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Abstract. Estuarine salt intrusion causes problems with
freshwater availability in many deltas. Water managers re-
quire timely and accurate forecasts to be able to mitigate and
adapt to salt intrusion. Data-driven models derived with ma-
chine learning are ideally suited for this, as they can mimic
complex non-linear systems and are computationally effi-
cient. We set up a long short-term memory (LSTM) model to
forecast salt intrusion in the Rhine—Meuse delta, the Nether-
lands. Inputs for this model are chloride concentrations, wa-
ter levels, discharges and wind speed, measured at nine loca-
tions. It forecasts daily minimum, mean and maximum chlo-
ride concentrations up to 7 d ahead at Krimpen aan den IJssel,
an important location for freshwater provision. The model
forecasts baseline concentrations and peak timing well but
peak height is underestimated, a problem that becomes worse
with increasing lead time. Between lead times of 1 and 7d,
forecast precision declines from 0.9 to 0.7 and forecast recall
declines from 0.7 to 0.5 on average. Given these results, we
aim to extend the model to other locations in the delta. We ex-
pect that a similar setup can work in other deltas, especially
those with a similar or simpler channel network.

1 Introduction

Salt intrusion occurs in estuaries around the world (Apel
et al.,, 2020; Augustijn et al., 2011; Qiu and Wan, 2013;
Rohmer and Brisset, 2017; Shaha et al., 2013; Xue et al.,
2009). In an estuary, high-density seawater protrudes under-

neath freshwater from the river. Daily tidal motions, wind-
driven dispersion and variations in coastal swell and river
discharge change the position and shape of the saltwater—
freshwater interface (Savenije, 2012). During periods of pro-
longed drought and storms, saltwater intrudes further inland
than under ordinary conditions. This can hamper freshwater
availability, especially in densely populated deltas such as the
Hudson (Lerczak et al., 2009), Rhine (Van den Brink et al.,
2019) and Changjiang (Xue et al., 2009).

In some areas, salt intrusion has been causing problems
for years. In the Changjiang delta, a salt intrusion event in
1999 caused drinking water abstraction to be paused for 25d
(Xue et al., 2009). Other deltas may also be prone to such
problems, as rising sea levels due to climate change are ex-
pected to increase salt intrusion and put a strain on fresh-
water supply, especially in areas that will experience drier
summers and heavier storms (Van den Brink et al., 2019;
Huismans et al., 2019; Beijk et al., 2017). While storms only
last hours, they can cause elevated chloride concentrations
for weeks (Huismans et al., 2018). As a recent example, in
the summer of 2022, a prolonged drought hit Europe. As
a result, the discharge of the river Rhine was severely re-
duced for months and chloride concentrations in the tidally
influenced part of the river (near Lekhaven; see Fig. 1) ex-
ceeded 8000 mg L~! (Rijkswaterstaat, 2022). The yearly av-
erage of tidal maximum chloride concentration over 2022
was above 3500 mgL~!, which occurs on average once in
24 years based on data of the 20th century (Beersma et al.,
2005).
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In some intensively managed delta areas, surface water
is transferred from the larger (sometimes tidally influenced)
rivers to smaller waterways through inlets, so it can be used
to ensure suitable groundwater levels, flow velocity and wa-
ter quality for local land use (Brauer, 2014). This gives wa-
ter managers tools to limit the consequences of salt intrusion
for freshwater availability (Prinsen and Becker, 2011). In-
lets from the larger waterways to smaller channels can be
closed to prevent saltwater from reaching agricultural areas.
Alternatively, freshwater can be diverted from areas with a
surplus to areas with saltwater intrusion. There, it can ei-
ther be used to supplement the freshwater intake or to push
the freshwater—saltwater interface back seawards (Augustijn
et al., 2011). These decisions are usually made based on ob-
servations and operational rules (Pezij et al., 2019).

While operational rules are suitable for mitigation of fresh-
water availability problems on a short timescale, some of
the larger-scale measures take several days to implement.
To use these mitigation tools in a timely fashion, it would
be useful to have a multi-day forecast of chloride concentra-
tions at some critical locations (Hauswirth et al., 2021). This
would give water managers more time to implement mea-
sures. A physical or conceptual model can be used for that,
but one-dimensional hydraulic models struggle to represent
the three-dimensional nature of the salt intrusion processes,
while three-dimensional models are too computationally de-
manding to run on operational timescales (Warmink et al.,
2011; Buschman, 2018; Huismans et al., 2016). Generalized
conceptual models can capture some of the estuarine dynam-
ics and are especially valuable when data availability is lim-
ited, but they are difficult to apply in multi-branched estuaries
(Savenije, 1986; Gisen et al., 2015; Sun et al., 2020).

A data-driven model, derived using machine learning,
might be used as an alternative approach to this forecast-
ing problem. Once trained, data-driven models have been
reported to be successful in capturing non-linear systems
(Kratzert et al., 2018), and have a runtime of milliseconds
to seconds per time step once trained (Haasnoot et al., 2014;
Hauswirth et al., 2021; Zounemat-Kermani et al., 2020). Ma-
chine learning approaches have successfully been applied to
describe hydrological extremes (e.g. Hauswirth et al., 2021),
shoreline evolution (e.g. Calkoen et al., 2021) and rainfall—
runoff processes (e.g. Kratzert et al., 2018). There have also
been some successes in salt intrusion forecasting (Hu et al.,
2019; Rohmer and Brisset, 2017; Zhou et al., 2020), but
the complexity of the multi-branched and strongly managed
Rhine-Meuse delta has proven difficult to model with this
approach, at least on hourly timescales (Korving and Visser,
2021).

The aim of this study is to test the possibilities of data-
driven modelling of chloride concentrations in the Rhine—
Meuse delta. As a starting point for such a data-driven model,
we create a model to forecast chloride concentrations at one
location on a daily basis. This model should be able to predict
the occurrence of salt intrusion peaks several days to a week
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in advance. From there, further improvements can be made
by extending the model to other locations and making it suit-
able for higher temporal resolutions. If we are able to create
useful forecasts for this delta, a similar approach could be ap-
plied to other complex deltas. Furthermore, if this approach
is successful for a multi-branched and intensively managed
estuary, we expect it to work for a single-channel, more nat-
ural estuary as well.

In this paper we present a method to forecast salt intru-
sion in the surface waters of the Rhine—-Meuse delta using a
machine learning approach. We will (1) identify a location
for which a forecast would be especially helpful, (2) select
the observations required to make the prediction and (3) de-
sign a suitable model architecture. We will then (4) optimize
the model using suitable criteria and (5) test the model on a
separate dataset. Finally, we will (6) assess the importance
of each input observation for the predicted output and relate
this to estuarine processes.

