Articles | Volume 27, issue 20
https://doi.org/10.5194/hess-27-3823-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-3823-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Forecasting estuarine salt intrusion in the Rhine–Meuse delta using an LSTM model
Bas J. M. Wullems
CORRESPONDING AUTHOR
Hydrology and Environmental Hydraulics Group, Wageningen University, Wageningen, the Netherlands
Department of Operational Water Management & Early Warning, Unit of Inland Water Systems, Deltares, Delft, the Netherlands
Claudia C. Brauer
Hydrology and Environmental Hydraulics Group, Wageningen University, Wageningen, the Netherlands
Fedor Baart
Department of Operational Water Management & Early Warning, Unit of Inland Water Systems, Deltares, Delft, the Netherlands
Department of Hydraulic Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands
Albrecht H. Weerts
Hydrology and Environmental Hydraulics Group, Wageningen University, Wageningen, the Netherlands
Department of Operational Water Management & Early Warning, Unit of Inland Water Systems, Deltares, Delft, the Netherlands
Related authors
No articles found.
Claudia C. Brauer, Ruben O. Imhoff, and Remko Uijlenhoet
EGUsphere, https://doi.org/10.5194/egusphere-2025-1712, https://doi.org/10.5194/egusphere-2025-1712, 2025
Short summary
Short summary
In lowland catchments, flood severity is determined by both the amount of rain and how wet the soil is prior to the rain event. We investigated the trade-off between these two factors and how this affects peaks in the river discharge, for both the current and future climate. We found that with climate change floods will increase in winter and spring, but decease in fall. The total number and severity of floods will increase. This can help water managers to design climate robust water management.
Devi Purnamasari, Adriaan J. Teuling, and Albrecht H. Weerts
Hydrol. Earth Syst. Sci., 29, 1483–1503, https://doi.org/10.5194/hess-29-1483-2025, https://doi.org/10.5194/hess-29-1483-2025, 2025
Short summary
Short summary
This paper introduces a method to identify irrigated areas by combining hydrology models with satellite temperature data. Our method was tested in the Rhine basin and aligns well with official statistics. It performs best in regions with large farms and less well in areas with small farms. Observed differences to existing data are influenced by data resolution and methods.
Junfu Gong, Xingwen Liu, Cheng Yao, Zhijia Li, Albrecht H. Weerts, Qiaoling Li, Satish Bastola, Yingchun Huang, and Junzeng Xu
Hydrol. Earth Syst. Sci., 29, 335–360, https://doi.org/10.5194/hess-29-335-2025, https://doi.org/10.5194/hess-29-335-2025, 2025
Short summary
Short summary
Our study introduces a new method to improve flood forecasting by combining soil moisture and streamflow data using an advanced data assimilation technique. By integrating field and reanalysis soil moisture data and assimilating this with streamflow measurements, we aim to enhance the accuracy of flood predictions. This approach reduces the accumulation of past errors in the initial conditions at the start of the forecast, helping to better prepare for and respond to floods.
Steven Reinaldo Rusli, Victor F. Bense, Syed M. T. Mustafa, and Albrecht H. Weerts
Hydrol. Earth Syst. Sci., 28, 5107–5131, https://doi.org/10.5194/hess-28-5107-2024, https://doi.org/10.5194/hess-28-5107-2024, 2024
Short summary
Short summary
In this paper, we investigate the impact of climatic and anthropogenic factors on future groundwater availability. The changes are simulated using hydrological and groundwater flow models. We find that future groundwater status is influenced more by anthropogenic factors than climatic factors. The results are beneficial for informing responsible parties in operational water management about achieving future (ground)water governance.
