 2021 compared to mean

annual air temperature (8.8 ◦C) and precipitation (467 mm).
In particular, temperatures (Fig. 2a) were above average in
the fall and winter period in 2020 as well as June 2021. On
the other hand, April and May, which are crucial for crop
growth, were colder and also drier. Daily mean RH (Fig. 2b)
ranged between 50 % and 92.4 %, with increasing diurnal
variation in warm periods. PAR (Fig. 2c) largely reflected
the seasonal variation of the day length with a maximum of
1860 µmol m−2 s−1 (half-hourly measurements) and reduced
values during longer storm events and high cloud cover (e.g.,
through changes in photosynthesis). The SM at 13 to 18 cm
depth largely reflects the intensity of precipitation events
(Fig. 2d), ranging from 12 % to 29 %. One exception is a
prominent increase in mid-February that can be attributed
to low temperatures and subsequent snowmelt. The largest
precipitation events (> 10 mm d−1) occurred on 26 Septem-
ber 2020 with 12 mm, on 24 December 2020 with 15 mm and
on 3 February 2021 with 16 mm. A sharp declining trend in
SM and no response to precipitation events is evident from
April (about 25 %) to harvest in June (about 12 %). How-
ever, this can be explained by a high water consumption of
the fully developed crop stand and canopy interception. Shal-
lower SM sensors at 3 to 8 cm (not shown) indeed responded
to these precipitation events, albeit weakly, indicating that
the infiltration to deeper soil layers was impaired.

3.2 Plant development

RVI estimates are based on weekly measurements. Two tem-
poral periods in particular were relevant for plant growth:
(i) the period from germination to the non-growing season
in winter and (ii) the growing period after winter until har-
vest (Fig. S1). The maximum RVI values were all reached at
a similar time (15 to 18 May 2021). In this regard, the non-
eroded soil LV-cc n-d had the highest RVI (16.46 on aver-
age), while the non-eroded soil LV-cc d showed lower values
(13.88 on average). The strongly eroded soil of LV-ng re-
vealed the same pattern with a higher RVI for n-d (12 on
average) and a lower RVI for d (10.35 on average) treat-
ments. The extremely eroded soil of RG-ca, on the other
hand, showed huge differences between the n-d and d treat-
ments (10.95 vs. 5.87 on average). Apart from that, the maxi-
mum standard deviation differed between the n-d and d treat-
ments for the three soil types (LV-cc: 1.65< 3.29; LV-ng:
1.09< 1.94; RG-ca: 1.17< 0.82). Higher RVI values were
already reached in non-eroded and strongly eroded soils
compared to extremely eroded soil during the initial grow-
ing season in the fall of 2020 until the non-growing season.
Thus, mean RVI values of 4.47 to 6.63 were obtained for non-
eroded and strongly eroded soils, while the extremely eroded
soils had mean RVI values of only 3.61 (n-d) and 2.31 (d).
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Figure 2. Environmental parameters during the measurement period with (a) daily mean relative humidity (RH; black line; dotted lines:
corresponding variation), (b) daily mean temperatures (T ; orange line; light gray: corresponding variation), (c) incoming photosynthetically
active radiation (PAR; purple) and (d) soil moisture (SM; blue line) and precipitation (PR; blue bars).

3.3 ET fluxes

The seasonal development (Fig. 3) of the quality-screened
measured ET fluxes is similar for all the treatments: a
short growth phase after germination (1–2 mmol m−2 s−1)
is followed by a decrease in fluxes until and during the
non-growing season in winter (< 0.1 mmol m−2 s−1), when
hardly any plant activity is found due to low temperatures.
After the non-growing season, fluxes quickly return to their
maximum fall level (1–2 mmol m−2 s−1) and then increase
rapidly (> 5 mmol m−2 s−1). On the non-eroded soil (LV-cc),
this rapid increase continued into June, while ET fluxes on
the eroded soils (LV-ng and RZ-ca) already peaked in May.
In addition, there is a clear difference in the maximum fluxes

measured between soil types with 6.7 mmol m−2 s−1 for both
treatments of non-eroded LV-cc, 5.6/6.5 mmol m−2 s−1 (n-
d/d) for LV-ng and 5.8/5.1 mmol m−2 s−1 (n-d/d) for RG-ca.
Notably, there is a data gap from late April to late May due
to sensor failure.