2 Material and methods

We designed a machine learning model to forecast chloride
concentrations near a critical junction in the Rhine—-Meuse
delta. We started by exploring the study area and identify-
ing a location for which a salt intrusion forecast is needed
(Sect. 2.1). We retrieved observations of possibly relevant
variables and did an exploratory analysis (Sect. 2.2). We set
up a machine learning model to predict concentrations 1d
ahead and optimized it using suitable performance metrics
(Sect. 2.3). We then ran it to predict concentrations up to 7d
ahead and used a separate dataset for testing. Finally, we per-
formed a sensitivity analysis (Sect. 2.4).

2.1 Study area

The Rhine—Meuse delta is located in the Netherlands and
comprises roughly half the country (Fig. 1). Near the cities
of Arnhem and Nijmegen, the river Rhine splits into three
branches: the [Jssel, Waal and Nederrijn/Lek. While the 1Js-
sel flows north and discharges into the IJsselmeer, the Lek
and Waal flow west and flow into the Hollandsch Diep, Har-
ingvliet and Nieuwe Waterweg, around the cities of Dor-
drecht and Rotterdam. The Meuse enters the country near
Maastricht and flows parallel to the Waal before discharging
into the Hollandsch Diep. In the eastern part of the coun-
try, weirs are often used to regulate water levels and dis-
charges. This includes some large weirs in the Nederrijn/Lek,
at Driel (near Arnhem) and Hagestein. In the lower-lying,
flatter western part of the country, the larger waterways can-
not be managed in such a way. Water levels in the smaller
channels and ditches between fields are intensively managed
with weirs and are supplied with river water through inlets.
The Nieuwe Waterweg forms an open connection of the
river system to the North Sea. While many other estuaries
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Figure 1. Map of the study area, indicating measurement locations that were considered for this study. Only measurement locations that were
used in the model are labelled. Map created with QGIS (2022) using data from PDOK (2022), Rijkswaterstaat (2022) and KNMI (2022).

in the delta have been (partially) closed off, this waterway
was kept open to ensure easy access for ships to the port of
Rotterdam. It connects to the lower reaches of the Rhine—
Meuse system, called the Nieuwe Maas and Oude Maas, in
which the tide causes daily variations in chloride concentra-
tions. Occasionally, the saltwater intrudes further upstream
and reaches the Hollandsche 1Jssel, a small branch within
the delta that is important for freshwater provision to agricul-
tural channels and drinking water companies in the west of
the country (Prinsen and Becker, 2011; Van den Brink et al.,
2019). In order to keep this branch fresh, water managers
can divert water from the river Waal or from the [Jsselmeer
towards this area (Haasnoot et al., 2014; Prinsen and Becker,
2011). However, to do this effectively, they require predic-
tions of salt concentrations several days ahead. A timely fore-
cast would provide them with support for decision-making
in a complex area with many stakeholders. We selected
Krimpen aan den IJssel for this forecast, as it is located
at the junction of the Nieuwe Maas and Hollandsche [Jssel
branches and has a sufficiently long record of measurements.

https://doi.org/10.5194/hess-27-3823-2023

2.2 Data
2.2.1 Data collection

We obtained data for this research from Rijkswaterstaat
(2022) and KNMI (2022). These data are published daily,
which makes them suitable for operational forecasting. We
selected the following variables from the years 2011-2020:
discharge (m3 s~ 1), water level (cma.m.s.l. — above mean
sea level), wind speed (m s’l) and chloride concentration
(mgL~1). Chloride is measured at one, two or three depths,
depending on the location. We used discharge observations
from Lobith and Tiel, for which stage—discharge relation-
ships are available, and Hagestein, where a weir is present.
For the western part of the study area, we obtained water
levels in the large waterways as a proxy for discharges and
pressure differences between branches. For the wind speed,
we used measurements at Rotterdam, in the middle of our
study area. The daily mean wind speed was decomposed into
an east—west and a north—south component, using the wind
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direction. We used the years 2011-2017 to train the model
and the years 2018-2020 to test its performance.

2.2.2 Time series exploration

We explored a large number of time series. This section sum-
marizes the main findings of that exploration, with some ex-
amples shown in Fig. 2.

Salt intrusion events are quite rare. In the total 10-year pe-
riod considered, there were 127 d where chloride concentra-
tions at Krimpen aan den IJssel exceeded 300 mg L~!, which
is twice the drinking water limit. Of these 127 d, 75 occurred
in 2018.

Chloride peaks propagate upstream. Steady rises in chlo-
ride concentration at downstream locations sometimes pre-
cede upstream rising concentrations (e.g. Fig. 2a and b,
September 2017). However, downstream rising concentra-
tions most often coincide with only minor concentration in-
creases upstream (e.g. Fig. 2a and b, May, June 2017). In-
stead, the biggest peaks show very pronounced spikes that
are much steeper than the steady background concentration
increase. These spikes coincide with increased water levels
during periods of relatively high wind speed (e.g. Fig. 2c
and e, January 2017).

The water levels in the Nieuwe Waterweg and Nieuwe
Maas branches are strongly linearly correlated. Water levels
at Krimpen aan den IJssel are correlated with those at Hoek
van Holland with a Pearson coefficient of 0.72. For points
between these two locations, correlations are between 0.76
and 1. Water levels at Dordrecht, which is located on the
Oude Maas, deviate more from the other locations. A more
complete overview of water level correlations can be found
in Appendix A.

Some of the larger peaks in chloride concentration coin-
cided with high water levels at Hoek van Holland (e.g. Fig. 2a
and c, January 2017). This could be caused by a storm surge,
possibly coupled to a spring tide. However, there are also
many examples where water levels at Hoek van Holland and
wind speeds at Rotterdam are high, but no increase in chlo-
ride is observed (e.g. Fig. 2a, ¢ and e, November, Decem-
ber 2017).

Salt intrusion events are often coupled to low river dis-
charges (Fig. 2a and d, January 2017), but this is not always
the case.

2.3 Model design

Figure 3 shows how we designed the long short-term mem-
ory (LSTM) model. Preprocessing steps are explained in
Sect. 2.3.1. After preprocessing, we created the machine
learning model architecture (Sect. 2.3.3) and assessed its per-
formance on the training dataset using the metrics described
in Sect. 2.3.4. We then adapted the model hyperparameters
in steps until an optimum had been reached. The final model
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was then used on the test dataset (Sect. 2.3.5). Finally, we
performed a sensitivity analysis (Sect. 2.4).

2.3.1 Preprocessing

We tried to keep data preprocessing to a minimum, to re-
duce computation time and make it easy to use new data. We
removed extreme outliers and physically impossible values
from the raw data. For every day with measurements, we then
calculated daily minimum, mean and maximum for each of
the variables. We then used linear interpolation to fill in any
gaps in the daily features. Finally, we split the dataset into
training data (2011-2017) and test data (2018-2020).