Willem J. van Verseveld, Albrecht H. Weerts, Martijn Visser, Joost Buitink, Ruben O. Imhoff, Hélène Boisgontier, Laurène Bouaziz, Dirk Eilander, Mark Hegnauer, Corine ten Velden, and Bobby Russell
Geosci. Model Dev., 17, 3199–3234, https://doi.org/10.5194/gmd-17-3199-2024, https://doi.org/10.5194/gmd-17-3199-2024, 2024
Short summary
Short summary
We present the wflow_sbm distributed hydrological model, recently released by Deltares, as part of the Wflow.jl open-source modelling framework in the programming language Julia. Wflow_sbm has a fast runtime, making it suitable for large-scale modelling. Wflow_sbm models can be set a priori for any catchment with the Python tool HydroMT-Wflow based on globally available datasets, which results in satisfactory to good performance (without much tuning). We show this for a number of specific cases.
Marjanne J. Zander, Pety J. Viguurs, Frederiek C. Sperna Weiland, and Albrecht H. Weerts
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-274, https://doi.org/10.5194/hess-2023-274, 2023
Manuscript not accepted for further review
Short summary
Short summary
Flash floods are damaging natural hazard which often occur in the European Alps. High resolution climate model output is combined with high resolution distributed hydrological models to model changes in flash flood frequency and intensity. Results show a similar flash flood frequency for autumn in the future, but a decrease in summer. However, the future discharge simulations indicate an increase in the flash flood severity in both summer and autumn leading to more severe flash flood impacts.
Jerom P. M. Aerts, Rolf W. Hut, Nick C. van de Giesen, Niels Drost, Willem J. van Verseveld, Albrecht H. Weerts, and Pieter Hazenberg
Hydrol. Earth Syst. Sci., 26, 4407–4430, https://doi.org/10.5194/hess-26-4407-2022, https://doi.org/10.5194/hess-26-4407-2022, 2022
Short summary
Short summary
In recent years gridded hydrological modelling moved into the realm of hyper-resolution modelling (<10 km). In this study, we investigate the effect of varying grid-cell sizes for the wflow_sbm hydrological model. We used a large sample of basins from the CAMELS data set to test the effect that varying grid-cell sizes has on the simulation of streamflow at the basin outlet. Results show that there is no single best grid-cell size for modelling streamflow throughout the domain.
Mar J. Zander, Pety J. Viguurs, Frederiek C. Sperna Weiland, and Albrecht H. Weerts
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-207, https://doi.org/10.5194/hess-2022-207, 2022
Manuscript not accepted for further review
Short summary
Short summary
We perform a modelling study to research potential future changes in flash flood occurrence in the European Alps. We use new high-resolution numerical climate simulations, which can simulate the type of local, intense rainstorms which trigger flash floods, combined with high-resolution hydrological modelling. We find that flash floods would become less frequent in summers in our future climate scenario, with little change in autumns. However, the maximal severity would increase in both seasons.
Laurène J. E. Bouaziz, Emma E. Aalbers, Albrecht H. Weerts, Mark Hegnauer, Hendrik Buiteveld, Rita Lammersen, Jasper Stam, Eric Sprokkereef, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 26, 1295–1318, https://doi.org/10.5194/hess-26-1295-2022, https://doi.org/10.5194/hess-26-1295-2022, 2022
Short summary
Short summary
Assuming stationarity of hydrological systems is no longer appropriate when considering land use and climate change. We tested the sensitivity of hydrological predictions to changes in model parameters that reflect ecosystem adaptation to climate and potential land use change. We estimated a 34 % increase in the root zone storage parameter under +2 K global warming, resulting in up to 15 % less streamflow in autumn, due to 14 % higher summer evaporation, compared to a stationary system.
Dirk Eilander, Willem van Verseveld, Dai Yamazaki, Albrecht Weerts, Hessel C. Winsemius, and Philip J. Ward
Hydrol. Earth Syst. Sci., 25, 5287–5313, https://doi.org/10.5194/hess-25-5287-2021, https://doi.org/10.5194/hess-25-5287-2021, 2021
Short summary
Short summary
Digital elevation models and derived flow directions are crucial to distributed hydrological modeling. As the spatial resolution of models is typically coarser than these data, we need methods to upscale flow direction data while preserving the river structure. We propose the Iterative Hydrography Upscaling (IHU) method and show it outperforms other often-applied methods. We publish the multi-resolution MERIT Hydro IHU hydrography dataset and the algorithm as part of the pyflwdir Python package.