3.4 Modeling and validation

Pronounced differences in tested modeling approaches in
terms of respective calibration statistics could be found.
Calibration–model performances differ in their scatter
around the 1 : 1 agreement plots (Fig. 4) and associated co-
efficients of determination (R2). NLR shows a clear overes-
timation of low ET fluxes and an underestimation of higher
ET fluxes (Table S4). Compared to this, MDV more accu-
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Figure 3. Measured and quality-screened (by soft and hard criteria) ET fluxes of the three soil types over the entire observation period
(non-diluted treatments on the left and diluted treatments on the right).

rately predicts low and high ET fluxes but is characterized by
a much lower precision due to a higher variance (Table S4).
Among all the modeling approaches, the displayed calibra-
tion statistics (Table 2) indicate a very good or good (Ta-
ble 1) prediction for SVM, ANN_BR, MDV and LUT over
the entire range of observed ET fluxes. Considering the k-
fold cross-validation (Fig. 5, Table 3), ANN_BR and SVM
perform as good, while MDV shows partially satisfactory
statistics and LUT shows unsatisfactory statistics due to al-
location problems that arise when no class is found for the
given climate conditions and the mean is used. Statistically,
ANN_BR and SVM were similarly good in predicting ob-
served ET fluxes (Tables 2 and 3), even if they show a small
tendency to overestimate low ET fluxes (Table S4). However,
modeled ET fluxes using ANN_BR showed a large number
of predicted negative ET fluxes (1547 on average per plot;
Fig. S6) throughout the cultivation period. These fluxes oc-

curred to an unrealistic degree during times when RH was
significantly below saturation and plants were active (e.g.,
during the daytime period), resulting in a reduction in ETsum
between 1 and 51 mm, depending on the treatment. This is
most likely a method-specific extrapolation problem (see the
Discussion section) and the reason we use SVM for final bud-
get estimations.

3.5 Diurnal ET fluxes, ETsum and crop ET

The model was able to predict the diurnal trends of ET fluxes
during the cultivation period (Fig. 6). One representative day
per month was selected in terms of the highest number of
measurements. The 2 d of September and May have a re-
duced accuracy (ME: −0.22 and −0.3) due to a slight over-
estimation by the SVM modeling, while most of the other
days are modeled accurately (ME≤ 0.06). Additionally, the
seasonal development of the SVM-predicted ET is depicted
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Figure 4. Comparison of the measured and predicted ET fluxes and the associated r-squared values (R2) of the calibration results of all the
modeling approaches. The black line represents the 1 : 1 line. The different modeling approaches are shown on top and the treatments on the
left.
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Figure 5. Comparison of the measured and predicted ET fluxes with the associated r-squared values (R2) of the validation results of all the
modeling approaches. The black line represents the 1 : 1 line. The different modeling approaches are shown on top and the treatments on the
left.
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Table 2. Calibration statistics of all the modeling approaches and treatments.

Approach MAE NRMSE NSE R2 Approach MAE NRMSE NSE R2

LL-cv n-d LL-cv d

MDV 0.27 39.6 0.84 0.85 MDV 0.25 35.2 0.88 0.88
LUT 0.09 14.3 0.98 0.98 LUT 0.08 13.4 0.98 0.98
NLR 0.56 49.0 0.76 0.77 NLR 0.53 46.8 0.78 0.79
SVM 0.26 25.7 0.93 0.93 SVM 0.23 23.0 0.95 0.95
ANN_BR 0.31 28.0 0.92 0.92 ANN_BR 0.27 25.7 0.93 0.93