2.3.2 Feature selection

We selected a subset of the available features to set up the
machine learning model. Reducing the number of features
in a machine learning model helps to speed up its training
and prevent overfitting. A first selection of features was made
based on the observations in Sect. 2.2.2. A second selection
was made with a feature selection algorithm. The full set of
features and the subset used for model building are listed in
Table 1.

Since a number of cases showed increasing trends in chlo-
ride concentration over a 1-week period, we used chloride
observations up to 7d back to predict concentrations on a
given day. For Krimpen aan den IJssel, this concerns mea-
surements at the location itself and the downstream loca-
tion of Lekhaven (see also Fig. 1 for locations). All mea-
surements depths (two for Krimpen aan den IJssel; three for
Lekhaven) were retained in this part of the selection pro-
cedure. The same 7d window was used for the other vari-
ables. The strong correlation between water levels at differ-
ent locations suggests that it is safe to exclude most stations
without losing unique information. Therefore, we used wa-
ter levels from four locations: Krimpen aan den [Jssel, Dor-
drecht and the two downstream locations of Hoek van Hol-
land and Vlaardingen to account for pressure differences be-
tween the northern and southern parts of the estuary which
drive flow between the branches. Discharges from three up-
stream locations are included: Lobith, where the Rhine en-
ters the Netherlands and for which forecasts are derived; Tiel,
representative of the Waal branch; Hagestein, representative
of the Nederrijn/Lek branch. We used observations of wind
speed at a single station, Rotterdam, which is located in the
middle of our study area. For chloride and water level, daily
minima, means and maxima are included to account for the
rapid subdaily fluctuation. For discharge, we only use the
daily mean, as subdaily fluctuations are small.

We performed a second feature selection using the Boruta
algorithm (Kursa and Rudnicki, 2010; Homola et al., 2022).
With this algorithm, a linear regression model is fitted using
decision trees. The fitting process consists of several itera-
tions. At each iteration, some of the features are replaced by

https://doi.org/10.5194/hess-27-3823-2023
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Figure 2. Example time series for January—March (a, c, e, g, i) and July—September (b, d, f, h, j) of the year 2017. Daily mean chloride
concentrations at Krimpen aan den IJssel (a, b) and Lekhaven (¢, d) are shown. Note that the peaks in chloride at Lekhaven in January are
reflected at Krimpen aan den IJssel, while this effect is absent or much weaker in the other months. In this section, we relate this to changes
in daily mean water level at Hoek van Holland (e, f), daily mean discharge at Lobith (g, h) and daily mean wind speed at Rotterdam (i, j).

shadow features, which are randomized copies of the orig-
inal features, effectively replacing information for that fea-
ture with noise. The algorithm then tests if removing this in-
formation made the model perform any worse. A feature is
supposed to be more important when the prediction quality
deteriorates when that feature is replaced. This way, the fea-
tures are ranked by relevance. We did this three times, with
daily minimum, mean and maximum chloride concentrations

https://doi.org/10.5194/hess-27-3823-2023

at Krimpen aan den IJssel at a depth of —4.00 ma.m.s.1. as
target variables. Results of the Boruta analysis showed that
for most variables, four or five time steps are relevant for
prediction of the output variables. Which time steps these
are exactly varies. We decided to retain only time steps rang-
ing from 7_4 to 1. The time step 71 is only used for dis-
charge, water level and wind speed. This mimics a situation
where these variables have already been forecast using an-
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Figure 3. Workflow for design and analysis of the LSTM model. Preprocessing steps are shown in the top row. After preprocessing, we
set up the machine learning model architecture and trained it on the training dataset. We then created an ensemble forecast with the trained
model and calculated its performance on the training dataset. We calculated performance metrics and adapted model hyperparameters step
by step to find an optimum. The final model was then applied to the test dataset. Finally, we perfromed a sensitivity analysis.

other model which does not include salt intrusion forecast-
ing. In addition, some variables were omitted altogether since
they do not provide information that the retained variables
do not already provide. Finally, we only used daily means of
water levels for all locations except Krimpen aan den IJssel.
A more detailed motivation for the choices we made can be
found in Appendix B. The final selection of variables is given
in Table 1.

2.3.3 Model architecture

We set up a LSTM to predict chloride concentrations up to
7 d ahead using the variables in Table 1. An LSTM is a spe-
cific type of neural network model designed by Hochreiter
and Schmidhuber (1997). While in an ordinary neural net-
work model, variables are fed into nodes and given weights,
an LSTM cell takes a sequence as input and can learn not
only the weight to be given to such a sequence but also the
time steps, which are useful to remember for the prediction
of a new value. This makes LSTMs especially suitable for
applications with a sequential nature, such as language pro-
cessing and time series analysis. Indeed, in an exploratory
analysis we found that the LSTM model’s predictions were
closer to observed values than those of a feedforward neural
network or a multivariate linear regression model using the
same input features.

We set up the model using the tensorflow and keras pack-
ages in Python (for documentation, see Abadi et al., 2015;
Chollet, 2015). We used scikit-learn (Pedregosa et al., 2011)
for preprocessing. Measurements of chloride concentration
for r_4 up to 19, as well as measurements of discharge, water
level and wind speed for z_4 up to ¢, |, were used as input, as
indicated in Table 1. For each variable in the training dataset,
we calculated mean p and standard deviation o and then con-
verted each value x to its normalized value z using
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The same scaling, with © and o derived from the training
dataset, was applied to the test dataset.

The structure of the LSTM model is shown in Fig. 4. Be-
cause the chloride input time series are five steps long and
the water level, discharge and wind time series are six steps
long, we split the data into two groups. The first group con-
tains all chloride concentrations and the second group con-
tains the other three variables (i.e. water level, discharge and
wind speed) that are hereafter also referred to as “quantity
variables”. The chloride time series and the quantity time se-
ries are fed to separate LSTM layers, which are used to rec-
ognize developments in the variables over time. The LSTM
layer contains many parameters, such as the weight given to
each input feature and the time steps for which this feature
must be retained. Each of these parameters is optimized in
the machine learning algorithm (Sect. 2.3.5). The outputs of
these LSTM layers are then concatenated and fed into a dense
layer, which applies weights to these intermediate outputs to
end up with the chloride concentration at Krimpen aan den
Dssel at 1. As a protection against overfitting, a dropout
layer is added between the LSTM layers and the concatena-
tion layer. A dropout layer randomly sets some inputs to zero
at each iteration of the training procedure, thereby making it
less likely for the model to obtain a perfect fit for the training
dataset and forcing it to account for some noise. This makes
the model more likely to perform well in a new situation.

The model is trained to predict chloride concentrations on
t+1, which is the first forecast. The forecast is then added
to the record of chloride concentrations and used to forecast
the next time step. The length of time series used to make
a forecast remains the same, so to make a forecast for 7,,,
chloride concentrations from 7_3 to ¢ are used. This proce-
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Table 1. Overview of features used for chloride prediction at Krimpen aan den IJssel. A check mark (v') indicates whether a feature has been

retained after Boruta analysis.