Ruben Imhoff, Claudia Brauer, Klaas-Jan van Heeringen, Hidde Leijnse, Aart Overeem, Albrecht Weerts, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 25, 4061–4080, https://doi.org/10.5194/hess-25-4061-2021, https://doi.org/10.5194/hess-25-4061-2021, 2021
Short summary
Short summary
Significant biases in real-time radar rainfall products limit the use for hydrometeorological forecasting. We introduce CARROTS (Climatology-based Adjustments for Radar Rainfall in an OperaTional Setting), a set of fixed bias reduction factors to correct radar rainfall products and to benchmark other correction algorithms. When tested for 12 Dutch basins, estimated rainfall and simulated discharges with CARROTS generally outperform those using the operational mean field bias adjustments.
Paul C. Astagneau, Guillaume Thirel, Olivier Delaigue, Joseph H. A. Guillaume, Juraj Parajka, Claudia C. Brauer, Alberto Viglione, Wouter Buytaert, and Keith J. Beven
Hydrol. Earth Syst. Sci., 25, 3937–3973, https://doi.org/10.5194/hess-25-3937-2021, https://doi.org/10.5194/hess-25-3937-2021, 2021
Short summary
Short summary
The R programming language has become an important tool for many applications in hydrology. In this study, we provide an analysis of some of the R tools providing hydrological models. In total, two aspects are uniformly investigated, namely the conceptualisation of the models and the practicality of their implementation for end-users. These comparisons aim at easing the choice of R tools for users and at improving their usability for hydrology modelling to support more transferable research.
Laurène J. E. Bouaziz, Fabrizio Fenicia, Guillaume Thirel, Tanja de Boer-Euser, Joost Buitink, Claudia C. Brauer, Jan De Niel, Benjamin J. Dewals, Gilles Drogue, Benjamin Grelier, Lieke A. Melsen, Sotirios Moustakas, Jiri Nossent, Fernando Pereira, Eric Sprokkereef, Jasper Stam, Albrecht H. Weerts, Patrick Willems, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 25, 1069–1095, https://doi.org/10.5194/hess-25-1069-2021, https://doi.org/10.5194/hess-25-1069-2021, 2021
Short summary
Short summary
We quantify the differences in internal states and fluxes of 12 process-based models with similar streamflow performance and assess their plausibility using remotely sensed estimates of evaporation, snow cover, soil moisture and total storage anomalies. The dissimilarities in internal process representation imply that these models cannot all simultaneously be close to reality. Therefore, we invite modelers to evaluate their models using multiple variables and to rely on multi-model studies.