LL-ng n-d LL-ng d

MDV 0.25 29.3 0.91 0.92 MDV 0.25 30.6 0.91 0.91
LUT 0.09 13.6 0.98 0.98 LUT 0.10 14.6 0.98 0.98
NLR 0.54 41.1 0.83 0.84 NLR 0.55 40.6 0.84 0.84
SVM 0.28 22.9 0.95 0.95 SVM 0.29 23.6 0.94 0.94
ANN_BR 0.31 24.6 0.94 0.94 ANN_BR 0.32 25.0 0.94 0.94

RG-ca n-d RG-ca d

MDV 0.26 30.9 0.90 0.91 MDV 0.22 29.8 0.91 0.91
LUT 0.09 15.7 0.98 0.98 LUT 0.09 14.3 0.98 0.98
NLR 0.50 42.4 0.82 0.83 NLR 0.48 41.8 0.82 0.83
SVM 0.26 25.6 0.93 0.93 SVM 0.23 23.4 0.95 0.95
ANN_BR 0.30 27.3 0.93 0.93 ANN_BR 0.29 26.0 0.93 0.93

Table 3. Validation statistics of all the modeling approaches and treatments.

Approach MAE NRMSE NSE R2 Approach MAE NRMSE NSE R2

LL-cv n-d LL-cv d

MDV 0.33 46.0 0.79 0.81 MDV 0.26 35.8 0.87 0.88
LUT 0.74 69.8 0.51 0.51 LUT 0.72 70.0 0.51 0.51
NLR 0.57 50.9 0.74 0.75 NLR 0.55 48.8 0.76 0.77
SVM 0.34 33.7 0.89 0.89 SVM 0.31 32.1 0.90 0.90
ANN_BR 0.35 32.2 0.90 0.90 ANN_BR 0.32 29.6 0.91 0.91

LL-ng n-d LL-ng d

MDV 0.31 32.1 0.90 0.90 MDV 0.31 33.3 0.89 0.89
LUT 0.78 62.7 0.61 0.61 LUT 0.83 64.7 0.58 0.58
NLR 0.54 41.7 0.83 0.83 NLR 0.55 41.5 0.83 0.84
SVM 0.32 25.4 0.94 0.94 SVM 0.33 26.5 0.93 0.93
ANN_BR 0.33 25.9 0.93 0.93 ANN_BR 0.34 26.6 0.93 0.93

RG-ca n-d RG-ca d

MDV 0.28 34.4 0.88 0.89 MDV 0.27 31.8 0.90 0.90
LUT 0.79 71.8 0.48 0.49 LUT 0.69 65.9 0.57 0.57
NLR 0.49 42.2 0.82 0.83 NLR 0.48 42.0 0.82 0.83
SVM 0.29 28.1 0.92 0.92 SVM 0.26 26.2 0.93 0.93
ANN_BR 0.33 29.9 0.91 0.91 ANN_BR 0.31 28.8 0.92 0.92

in Fig. 7 (see Figs. S3–S5 for the other modeling approaches)
and demonstrates a similar pattern to the measured fluxes de-
scribed in Sect. 3.3.

In general, eroded soils tend to have a negative effect on
ETsum. However, this trend was not statistically significant
(Kruskal–Wallis test, ETsum: χ2

= 3.04, df= 5, p = 0.69).

For DM and WUE, on the other hand, the Kruskal–Wallis test
indicated a significant difference between treatments (DM:
χ2
= 14.58, df= 5, p = 0.01; WUE: χ2

= 11.12, df= 5,
p = 0.05). The subsequent Dunn–Bonferroni post hoc test
only revealed a significant difference in DM between non-
eroded LV-cc n-d and eroded RG-ca d (p = 0.013). How-
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Figure 6. Diurnal cycles in ET fluxes during the cultivation season for 1 sample day per month (day with the most measurements) and the
corresponding mean error (ME; two digits rounded). The measured ET is shown in blue, and the predicted ET is shown in red.
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Figure 7. Daily mean ET sums (colored lines) of the different treatments and seasonal cumulative ET (ETsum; dashed lines) with standard
deviation between replicates (light and dark gray).