Variable Location Statistic ~ Feature name f_7...t_5 t_g4...t) I_4...14]
Chloride (mg L Krimpen aan den IJssel —4.0m  min CIKr400Min v
mean CIKr400Mean v
max CIKr400Max v
Krimpen aan den IJssel —5.5m  min CIKr550Min v
mean CIKr550Mean v
max CIKr550Max v
Lekhaven —2.5m min CILkh250Min v
mean CILkh250Mean v
max CILkh250Max v
Lekhaven —5.0m min CILkh500Min
mean CILkh500Mean
max CILkh500Max
Lekhaven —7.0m min CILkh700Min v
mean CILkh700Mean v
max CILkh700Max v
Water level (cma.m.s.l.) Krimpen aan den IJssel min HKrMin v
mean HKrMean v
max HKrMax v
Hoek van Holland min HHvhMin
mean HHvhMean v
max HHvhMax
Dordrecht min HDrdMin
mean HDrdMean v
max HDrdMax
Vlaardingen min HVlaMin
mean HVIaMean v
max HVlaMax
Discharge (m3 sfl) Lobith mean QLobMean v
Hagestein mean QHagMean v
Tiel mean QTielMean v
Wind speed (east—west) (ms™ 1) Rotterdam mean WindEW v
Wind speed (north—south) (m s_l) Rotterdam mean WindNS v

dure is repeated to forecast chloride concentrations up to 7.
We chose this approach rather than training separate models
for each lead time as the latter approach might lead to fea-
ture weights suddenly shifting from one time step to the next,
which makes the results hard to interpret.

2.3.4 Performance metrics

Root mean square error (RMSE) is a measure of the devi-
ations between the predicted and observed values of a vari-
able. It is calculated as

(@)

https://doi.org/10.5194/hess-27-3823-2023

in which y; is the ith observation of the target variable, y; is
the model estimate of the target variable and n is the number
of observations.

Forecast quality can be expressed in the metrics precision
and recall. For this, an event threshold is defined at a daily
mean chloride concentration of 300 mg L1, which is twice
the drinking water limit (Van den Brink et al., 2019), as an
indicator for severe salt intrusion. When the model predicts
[C1] above 300 mgL~! for a certain day, this is defined as a
warning. Each day on which the observed value for [Cl] ex-
ceeds 300mgL~! is defined as an event. Consecutive days
with chloride concentrations above the threshold are consid-
ered multiple events. Precision and recall can then be calcu-
lated as

Hydrol. Earth Syst. Sci., 27, 3823-3850, 2023
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Figure 4. Schematic overview of the machine learning model.
Quantity variables are water level, discharge and wind speed.

.. |Events N Warnings|
Precision = - 3)
|Warnings|
and
Recall |Events N Warnings| @
ecall = ,
|Events|

where |Events| indicates the number of events, |Warnings|
the number of warnings and |Events N Warnings| the number
of events for which a warning was issued. A high precision
indicates that the warnings issued by a model are often jus-
tified. High recall indicates that events are often captured by
the model.

The performance of the LSTM in terms of these metrics
is compared to a persistence forecast, which functions as a
baseline. The assumption of a persistence forecast is that fu-
ture chloride concentrations are the same as on the current
day, i.e. [Cl],, = [Cl],,, = [Cl],,.

2.3.5 Model tuning and testing

We further optimized the general model architecture de-
scribed in Sect. 2.3.3 by tuning several hyperparameters (Ta-
ble 2). The sizes of both LSTM layers were adjusted in steps,
and model performance in terms of RMSE, precision and re-
call was recorded. The same was done for the presence and
size of an extra hidden layer, and for the dropout parameter.
Finally, weights were given to the twelve output variables of
the model. When a variable’s weight is larger, the learning
algorithm penalizes errors in the prediction of that variable
more than that of other variables.

For each set of hyperparameters, we trained three models.
Each model starts with different initial parameter weights,
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Table 2. Tuned hyperparameters for the LSTM model.

Size LSTM 1 32
Size LSTM 2 32
Batch size 64
Extra hidden layer size 0
Dropout (after LSTM) 0.3

Dropout (after extra hidden layer) n/a

Weights of output variables:
-CIKr400Min
-ClKr400Mean
-CIKr400Max
-CIKr550Min
-CIKr550Mean
-CIKr550Max
-CILkh250Min
-CILkh250Mean
-CILkh250Max
-CILkh700Min
-CILkh700Mean
-CILkh700Max

—_ e e e e e e = e ) W N

n/a stands for not applicable.

which are random. These weights are then applied to the in-
put variables to calculate the output variables. The quality of
the model is calculated as a mean squared error. The parame-
ter weights are then adjusted and the calculations are redone.
For this adjustment, we used the Adam optimizer (Kingma
and Ba, 2017), which is able to determine the optimal size of
an adjustment step. The models were trained to predict chlo-
ride concentrations 1 d ahead. We then used them to create a
forecast up to 7 d ahead, as described in Sect. 2.3.3. RMSE,
precision and recall at 1, t414 and 747 were recorded for
each model training run, yielding nine values for each metric
per set of hyperparameters. By comparing these metrics, we
determined the optimal values for the hyperparameters (Ta-
ble 2). A full overview of tuned hyperparameters and metrics
can be found in Appendix C.

The hyperparameter setup in Table 2 was then re-used for
training an ensemble of 15 models, as the ensemble mean
RMSE was shown not to change markedly anymore when
ensemble size was increased further. The ensemble is cre-
ated by fitting the model multiple times, with slightly differ-
ent initial parameter weights each time. Each model from the
ensemble was then used to forecast chloride concentrations
in the testing period.

2.4 Sensitivity analysis

We performed a sensitivity analysis on the ensemble of mod-
els to investigate how variations in the input variables im-
pact the predicted value of mean daily chloride concentra-
tion. To do this, we perturbed each input variable in the test
dataset by adding 0.2 (in normalized units) to all values of
that variable while keeping the values of the other variables
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the same. This way every variable is increased by an amount
that is within its normal range but markedly higher than the
normal situation. Choosing a higher value for the deviation
might show clearer dependencies but would be a further de-
parture from what is physically realistic. It might also lead to
impossibilities such as negative chloride concentrations. The
model ensemble was then rerun for each perturbed variable
separately. We then calculated the average difference in chlo-
ride concentration between the original dataset and the per-
turbed dataset. This gives an indication of the sensitivity of
mean daily chloride concentration to changes in each of the
other variables. We want to stress that many of these changes
are not physically realistic, as most variables we consider
would not change independently of the others. However, it
gives an indication of the weight the model gives to each
variable. In a linear regression model, we would simply use
weight parameters to show this, but the complex structure of
the LSTM model makes weights difficult to interpret. There-
fore, we chose this method to show a general relation be-
tween model input and output.