Cited articles
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous distributed systems, arxiv [preprint], https://doi.org/10.48550/arXiv.1603.04467, 2015. a
Apel, H., Khiem, M., Quan, N. H., and Toan, T. Q.: Brief communication: seasonal prediction of salinity intrusion in the Mekong delta, Nat. Hazards Earth Syst. Sci., 20, 1609–1616, https://doi.org/10.5194/nhess-20-1609-2020, 2020. a
Augustijn, D. C. M., Van den Berg, M., De Bruine, E., and Korving, H.: Dynamic control of salt intrusion in the Mark-Vliet river system, The Netherlands, Water Resour. Manage., 25, 1005–1020, https://doi.org/10.1007/s11269-010-9738-1, 2011. a, b
Beersma, J. J., Buishand, T. A., De Goederen, S., and Jacobs, P.: Zout, zouter, zoutst: statistiek van de externe verzilting in midden-west Nederland, Government 199-III, KNMI, De Bilt, https://cdn.knmi.nl/system/data_center_publications/files/000/066/381/original/publ_199iii_zout.pdf?1495620538 (last access: 2 January 2023), 2005. a
Beijk, V., Coonen, M., Van den Heuvel, R., and Treurniet, M. M.: Smart watermanagement – case nederrijn-lek, in: Netherlands Centre for River Studies (NCR): Book of abstracts NCR days 2017, edited by: Hoitink, A., De Ruijsscher, T., Geertsema, T., Makaske, B., Wallinga, J., Candel, J., and Poelman, J., Zalsman Innovative Print, Kampen, Wageningen, https://ncr-web.org/publications/ncr-days-2017-book-of-abstracts/ (last access: 7 November 2022), 2017. a
Bertels, D. and Willems, P.: Physics-informed machine learning method for modelling transport of a conservative pollutant in surface water systems, J. Hydrol., 619, 129354, https://doi.org/10.1016/j.jhydrol.2023.129354, 2023. a
Brauer, C.: Modelling rainfall-runoff processes in lowland catchments, PhD thesis, Wageningen University, Wageningen, https://edepot.wur.nl/296285 (last access: 31 October 2022), 2014. a
Buitink, J., Swank, A. M., van der Ploeg, M., Smith, N. E., Benninga, H.-J. F., van der Bolt, F., Carranza, C. D. U., Koren, G., van der Velde, R., and Teuling, A. J.: Anatomy of the 2018 agricultural drought in the Netherlands using in situ soil moisture and satellite vegetation indices, Hydrol. Earth Syst. Sci., 24, 6021–6031, https://doi.org/10.5194/hess-24-6021-2020, 2020. a
Buschman, F.: Aanpassing, herkalibratie en verificatie SOBEK 3 model van de Rijn-Maasmonding, Tech. Rep. 11202220-006-ZWS-0012, Deltares, https://publicwiki.deltares.nl/display/NW/Achtergrond (last access: 20 October 2023), 2018. a
Cai, H., Savenije, H. H., Zuo, S., Jiang, C., and Chua, V. P.: A predictive model for salt intrusion in estuaries applied to the Yangtze estuary, J. Hydrol., 529, 1336–1349, https://doi.org/10.1016/j.jhydrol.2015.08.050, 2015. a
Calkoen, F., Luijendijk, A., Rivero, C. R., Kras, E., and Baart, F.: Traditional vs. machine-learning methods for forecasting sandy shoreline evolution using historic satellite-derived shorelines, Remote Sens., 13, 934, https://doi.org/10.3390/rs13050934, 2021. a
Carbajal, J. P. and Bellos, V.: An overview of the role of machine learning in hydraulic and hydrological modeling, engrXiv [preprint], https://doi.org/10.31224/osf.io/wgm72, 2018. a, b
Chollet, F.: Keras: the Python deep learning API, https://keras.io/ (last access: 27 June 2023), 2015. a
Deltares: SOBEK 3 – next generation hydro software – Deltares public wiki, https://publicwiki.deltares.nl/display/nghs/SOBEK+3 (last access: 27 June 2023), 2019. a