ever, no statistically significant pairwise differences were
found for WUE. The amount of plant biomass in dry mass
(DM) (kg) decreases from n-d to d and from less eroded
soil types to more eroded soil types. DM ranges from 1.5±
0.13 kg m−2 for LV-cc n-d to 0.85±0.2 kg m−2 for RG-ca d.
WUEagro decreases from less eroded to more eroded soil

types ranging from 7.25± 1.23 g DM kg−1 H2O to 4.69±
0.71 DM kg−1 H2O (Fig. 9).

In order to compare the individual treatments, daily ET
and ETsum were calculated (Fig. 7). ET was affected by T ,
RH, PAR and RVI, whereas only a small correlation was
found with SM (Fig. 8). Higher ET fluxes were induced by
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increases in T , PAR and RVI, whereas increasing RH re-
sulted in lower ET fluxes. ETsum (Fig. 9a) ranged between
212± 45 mm (LV-cc n-d) and 180± 29 mm (RG-ca d).

The ET0 for the observed study period (September 2020–
June 2021) and region (Uckermark) was 370 mm (DWD,
2022). We used the monthly values to calculate the ETc us-
ing ET0 and the crop coefficient (Allen, 1998), resulting in
an ETc of 263 mm for the cultivation period.

4 Discussion

In the following, we will discuss (i) the effects of soil type
and topsoil dilution on ETsum, yield (DM) and WUEagro;
(ii) the spatiotemporal variability of ET fluxes over the culti-
vation period; and (iii) the suitability of the modeling strate-
gies used in this study as well as potential ways forward to
improve our approaches.

4.1 Effects of soil type and topsoil dilution on ET

In the studied region, soil types vary in their suitability
for agricultural cultivation (MLUK, 2020). Luvisols support
large water fluxes due to their clay-depleted, deep topsoils
in combination with the clay-enriched and mostly decalci-
fied subsoils. They are among the most productive soils in
Brandenburg (MLUK, 2020; Stahr, 2022). Regosols are gen-
erally only moderately suitable for arable farming. They are
usually found on hilltops and are characterized by parent ma-
terial near the surface, lack of depth development and limited
rootability due to the dense, carbonate-rich parent material.
They typically have low water availability and plant growth
(Herbrich et al., 2018). They are formed by erosion of agri-
cultural Luvisols as relatively organic-matter-rich topsoil is
removed and deeper, nutrient-depleted lower soil layers are
mixed into the cultivated layer (Arriaga and Lowery, 2003;
Pimentel and Kounang, 1998).

The topsoil dilution that was carried out aimed at testing
one of the processes of an approach to enhancing soil C stor-
age through topsoil deepening. Topsoil deepening through
deeper plowing might store originally topsoil-bound SOC in
the deeper subsoil and generate SOC recharge in the diluted
C-poor topsoil (Sommer et al., 2016), the latter being tested
during this study by the topsoil dilution that was carried out.
However, side-effects include, similar to erosion, nutrient de-
ficiency and weaker rootability leading to decreased crop
growth and yield (Al-Kaisi and Grote, 2007; Schneider et al.,
2017; Feng et al., 2020). The boundary soil conditions estab-
lished by erosion and topsoil dilution may not only impact
crop growth and yield, but also disrupt the crop water bal-
ance, especially with the expected increase in drought and
heat events in central Europe (Spinoni et al., 2018). Con-
sequently, farmers might become limited in their choice of
crops due to water availability.