3 Results
3.1 Model performance on training dataset

Figure 5a, ¢ and e show the forecasts made for the year 2011,
during which a number of high chloride concentration peaks
occurred in autumn. This includes the highest value in the
training dataset, measured on 28 November 2011. The fore-
cast values follow the observations closely and continue to
do so for lead times over 3 d, which indicates that the model
architecture is complex enough to capture complexities in
the dataset. The largest peaks, however, are still often un-
derestimated. Predictions of the full training dataset (2011-
2017) match the observations well and have no systematic
bias (Fig. 5b, d and f). When we define an event as a day
with chloride concentrations > 300 mg L1, we see that these
are generally well captured for the training dataset, although
some ensemble members overestimate low peaks, e.g. in
June 2011. As expected, RMSE increases with lead time, but
precision and recall remain roughly the same (Fig. 6). The
curves of precision and recall show some irregularities, be-
cause the total number of events is quite small — only 40d in
a 7-year dataset. This model is able to create a 7d forecast
in 13 s on an Intel i5 Core Processor. The 15-member en-
semble shown here takes 3 min to run on the same computer.
For comparison, the 1D hydraulic model set up for this area,
SOBEK 3 (Deltares, 2019) takes 8 min to make a 7 d forecast
of the Rhine—Meuse estuary.

3.2 Model performance on test dataset

Figure 7a, ¢ and e show forecasts made for the year 2018, the
first year of the test dataset (2018-2020). Forecast values re-
semble observed concentrations closely for background con-
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centrations (< 150 mgL~"), with RMSE below 20mgL~!.
However, the highest peaks ([Cl] > 1000 mg L’l) are often
underestimated and the lower peaks are often overestimated,
which accounts for the higher RMSE for the whole dataset
(Fig. 8). This is confirmed by Fig. 7b, d and f. RMSE in-
creases with lead time, while precision and recall decrease
(Fig. 8). Forecast quality decreases fast as lead time increases
from 1 to 3 d but decreases more slowly after that (compare
Figs. 7 and 8). The general tendency of the LSTM models
to underestimate peaks leads to higher precision but some-
times lower recall than the persistence forecast. In terms of
RMSE, the LSTM outperforms the persistence forecast from
t+2 onwards. The RMSE is a factor of 4-6 higher for the test
dataset than for the training dataset; precision is lower from
t+3 onwards and recall is significantly lower.

3.3 Sensitivity analysis

The sensitivity analysis yields a positive correlation between
past and predicted chloride concentrations (Fig. 9), indicat-
ing a certain persistence of the pre-existing situation. Fur-
thermore, chloride concentration has a strong negative cor-
relation with discharge at Lobith and Tiel and a strong pos-
itive correlation with water level at Hoek van Holland. This
confirms the general understanding that the position of a salt
wedge is determined by tidal motion and river discharge.
There is also a small negative correlation with water level
at Dordrecht and a small positive correlation with discharge
at Hagestein. Only a slight positive correlation is found with
southerly and westerly wind speed, even though the results
of the Boruta analysis (Sect. 2.3.2) show that a less good fit
would be achieved if it were left out.

4 Discussion
4.1 Interpretation of results

The results in Sect. 3.1 indicate that it is possible to create an
LSTM model to predict chloride concentrations at Krimpen
aan den IJssel. With the current set of variables, we were
able to come close to an optimal set of hyperparameters,
as can be seen from the good fit of the predictions to the
training dataset. However, performance on the test dataset
is less good. As can be seen from the results in Sect. 3.2
(Fig. 7), most LSTM models tend to especially underestimate
the largest peaks in mean daily chloride concentration. Ad-
justment of the hyperparameters did not enable us to capture
these peaks better. In addition, peaks of intermediate height
are frequently overestimated, although the error in that case
is smaller than for the very high peaks. For operational water
management, the error in the intermediate peaks is likely to
have more consequences than the error in the largest peaks,
since these intermediate chloride concentrations make up the
transition from a normal situation to a situation where wa-
ter managers might need to intervene on a larger scale than
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Figure 5. Model performance for the training period (2011-2017). Panels (a), (c) and (e) show a collection of forecasts of C1IKr400Mean
made with lead times of (a) 1d, (¢) 4d and (e) 7 d for the year 2011, along with observed values. The predicted value is given as an ensemble
prediction for each day of the year, created with the lead time mentioned. Median and range of the ensemble prediction are shown. Panels (b),
(d) and (f) show predicted vs. observed values for the full training dataset with lead times of 1, 4 and 7 d respectively. For each day in the
training dataset, a vertical line indicates the range of predicted values by the ensemble members. A figure showing all ensemble members

separately can be found in Fig. D1.

just closing an inlet for a brief period of time. The threshold
value of 300mgL~! has been chosen to reflect such situa-
tions. We see indeed that values of precision and recall are
both affected by the errors in peak prediction (Fig. 8). Re-
call is affected more than precision, which is in line with
the general tendency for underestimation. This means that
by relying completely on this model, water managers would
be more likely to miss a problematic situation than to take
unnecessary action. This is probably not desirable, as the
consequences of a missed event are typically more problem-
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atic than the consequences of a false alarm (Warmink et al.,
2017).

Most results of the sensitivity analysis (Sect. 3.3, Fig. 9)
are in line with general expectations of this river sys-
tem. Higher river discharge dilutes the saltwater present at
Krimpen aan den IJssel and pushes the salt wedge back to-
wards the sea, whereas higher sea levels increase the poten-
tial for saltwater to intrude landward (Savenije, 2012; Sun
et al., 2020). This is in line with the findings of Cai et al.
(2015) and Liu et al. (2017), who find that the salt intru-
sion length in the Yangtze River is proportional to tidal am-
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Figure 6. Performance metrics vs. lead time for the training period. Panels show (a) RMSE, (b) precision and (c¢) recall. Performance of each
model in the ensemble is plotted as a single line. Performance of the persistence forecast is shown for reference. For the training dataset, the

LSTM ensemble consistently outperforms the reference forecast.

plitude at the seaward boundary and inversely proportional
to river discharge. Shaha et al. (2013) find a similar domi-
nance of tidal range and discharge for the Sumjin River es-
tuary. The negative correlation between chloride concentra-
tion at Krimpen aan den IJssel and water level at Dordrecht
seems to indicate that high water levels at Dordrecht are as-
sociated with increasing flow from the Beneden-Merwede
through the Noord towards the Nieuwe Maas (Fig. 1). The
positive correlation of chloride concentration and discharge
at Hagestein is somewhat surprising, as it is mostly a com-
ponent of discharge at Lobith. Indeed, most chloride peaks
coincide with periods of low discharge at Hagestein. How-
ever, Hagestein is a managed location with a weir that plays
a role in dividing discharge over the Rhine branches. In pe-
riods of drought, when chloride concentrations have already
started rising, water is sometimes diverted through the Ned-
errijn/Lek branch, causing discharge at Hagestein to be rel-
atively high with respect to discharge at Lobith (Hydrologic
et al., 2015). We therefore suggest that the models have cap-
tured a positive correlation between chloride concentrations
and the fraction of Rhine water that flows through the Neder-
rijn/Lek branch. The very small positive correlation between
chloride and southerly and westerly wind speed confirms the
observations in Sect. 2.2.2 and Fig. 2, where we also found
no consistent relation between wind speed and chloride con-
centration. This shows that wind speed on its own does not
make a difference but may still influence chloride concentra-
tions through its interactions with other variables. When we
compare this to the work of Xue et al. (2009), who found that
wind direction plays a significant role in the salinity distribu-
tion of the Changjiang estuary, we find that the specific shape
of a delta can influence the importance of various variables,
a phenomenon that is also suggested by the idealized study
of Jongbloed et al. (2022).