Gettelman, A., Gagne, D. J., Chen, C.-C., Christensen, M. W., Lebo, Z. J., Morrison, H., and Gantos, G.: Machine learning the warm rain process, J. Adv. Model. Earth Syst., 13, e2020MS002268, https://doi.org/10.1029/2020MS002268, 2021. a
Gisen, J. I. A., Savenije, H. H. G., and Nijzink, R. C.: Revised predictive equations for salt intrusion modelling in estuaries, Hydrol. Earth Syst. Sci., 19, 2791–2803, https://doi.org/10.5194/hess-19-2791-2015, 2015. a
Haasnoot, M., Van Deursen, W., Guillaume, J., Kwakkel, J., Van Beek, E., and Middelkoop, H.: Fit for purpose? Building and evaluating a fast, integrated model for exploring water policy pathways, Environ. Model. Softw., 60, 99–120, https://doi.org/10.1016/j.envsoft.2014.05.020, 2014. a, b
Hauswirth, S. M., Bierkens, M. F., Beijk, V., and Wanders, N.: The potential of data driven approaches for quantifying hydrological extremes, Adv. Water Resour., 155, 104017, https://doi.org/10.1016/j.advwatres.2021.104017, 2021. a, b, c
Hochreiter, S. and Schmidhuber, J.: Long Short-Term Memory, Neural Comput., 9, 1735–1780, https://doi.org/10.1162/neco.1997.9.8.1735, 1997. a
Homola, D., Bernico, M., Tallent, E., Ingvar-Y, Christ, M., Massaron, L., Bittremieux, W., Miner, L., Arsenkhy, Glover, A., Tamayo, S., Baum, A., Stein, D., Mao771, Mottl, D., Pfannschmidt, L., Zoj613, Wu, L., and Biesinger, D.: Boruta_py, GitHub [code], https://github.com/scikit-learn-contrib/boruta_py (last access: 27 June 2023), 2022. a, b
Hu, J., Liu, B., and Peng, S.: Forecasting salinity time series using RF and ELM approaches coupled with decomposition techniques, Stochastic Environ. Res. Risk A., 33, 1117–1135, https://doi.org/10.1007/s00477-019-01691-1, 2019. a
Huismans, Y., Buschman, F., Wesselius, C., Daniels, J., and Kuijper, K.: Modelleren van zoutverspreiding met SOBEK 3 en SOBEK-RE, Tech. rep., Deltares, https://publications.deltares.nl/1230077_003.pdf (last access: 7 December 2022), 2016. a
Huismans, Y., Van der Wijk, R., Fujisaki, A., and Sloff, K.: Zoutindringing in de Rijn-Maasmonding, Tech. Rep. 11200589-001-ZWS-0010, Deltares, https://publications.deltares.nl/11200589_001_0010.pdf (last access: 7 December 2022), 2018. a
Huismans, Y., Groenenboom, J., Zijl, F., and Van der Wijk, R.: Voorspellen optreden nalevering bij Bernisse, Tech. Rep. 11203734-008-ZWS-0003, Deltares, https://publications.deltares.nl/11200589_001_0010.pdf (last access: 23 November 2022), 2019. a
Hydrologic, Rijkswaterstaat, Waterschap Hollandse Delta, Waterschap Brabantse Delta, Hoogheemraadschap van Delfland, Hoogheemraadschap van Schieland en de Krimpenerwaard, Hoogheemraadschap van Rijnland, and Hoogheemraadschap De Stichtse Rijnlanden: Inventarisatie slim watermanagement Rijn-Maasmonding, Tech. rep., Hydrologic, https://www.slimwatermanagement.nl/publish/pages/158579/rmm_2015_rapport_inventarisatie_slim_wm_rijn-maasmonding.pdf (last access: 19 January 2023), 2015. a
Jongbloed, H., Schuttelaars, H. M., Dijkstra, Y. M., Donkers, P. B., and Hoitink, A. J. F.: Influence of wind on subtidal salt intrusion and stratification in well-mixed and partially stratified estuaries, J. Phys. Oceanogr., 52, 3139–3158, https://doi.org/10.1175/JPO-D-21-0291.1, 2022. a
Kingma, D. P. and Ba, J.: Adam: a method for stochastic optimization, arxiv [preprint], http://arxiv.org/abs/1412.6980 (last access: 27 June 2023), 2017. a
Korving, H. and Visser, M.: Data-gedreven anticiperen op droogte, Tech. Rep. 11205273-004-BGS-0002, Deltares, https://puc.overheid.nl/rijkswaterstaat/doc/PUC_642114_31/1/ (last access: 7 December 2022), 2021. a