As predicted, we observed a significant decline in yield
with erosion and topsoil dilution during the study period.
However, the impact of soil-type-specific erosion intensity
and topsoil dilution on ETsum was not as pronounced, and
the trend of declining ETsum with soil type and topsoil dilu-
tion was not statistically significant among all the treatments
(212±45 mm on non-eroded Calcic Luvisol to 180±29 mm
on extremely eroded topsoil-diluted Calcaric Regosol). No-
tably, the studied year 2020–2021 was comparatively wet
(231.1 mm precipitation during the observed period), and
potential effects of lower rootability and enhanced drought
stress were not observed during the main growth period. This
is of great importance because the Uckermark region gener-
ally has an overall water balance of about 1 (precipitation
input equals ETpot output) and is therefore water- or energy-
limited depending on the annual precipitation and ETpot of
each year. For example, the extremely dry year of 2018 was
very likely water-limited, with annual precipitation of less
than 450 mm and a predicted ETpot of > 650 mm by far ex-
ceeding annual precipitation. However, the year 2021 had an-
nual precipitation of about 600 mm and a predicted ETpot of
< 575 mm (DWD, 2022). Hence, in rather wet years, like the
observed 2021, plant growth in the region is rather energy-
limited (but is of course dependent on precipitation during
the growth period). This fits with our results, as during the
studied period, most plots had a lower ETsum than cumulative
precipitation. However, it is very likely that the ETpot /Pr ra-
tio and in fact the observed actual ETsum /Pr ratio will also
vary considerably between wetter and drier years and be-
tween different crops (particularly winter vs. summer crops).

Additionally, the observed imbalance of the response in
yield vs. ETsum led to a significantly reduced WUEagro. In a
period of consecutive dry years, a lower WUEagro could ad-
ditionally have a negative effect on the water and carbon bal-
ance of the whole system, since the water consumption be-
comes less efficient, especially for the Calcaric Regosol (up
to 36 % less yield per used amount of water; Meena et al.,
2020). This could further exacerbate the drought and poten-
tially lead to legacy effects. Finally, winter crops and espe-
cially winter rye are more resilient to drought (Ehlers, 1997)
due to their head start in growth. Hence, a long-term investi-
gation including other crops (e.g., summer cereal crops) and
management strategies would be particularly interesting, as
a greater decrease in ET may be observed with soil-specific
erosion intensity.

4.2 Seasonal variability of ET fluxes and WUE

Over the entire cultivation period, ET fluxes responded par-
ticularly to crop growth, first during the establishment period
in fall (mid-October to mid-November) and then again dur-
ing the main growth period in spring (end of March to mid-
May). The close relation of measured ET flux dynamics to
RVI (Fig. 8; e.g., Hanks et al., 1969) can be associated with
increasing T rates that strongly compensate for the suppres-
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Figure 8. Relationship between ET and temperature (T ; ◦C), relative humidity (RH; %), photosynthetically active radiation (PAR;
µmol m−2 s−1), ratio vegetation index (RVI; mmol m−2 s−1) and the associated regression lines. Statistical values (r2 and p) for the re-
lationship between ET and response variables (environmental parameters) are presented in the table.

sion of E as canopy biomass increases (Dubbert et al., 2014;
Groh et al., 2020). Over the diurnal cycle, ET reacted to
changes in environmental conditions, particularly tempera-
ture and RH, which together define the vapor-pressure deficit
(VPD), as well as PAR. In particular, crops that have been
bred to prioritize carbon gain over water conservation will
tend to respond strongly to rising VPD (Dubbert et al., 2014;
Massmann et al., 2019). Air temperature, humidity and PAR
together with increasing (expressed as higher RVI) biomass-
controlled ET variability during the peak growth period in
spring until harvest. SM, on the other hand, did not have a
limiting effect on ET, which we attribute to the wet condi-
tions during the observation period (see above), confirming
that the observed crop cycle was not limited by water avail-
ability.