4.2 Limitations and outlook

The shorter runtime of the machine learning model allows
users to run simulations as an ensemble well ahead of time.
The current version of the model only works for one loca-
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tion, but if we can capture multiple locations in the delta
while keeping runtime in the same order of magnitude, we
can do many more predictions, including simulations of ex-
treme scenarios. The larger number of scenarios that can be
investigated gives water managers more opportunities to take
mitigating measures and ensure freshwater availability. It is
difficult to simulate the effect of management decisions, be-
cause they are not included explicitly in the training dataset.
However, if the effect of a management decision on water
level and discharge is known, the simulated water level and
discharge could be used as inputs for the model. We still have
to implement the model in a forecasting system to assess how
well this would work.

Machine learning models are known to have their limits
when it comes to forecasting extreme events: since these
events are rare by nature, a model that is trained on a long
time series will have far more examples of regular than of
extreme conditions (Carbajal and Bellos, 2018). The model
is therefore likely more skilful in forecasting baselines than
in forecasting (extreme) peaks. We observe this phenomenon
in our results for the test dataset (Sect. 3.2). As 2018 was a
very dry year (Buitink et al., 2020), the chloride concentra-
tions reached levels that had not been observed in our train-
ing dataset. Our model was therefore less skilful than desired,
especially at predicting the highest peaks (> 1000 mgL™1).
This is a problematic situation, since climate change is ex-
pected to increase sea level and decrease river discharge in
spring, summer and fall for our study area, which makes
the occurrence of such peaks more likely (Lenderink and
Beersma, 2015; Van den Brink et al., 2019). If used for op-
erational forecasting, this model is therefore likely to deal
with unprecedented situations more frequently in the future.
To tackle this issue, we would propose to update the training
dataset and retrain the model yearly, adding new, possibly
more extreme, observations to the record and make the model
better suited to forecast extreme situations in the future.

Another application of machine learning is to use a ma-
chine learning model as a model emulator (Carbajal and Bel-
los, 2018). In this application, another model, often a physi-
cal model, is run with a large range of conditions, and its re-
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Figure 7. Model performance for the test period (2018-2020). Panels (a), (c¢) and (e) show a collection of forecasts of CIKr400Mean made
with lead times of (a) 1d, (¢) 4d and (e) 7d for the year 2018, along with observed values. The predicted value is given as an ensemble
prediction for each day of the year, created with the lead time mentioned. Median and range of the ensemble prediction are shown. Panels (b),
(d) and (f) show predicted vs. observed values for the full test dataset with lead times of 1, 4 and 7 d respectively. For each day in the training
dataset, a vertical line indicates the range of predicted values by the ensemble members. A figure showing all ensemble members separately

can be found in Fig. D2.

sults are then supplied to a machine learning algorithm. The
algorithm learns the original model’s behaviour in terms of
inputs and outputs, without considering its internal mechan-
ics. This yields a simplified model, which may not be as ac-
curate as the original, especially in unprecedented situations,
but which tends to be much faster (Silva et al., 2021; Get-
telman et al., 2021). Having identified the input and output
variables needed to set up a salt intrusion model, we could
train a similar model with the input and output variables of a
three-dimensional model of the Rhine—Meuse delta, which is
currently under development. This would allow us to mimic
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a wide range of possible conditions with the machine learn-
ing model, without having to resort to extrapolation. If suc-
cessful, the result would be an approximation of a physical
model that could run fast enough for operational use, making
it suitable for interactive simulations in, for instance, a seri-
ous game or digital twin. In a serious game, a study area is
represented in a board or computer game environment, which
allows stakeholders to try out different strategies in a safe
environment, learning about each other’s interests. A digital
twin has some of these characteristics as well but aims to be
more realistic and usable in real time, which makes it more

https://doi.org/10.5194/hess-27-3823-2023



B. J. M. Wullems et al.: Forecasting estuarine salt intrusion

3835

180 1.0 1.0
(@) ()
160 08 0.8 4 \
L 140 %
- 506 _ 06
E 2 i
=120 o &
Y & 04 0.4 1
=
= 100 - —
0.2 024 —— LSTM
80 Reference (persistence)
T T T T T T T 0.0 — T T T T T 0.0 T T T T T T
| 2 3 4 5 6 7 | 2 4 5 6 7 | 2 3 4 5 6 7

lead time (days)

Figure 8. Performance metrics for the test period. Panels show (a) RMSE, (b) precision and (c) recall. Performance of each model in the
ensemble is plotted as a single line. Performance of the persistence forecast is shown for reference. Compared to the reference, the model is
on average closer to the observed concentration (a), and when events are predicted, these usually occur in practice (b). However, many of the

LSTM models miss many events compared to the reference (c).

CIKrimpenAaAdA I, min, — 4.00m —{IH
C/Krimpen.a.d. IJ, mean, —4.00m —E—
’Krimpen,a. d.lJ,max, — 4.00m T —{T
CIKrimpen.a.d. 1), min, —5.50m 7 HI—O
CIKrimpen.a.d. IJ,mean, —5.50m ]| O +—iIH
CIKrimpen.a.d. I, max, —5.50m ——
CILekhaven,min, —-2.50m 7 I
C/Lekhaven,mean, —2.50m T
CILekhaven,max, —2.50m =
Cllekhaven,min, —7.00m T — T
Cliekhaven, mean, — 7.00m ] O+
CILekhaven,max, —7.00m T O{HO
HDordrecht, mean — T
Hhoek. v. H.,mean =
HKrimpen.a.d. IJ,min 7 T
Hxrimpen. a.d. 1, mean —
Krimpen.a.d.l],max —T
Hvlaardingen,mean T —
OHagestein, mean | O 10— @
OLobith,mean T T
OTiel,mean T — 3
WindRotterdam,EW, mean @Hﬂ"@
WindRotterdam,NS, mean ! ! ! HIHO ! ! !
-0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08

A CIKrimpen.a.d. 1, mean, 4.00
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suitable as a simulation and management tool. A model emu-
lator could also be useful to simulate extreme situations that
are underrepresented in the existing record, as discussed in
the previous section.