Kratzert, F., Klotz, D., Brenner, C., Schulz, K., and Herrnegger, M.: Rainfall–runoff modelling using Long Short-Term Memory (LSTM) networks, Hydrol. Earth Syst. Sci., 22, 6005–6022, https://doi.org/10.5194/hess-22-6005-2018, 2018. a, b
Kursa, M. B. and Rudnicki, W. R.: Feature selection with the Boruta package, J. Stat. Softw., 36, 1–13, https://doi.org/10.18637/jss.v036.i11, 2010. a
Lenderink, G. and Beersma, J.: The KNMI'14 WH,dry scenario for the Rhine and Meuse basins, Tech. Rep. WR-2015-02, KNMI, https://www.knmi.nl/kennis-en-datacentrum/publicatie/the-knmi-14-wh-dry-scenario-for-the-rhine-and-meuse-basins#:~:text=Averaged ver the Rhine area,respectively 20 and 33 (last access: 20 October 2023), 2015. a
Lerczak, J. A., Geyer, W. R., and Ralston, D. K.: The temporal response of the length of a partially stratified estuary to changes in river flow and tidal amplitude, J. Phys. Oceanogr., 39, 915–933, https://doi.org/10.1175/2008JPO3933.1, 2009. a
Liu, B., Liao, Y., Yan, S., and Yan, H.: Dynamic characteristics of saltwater intrusion in the Pearl River estuary, China, Nat. Hazards, 89, 1097–1117, https://doi.org/10.1007/s11069-017-3010-4, 2017. a
Lu, P., Lin, K., Xu, C.-Y., Lan, T., Liu, Z., and He, Y.: An integrated framework of input determination for ensemble forecasts of monthly estuarine saltwater intrusion, J. Hydrol., 598, 126225, https://doi.org/10.1016/j.jhydrol.2021.126225, 2021. a
PDOK: Home – PDOK (Public Data On Maps), https://www.pdok.nl/ (last access: 17 April 2023), 2022. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., and Cournapeau, D.: Scikit-learn: machine learning in Python, J. Mach. Learn. Res., 12, 2825–2830, 2011. a
Pezij, M., Augustijn, D. C., Hendriks, D. M., and Hulscher, S. J.: The role of evidence-based information in regional operational water management in the Netherlands, Environ. Sci. Policy, 93, 75–82, https://doi.org/10.1016/j.envsci.2018.12.025, 2019. a, b
Prinsen, G. F. and Becker, B. P. J.: Application of SOBEK hydraulic surface water model in the Netherlands Hydrological modelling Instrument, Irrig. Drain., 60, 35–41, https://doi.org/10.1002/ird.665, 2011. a, b, c
QGIS: Welcome to the QGIS project!, https://www.qgis.org/en/site/ (last access: 12 September 2022), 2022. a
Qiu, C. and Wan, Y.: Time series modeling and prediction of salinity in the Caloosahatchee river estuary: time series modeling of estuarine salinity, Water Resour. Res., 49, 5804–5816, https://doi.org/10.1002/wrcr.20415, 2013. a
Ralston, D. K., Geyer, W. R., and Lerczak, J. A.: Structure, variability, and salt flux in a strongly forced salt wedge estuary, J. Geophys. Res., 115, C06005, https://doi.org/10.1029/2009JC005806, 2010. a
Rohmer, J. and Brisset, N.: Short-term forecasting of saltwater occurrence at La Comté river (French Guiana) using a kernel-based support vector machine, Environ. Earth Sci., 76, 246, https://doi.org/10.1007/s12665-017-6553-5, 2017. a, b, c
Savenije, H.: A one-dimensional model for salinity intrusion in alluvial estuaries, J. Hydrol., 85, 87–109, https://doi.org/10.1016/0022-1694(86)90078-8, 1986. a
Shaha, D. C., Cho, Y.-K., and Kim, T.-W.: Effects of river discharge and tide driven sea level variation on saltwater intrusion in Sumjin river estuary: an application of finite-volume coastal ocean model, J. Coast. Res., 287, 460–470, https://doi.org/10.2112/JCOASTRES-D-12-00135.1, 2013. a, b