One of our expectations was that differences in ETsum
would result mainly from differences during the main veg-
etation period from April to harvest due to variations in
biomass and thus T . However, while the growing season be-
tween April and June is responsible for a large portion of
ETsum, ranging from 66 % to 73 %, it is only responsible
for a small portion of differences between treatments, with
a maximum of 14.3 mm from the non-eroded soil types. The
combined fall and winter period, on the other hand, is re-
sponsible for a difference of up to 17.5 mm in ETsum be-
tween non-eroded and extremely eroded soil types, although
it accounts for 27 % to 34 % of ETsum only. This is inter-

esting, because it suggests that the reasons behind the soil
type differences in ET for winter rye are caused by static
differences (e.g., lower biomass) and suppressed E (e.g.,
a shift in the T/ET ratio) rather than dynamic differences
(e.g., the vegetation responses to environmental drivers or
drought). This should be further evaluated by partitioning
ET into T and E. The described FluxCrane is particularly
suited for such an approach by combining flux and in situ
stable isotope approaches (Dubbert et al., 2014; Rothfuss et
al., 2021). Besides the overall slight reduction in ETsum on
eroded soil types and topsoil-diluted treatments, measured
ET fluxes were larger on extremely eroded plots at the be-
ginning of the growing season before canopy closure, which
could be explained by a lower soil cover. This may be related
to the fact that a lower vegetation cover, which is visible in
the RVI, can lead to higher E prior to canopy closure (Dub-
bert et al., 2014; Hu et al., 2009; Raz-Yaseef et al., 2012;
Wang et al., 2012).

4.3 Modeling approaches

Methodologically, the study faced two main challenges: ac-
curately quantifying ETsum and realistically predicting diur-
nal variations during both the low-ET winter and high-ET
summer periods. Among the modeling approaches compared
in this study, only NLR showed calibration statistics that
were less than good (Table 2). While the LUTs showed very
good calibration results, the allocation problems that occur
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Figure 9. Averaged seasonal cumulative ET (ETsum; mm) (a), harvest in the form of dry mass (DM; kg) (b) and WUEagro of the different
treatments and the associated standard deviation.

when no class is found (Fig. 5) and the mean is used re-
sulted in the lowest predictive ability during validation over
the full range of measured ET fluxes. Some studies also ob-
tained quite plausible results for LUTs and MDV (Boudhina
et al., 2018; Falge et al., 2001a; Moffat et al., 2007), and
adjusting the classes of the LUTs could further improve the
results of this approach. However, with the available data set,
the only way to avoid allocation problems was to use fewer
classes. This resulted in a loss of variability, making diur-
nal differences in ET invisible and their estimates less accu-
rate. MDV, on the other hand, partially showed only satis-
factory values during validation (Table 3), while SVM and
ANNs performed as good or very good according to the de-
fined classes (Table 1). Additionally, previous studies found
that MDV and LUTs perform particularly weakly with in-
creasingly large gaps (Moffat et al., 2007; Kim et al., 2020).
Especially for conditions where no measurements could take
place due to, inter alia, environmental conditions (large gaps
in winter), the fact that MDV takes averaged values of adja-
cent measurements could explain the rather bad predictions.
This is similar for LUTs, since no classes could be created for

conditions where no measurements took place. The machine-
learning approaches SVM and ANN_BR, on the other hand,
are not as sensitive to larger observational gaps because their
training includes all the measurements. For seasonal vari-
ability and budgets, we achieved the best performance with
the SVM approach, while ANNs showed reduced daily and
seasonal cumulative ET due to an unrealistic number of pre-
dicted negative fluxes (up to 51 mm; Fig. S5). However, the
best approach to modeling or gap-filling can vary depending
on the application and investigated parameters. For example,
in gap-filling methane fluxes using eddy covariance (Kim et
al., 2020), ANN_BR was superior to SVM.