Our results show that a reasonable prediction of chloride
concentrations up to 7d ahead can be achieved at one lo-
cation using this model: although the error in peak height
is quite large, timing and occurrence of peaks are well-
captured. We therefore expect that a similar model setup can
be successful for other locations in the delta for which salt
intrusion is a similar threat to freshwater availabiltiy, such as
the junction of the Oude Maas and Spui and the confluence
of the Noord and Lek (Fig. 1) (Van den Brink et al., 2019).
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Extending the analysis is likely to teach us more about the
dependencies in this system, which can in turn help to im-
prove the existing model.

To improve the model, we are also considering adding
some physical constraints, such as mass balances in a con-
trol section. Bertels and Willems (2023) applied such an
approach to the Scheldt estuary and achieved notably bet-
ter results than with a purely data-driven model. However,
the large number of branches in the Rhine—Meuse delta may
make application of a mass balance approach quite challeng-
ing.

In Sect. 3.1 we show that this model is much faster than
the 1D physical model SOBEK. On the other hand, SOBEK
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is run for the entire delta area, whereas the machine learn-
ing model focusses on a single output location. When the
model is extended to comprise multiple locations within the
study area, runtime will increase. However, if we focus on a
limited number of stations, we still expect the machine learn-
ing model to be significantly faster than the physical model,
since the machine learning model performs forward calcula-
tions rather than solving differential equations.

In the current model setup, water levels, discharges and
wind speeds at 741 are used to forecast chloride concentra-
tions at f41. In an actual operational setting, these values
would be retrieved from other models, with their own uncer-
tainties. These uncertainties then propagate to the chloride
concentration forecast. In our analysis, we used a historical
dataset to fit and test the model, using the actual observa-
tions at 741. This way we have uniform data of a constant
uncertainty with which we can derive and evaluate a model.
However, this also means that the model’s performance as
described in Sect. 3 is higher than it would be in an actual op-
erational context. Setting the model up to function in a fore-
casting system, using the outputs of other models as inputs,
is a follow-up step in our research.

In this study, we have made forecasts of daily mean, mini-
mum and maximum chloride concentrations. We have chosen
daily values to limit error accumulation when creating a 7d
forecast. However, there are many regions where operational
water managers need predictions with a higher temporal res-
olution, e.g. to determine at what time of day certain inlets
should be opened or closed (Pezij et al., 2019; Tian, 2015).
We will therefore attempt to train the model to make predic-
tions on shorter timescales, for which variables different than
those used in this analysis might be needed.

This model was developed for a delta with a complex ge-
ography. Nevertheless, we could develop a data-driven model
with a total of 12 input variables (counting the minimum,
mean and maximum as features of a single variable, and do-
ing the same for the east-west and north—south component
of the wind speed). We could have added more variables, but
time series exploration and Boruta analysis showed that these
would be redundant. We can therefore conclude that the num-
ber of measurement stations needed to train a model like this
is not very high. A sufficiently long record with few gaps is
still needed, however. With a training period of 7 years, satis-
factory results can be achieved. We therefore suggest that this
approach can be extended to other deltas where an adequate
measurement setup exists or where it is being developed. Es-
pecially in deltas with a single branch, a smaller number of
stations would probably suffice, although it is important that
the location of the stations does not change. Since a machine
learning approach does not require a full understanding of the
system’s internal mechanics but relies on patterns in the data,
it should not be a problem if the system functions somewhat
differently than the one we studied. For example, a study of
the Merrimack River revealed a similar dependency on wind,
discharge and seawater level, although the relative contribu-

Hydrol. Earth Syst. Sci., 27, 3823-3850, 2023

B. J. M. Wullems et al.: Forecasting estuarine salt intrusion

tions of these factors were different (Ralston et al., 2010).
Therefore, we expect that most of the features used for this
model can be applied in other study areas. However, it is pos-
sible that other quantities, such as precipitation sums or off-
shore water levels, need to be added to obtain a satisfactory
solution. The timescale considered may also play a role in
the variables that are needed. For example, a study of the
La Comté River showed that a 3 h prediction of salinity can
be made with just seawater level and river discharge (Rohmer
and Brisset, 2017). On the other hand, Lu et al. (2021) found
a dependency on the number of sunspots when analysing salt
intrusion in the Pearl River delta on a monthly timescale.

5 Conclusions

We used a machine learning approach with a long short-term
memory network to set up a data-driven model for forecast-
ing chloride concentrations at Krimpen aan den IJssel, lo-
cated in the Rhine—-Meuse delta. Using observations of chlo-
ride concentration, water level, discharge and wind speed at
a total of nine locations, we were able to forecast daily mini-
mum, mean and maximum chloride concentrations up to 7d
ahead. The baseline concentrations (< 150 mgL~!) are pre-
dicted well by this model (RMSE < 20mgL~!). The timing
of chloride peaks is also predicted well but their magnitude
is underestimated. This deviation increases quite quickly be-
tween lead times of 1 and 4 d, and more slowly at even longer
lead times. A sensitivity analysis shows a positive correlation
with antecedent chloride concentrations and seawater level
and a negative correlation with discharge through the main
river branches. We expect that the quality of this model can
be improved with lessons learnt at other locations, which will
allow us to construct a more comprehensive forecasting tool
for the Rhine—Meuse delta. A similar approach is likely to
be successful for other deltas, especially those that have a
comparable or simpler geography than our study area.

Appendix A: Correlation of water levels

Figure A1 shows the Pearson correlation values between wa-
ter levels at several locations in the study area. It is vis-
ible that water levels at Dordrecht deviate from the other
locations. Water levels at Hoek van Holland, Measlantker-
ing, Maassluis, Vlaardingen and Rotterdam are very similar,
which is why we only retain Hoek van Holland and Vlaardin-
gen.
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Figure Al. Pearson correlation coefficient for water levels in the
study area.

Appendix B: Boruta analysis

As mentioned in Sect. 2.3.2, we ran the Boruta feature selec-
tion algorithm (Homola et al., 2022) on the daily minimum,
mean and maximum chloride concentrations at Krimpen aan
den IJssel for 1. We started by creating a random forest
model to predict the output feature. Then, in each iteration,
one of the indicated features (e.g. daily maximum water level
at Hoek van Holland at 7_g) was randomly shuffled, and
a new model was derived. Performance of this new model
(mean squared error) was then compared to that of the origi-
nal model. If the new model performed worse than the orig-
inal model, shuffling the input feature created a significant
amount of noise, indicating this feature is important for pre-
diction of the output feature. Making this comparison for ev-
ery input feature, the algorithm then ranked the features as
1 (important), 2 (moderately important or inconclusive) or
anything higher (unimportant). We show this in Tables B1-
B3 as + (important), 0 (moderately important or inconclu-
sive) and — (unimportant). The algorithm was run with a sig-
nificance level of 0.05 and a target to retain 70 % of features.
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Comparing Tables B1-B3, no single cutoff point between
important and unimportant features emerges. However, based
on the number of important time steps for each variable, we
draw the following conclusions.