Silva, S. J., Ma, P.-L., Hardin, J. C., and Rothenberg, D.: Physically regularized machine learning emulators of aerosol activation, Geosci. Model Dev., 14, 3067–3077, https://doi.org/10.5194/gmd-14-3067-2021, 2021. a
Sun, Z., Fan, J., Yan, X., and Xie, C.: Analysis of critical river discharge for saltwater intrusion control in the upper south branch of the Yangtze river estuary, J. Geogr. Sci., 30, 823–842, https://doi.org/10.1007/s11442-020-1757-0, 2020. a, b
Tian, X.: Model predictive control for operational water management: a case study of the Dutch water system, PhD thesis, Delft University of Technology, Delft, https://doi.org/10.4233/UUID:ADED9B65-677D-42BC-AF93-969199AA1F77, 2015. a
Van den Brink, M., Huismans, Y., Blaas, M., and Zwolsman, G.: Climate change induced salinization of drinking water inlets along a tidal branch of the Rhine river: impact assessment and an adaptive strategy for water resources management, Climate, 7, 49, https://doi.org/10.3390/cli7040049, 2019. a, b, c, d, e, f
Warmink, J. J., Van der Klis, H., Booij, M. J., and Hulscher, S. J. M. H.: Identification and quantification of uncertainties in a hydrodynamic river model using expert opinions, Water Resour. Manage., 25, 601–622, https://doi.org/10.1007/s11269-010-9716-7, 2011. a
Warmink, J. J., Brugnach, M., Vinke-de Kruijf, J., Schielen, R. M. J., and Augustijn, D. C. M.: Coping with uncertainty in river management: challenges and ways forward, Water Resour. Manage., 31, 4587–4600, https://doi.org/10.1007/s11269-017-1767-6, 2017. a
Wullems, B., Brauer, C., Baart, F., and Weerts, A.: Data underlying the publication: Forecasting estuarine salt intrusion in the Rhine-Meuse delta using an LSTM model, 4TU Research Data [data set], https://doi.org/10.4121/21944249, 2023a. a
Wullems, B., Brauer, C., Baart, F., and Weerts, A.: Code underlying the publication: Forecasting estuarine salt intrusion in the Rhine-Meuse delta using an LSTM model, 4TU Research Data [code], https://doi.org/10.4121/21946724, 2023b. a
Wullems, B., Brauer, C., Baart, F., and Weerts, A.: Machine learning model for predicting salt concentrations in the Rhine-Meuse delta, Zenodo [code], https://doi.org/10.5281/zenodo.10017846, 2023. a
Xue, P., Chen, C., Ding, P., Beardsley, R. C., Lin, H., Ge, J., and Kong, Y.: Saltwater intrusion into the Changjiang river: a model-guided mechanism study, J. Geophys. Res., 114, C02006, https://doi.org/10.1029/2008JC004831, 2009. a, b, c, d
Zhou, F., Liu, B., and Duan, K.: Coupling wavelet transform and artificial neural network for forecasting estuarine salinity, J. Hydrol., 588, 125127, https://doi.org/10.1016/j.jhydrol.2020.125127, 2020. a
Zounemat-Kermani, M., Matta, E., Cominola, A., Xia, X., Zhang, Q., Liang, Q., and Hinkelmann, R.: Neurocomputing in surface water hydrology and hydraulics: a review of two decades retrospective, current status and future prospects, J. Hydrol., 588, 125085, https://doi.org/10.1016/j.jhydrol.2020.125085, 2020. a
Short summary
In deltas, saltwater sometimes intrudes far inland and causes problems with freshwater availability. We created a model to forecast salt concentrations at a critical location in the Rhine–Meuse delta in the Netherlands. It requires a rather small number of data to make a prediction and runs fast. It predicts the occurrence of salt concentration peaks well but underestimates the highest peaks. Its speed gives water managers more time to reduce the problems caused by salt intrusion.
In deltas, saltwater sometimes intrudes far inland and causes problems with freshwater...