Another important aspect of modeling is potential over-
estimation or underestimation of fluxes. Shrestha and
Shukla (2015), for example, attempted to predict actual
lysimeter ET using different approaches (e.g., ANN_BR and
SVM) and crops (pepper, watermelon) in a subtropical envi-
ronment. The best predictions were obtained with SVM (pep-
per: 204.7 mm lysimeter vs. 181.8 mm SVM; watermelon:
231.71 mm lysimeter vs. 189.83 mm SVM). However, they
reported overestimation of low fluxes and underestimation

https://doi.org/10.5194/hess-27-3851-2023 Hydrol. Earth Syst. Sci., 27, 3851–3873, 2023



3868 A. Dahlmann et al.: Benefits of a robotic chamber system for determining evapotranspiration

of high fluxes by ANN_BR and SVM. In our study, we ob-
served a tendency to slightly overestimate small fluxes us-
ing SVM-based modeling (Table S4). In this regard, using
plot-specific multi-depth SM data could also improve the
predicted ETsum based on SVM in the future. Similarly, we
expected the consideration of wind speed to improve ET pre-
diction but could not find an effect on observed ET for the
study period.

Furthermore, it must be noted that the quality of SVM (and
ANN_BR) predictions is highly dependent on the number of
data available (Chia et al., 2020; Abudu et al., 2010). Conse-
quently, we tested the minimum number of data necessary to
provide predicted ET fluxes of good quality (see the criteria
in “Materials and methods”). For the specific data set, even
as little as 50 % of the total data available (a minimum of
300 measurements) provided good results. Thus, we empha-
size that capturing a large variability of fluxes under different
environmental conditions seems to be more important than a
merely large data set.

4.4 Evaluation of the new system and comparison with
other measurement techniques

ETc was 263 mm during the cultivation period, which is com-
parable to our observed results (ETsum) of 212 mm for non-
eroded Calcic Luvisol. However, it is important to consider
that ET0 calculations using the Penman–Monteith equation
(FAO56-PM) are reported to overestimate ET0 and conse-
quently ETc (Allen et al., 1998). Thus, our FluxCrane ETsum
seems sensible overall. Nevertheless, it is advisable to di-
rectly compare them with lysimeter and potentially drone-
based observations of ET. This is particularly relevant in the
light of ongoing discussions surrounding method constraints
of estimating ET across scales (Ding et al., 2021; Ghiat et al.,
2021; Hamel et al., 2015).

For instance, there is a nearby lysimeter experiment with
many treatments conducted by Groh et al. (2020). They re-
port a wide range of ETsum for the period between 2014 and
2018 (300 to 600 mm), with the lower-range boundary being
comparable to our results (considering that we only calcu-
lated budgets for the 9-month cultivation period and excluded
the fallow period during the summer months with high ET). It
has to be noted, however, that not only environmental condi-
tions but also crops studied in Groh et al. (2020) varied from
year to year and, more importantly, from our study, hamper-
ing comparability between studies. However, the direct vicin-
ity of two large-scale setups able to estimate ETsum should
be utilized in the future. Another lysimeter-based study con-
ducted in Braunschweig (Lower Saxony, Germany) for a cul-
tivation season of winter rye reports a range of observed ET
fluxes very comparable to our study, with less than 1 mm d−1

in winter to a maximum of 6–7 mm d−1 in summer (Bunde-
sanstalt für Gewässerkunde, 2023).

Finally, modeling using statistical and empirical ap-
proaches is used in many fields, e.g., to calculate reference

ET (ET0) with limited meteorological parameters (Chia et
al., 2020) or ET from eddy covariance measurements and
canopy chamber measurements (Hui et al., 2004; Moffat et
al., 2007; Falge et al., 2001a, b; Hamel et al., 2015; Kübert et
al., 2019). The connection between modeling approaches in
combination with the described continuous high-resolution
long-term ET measurements of numerous small-scale treat-
ments gives additional opportunities to observe the progres-
sion of ET over an entire cultivation season and, for exam-
ple, to identify key periods that drive overall treatment differ-
ences. Here, our combined approach of automated chamber
measurements of ET with data-driven modeling fills a unique
application niche among the different methods to quantify
ET fluxes. In comparison, eddy covariance (e.g., Boudhina
et al., 2018; Simpson et al., 2019) and lysimeter-based obser-
vations (Groh et al., 2020) are unparalleled in measurement
frequency and therefore only require filling gaps, which are
typically much smaller compared to our approach. However,
eddy covariance systems operating at the ecosystem scale are
not able to detect small-scale spatial heterogeneities in ET
fluxes, e.g., to test the effects of soil type or management or
different crops grown simultaneously (Anapalli et al., 2018).
Lysimeter approaches, on the other hand, are useful for com-
bining small-scale spatial heterogeneity with high-frequency
measurements but are limited to water cycle applications, and
a direct link to carbon–GHG dynamics is not straightforward.

Classic manual gas exchange chamber applications are ca-
pable of analyzing small-scale spatial effects (e.g., Macagga
et al., 2023; Antonijević et al., 2023). However, despite the
ability to observe diurnal cycles, the total number of mea-
sured data are usually very limited. Typically, campaign-
based measurements are performed approximately every
3 weeks (Huth et al., 2017). This results in a total maxi-
mum number of about 300 fluxes per treatment (three repli-
cates, six measurements per plot per campaign). Even when
measurement campaigns are performed more frequently, the
available fluxes remaining after quality checks are quite lim-
ited (see, e.g., Dubbert et al., 2014, with 22 measurement
campaigns in 8 months resulting in ∼ 297 fluxes per treat-
ment). Under these conditions, combining chamber measure-
ments with data-driven ET flux modeling approaches is usu-
ally limited to very simple approaches (e.g., Falge et al.,
2001a). In the present study, the automated FluxCrane gen-
erated approximately 7–10 times the number of ET fluxes
compared to manually operated chambers. In addition, the
system is not as disruptive to plant growth. For example, per-
manently installed automated canopy chambers or manually
conducted approaches tend to physically harm the canopy
and have condensation issues due to permanently installed
tubing and inappropriate air mixing within the chamber (e.g.,
Hamel et al., 2015). Moreover, the ability to observe night-
time fluxes has great potential to study previously overlooked
short-term dynamics in ET and to improve the representation
of underlying processes in process-based hydrological mod-
eling compared to manually operated chambers. This offers
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several benefits. (1) Dynamic developments in ET fluxes and
differences between treatments are easier to analyze (even
if only the measured fluxes are considered). (2) The much
larger number of fluxes available has the potential to apply
data-driven ET flux modeling using advanced statistical, em-
pirical and machine-learning-based algorithms.

4.5 Conclusion and outlook

We present the possibility of obtaining plausible ETsum and
diurnal cycles of ET by using the novel FluxCrane system
in combination with data-driven SVM-based modeling. We
expected strong negative effects of eroded soils and topsoil
dilution on ETsum as well as yield. However, crop yield re-
sponded much more strongly to eroded soils and topsoil di-
lution than ETsum in the observed rather wet year, leading
to strong negative shifts in WUEagro. The novel FluxCrane,
combined with data-driven modeling, fills the unique appli-
cation to observe temporal flux dynamics and seasonal bud-
gets for distinct landscape elements simultaneously. Thus,
the new system has a large potential to bring new insights
into water flux dynamics and budgets. In combination with
CO2 measurements, the novel FluxCrane could give new in-
sights into ecosystem WUE at a high spatiotemporal resolu-
tion using NEE (net ecosystem exchange). In addition, cou-
pled with the GEP (gross ecosystem production) and inno-
vative measurements such as in situ stable water isotopes
(Dubbert et al., 2014; Kübert et al., 2020), a separation of
ET into T and E would be possible to assess crop perfor-
mance by assessing plant-specific WUE (Tallec et al., 2013)
or to study root water uptake dynamics (Deseano Diaz et al.,
2023; Kühnhammer et al., 2020). This is particularly relevant
for regions with strong spatial heterogeneity in soils and gen-
erally low precipitation like the Uckermark and is of crucial
importance for the terrestrial water balance and the predic-
tion of future ecosystem feedbacks (Groh et al., 2020).
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