No more than five time steps of any variable are needed
to make a prediction for 74 .

— t_¢ is often found to be important, while 7_5 and 7_4 are
often found to be inconclusive. We expect the number
of time steps used to determine a trend to be more im-
portant than the actual time step and therefore choose a
continuous series of measurements from 7_4 to tg.

— Minimum, mean and maximum chloride concentrations
at Krimpen aan den IJssel and Lekhaven are all impor-
tant for predicting any one of the output features.

— Minimum, mean and maximum water levels at Krimpen
aan den IJssel are important for predicting chloride con-
centrations. For the other stations, one daily statistic of
water level appears to suffice, so we only keep the daily
mean.

— All discharge stations are important for predicting chlo-
ride concentrations.

— Daily mean wind speed in both directions is important
for predicting chloride concentrations.

Based on these conclusions, we selected the features in
Table 1.
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Table B1. Results of the Boruta feature selection process for daily minimum chloride concentration at Krimpen aan den IJssel at 1. A plus
(+) indicates that the indicated feature is important for predicting the output feature, while a minus (—) indicates that it is not important. A
zero (0) indicates that the importance of the feature is moderate or uncertain. n indicates that the feature is not applicable as an input feature.

Variable Time step No. relevant
-6 -5 -4 -3 -2 -1 0 +1 | features
CIKr400Min + - 0 + + + 4+ n |5
CIKr400Mean + - —+ — 0 - 4+ n |3
CIKr400Max + 0 - + + + 4+ nls
CIKr550Min - — + 0 0 0 4 n 2
CIKr550Mean - - — 0 0 0 + n 1
CIKr550Max 0 0 — — + 0 + n |2
CILkh250Min + + + + 0O 0 n |4
CILkh250Mean | — - - — — + - 1
CILkh250Max + - — 0 — - 4+ a2
CILkh500Min + — + + 0 0O 0 =n |3
CILkh500Mean | + — - — — - 4+ n |2
CILkh500Max + - 0 + 0 -  + n |3
CILkh700Min + - + + - + n |5
CILkh700Mean | 0O — - — - - 4+ n 1
CILkh700Max — + 0 — - 4+ an |2
HDrdMin — — — 0 — + 4+ 4+ |3
HDrdMean - + 0 — + 4+ 4+ |5
HDrdMax - - 0 — — 0o + 4+ |2
HHvhMin — — — - — 4+ 4 0 2
HHvhMean — - - + + 4+ 4+ + |5
HHvhMax - — — - + -+ 4+ |3
HKrMin - - — 0 — - - 4+ |1
HKrMean — - 0 0 — + _ + 2
HKrMax - 0 — — 0 0 0 1
HVlaMin - — - — -+ - 1
HVlaMean — - 0 + + - 0 |2
HVlaMax — — — — — -  — 0 lo
QHagMean + 0 - 0 + + + + |5
QLobMean o - 4+ + 4+ + + + |6
QTielMean + — — + + + 4+ 4+ 16
WindEW — 0 — — — - 4+ — 1
WindNS - — — — + + - — |2
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Table B2. Results of the Boruta feature selection process for daily mean chloride concentration at Krimpen aan den IJssel at 7. A plus
(+) indicates that the indicated feature is important for predicting the output feature, while a minus (—) indicates that it is not important. A
zero (0) indicates that the importance of the feature is moderate or uncertain.  indicates that the feature is not applicable as an input feature.

Variable Time step No. relevant
-6 -5 -4 -3 =2 features

|
x

CIKr400Min
CIKr400Mean
CIKr400Max
CIKr550Min
CIKr550Mean
CIKr550Max
ClLkh250Min 0 + -
ClLkh250Mean — — — —
CILkh250Max — - — —
ClLkh500Min — — — —
ClLkh500Mean — — — —
CILkh500Max — - —
ClLkh700Min - - +
ClLkh700Mean — — +
CILkh700Max . + —
- 0
0

w

+ —

ol ++ +
o |+ |
+
|
oo |

|
(.
| ©
| + o o |
++ 1 o1 I +o
o+++++ 1 ++0o

+

HDrdMin —
HDrdMean —
HDrdMax — —
HHvhMin — — —
HHvhMean — — — —
HHvhMax — — — — —
HKrMin — — — —
HKrMean — + — +
HKrMax — — — —
HVIlaMin — — — — —
HVlaMean — — — — —
HVIaMax
QHagMean
QLobMean
QTielMean
WindEW
WindNS

|
I o4+ |
(. I+ < |

|l +++++++++++++o+++++++ |0

|
o++o+++++++++ |

o+ |

—+
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Table B3. Results of the Boruta feature selection process for daily maximum chloride concentration at Krimpen aan den IJssel at # 1. A plus
(+) indicates that the indicated feature is important for predicting the output feature, while a minus (—) indicates that it is not important. A
zero (0) indicates that the importance of the feature is moderate or uncertain. » indicates that the feature is not applicable as an input feature.

Hydrol. Earth Syst. Sci., 27, 3823-3850, 2023
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CILkh500Mean
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CILkh700Mean
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HDrdMin
HDrdMean
HDrdMax
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Appendix C: Hyperparameter tuning overview

Table C1 shows the combinations of hyperparameters that
were evaluated as described in Sect. 2.3.5. We also show the
results of testing in terms of RMSE (Table C2), precision
(Table C3), recall (Table C4) and F1 score (harmonic mean
of precision and recall; Table C5). Based on the results of
this tuning process, model 21 was chosen as the final setup
(Table 2).

Table C1. Hyperparameters that were tried in the model tuning process described in Sect. 2.3.5. Each model number corresponds to a set of
hyperparameters with which three randomly initialized model were trained. The basic structure of the model is given in Table 4. The column
“output weight” indicates the weight given to the following output parameters: C1IKr400Min, C1Kr400Mean, C1Kr400Max, C1Kr550Min,
CIKr550Mean, CIKr550Max, CILkh250Min, CILkh250Mean, CILkh250Max, CILkh700Min, CILkh700Mean and CILkh700Max. The def-
initions of these variables are found in Table 1. Results of the training run are in Tables C2—-C5. Model 21 (values in bold) was selected as
the best performing model (Table 2).

Model Size Size Batch Extra Dropout Dropout Output weight
no. LSTM1 LSTM2 size dense (after (after

layer LSTM) dense)

size

1 32 32 16 16 0.2 0.2 Uniform
2 32 32 32 16 0.2 0.2 Uniform
3 32 32 64 16 0.2 0.2 Uniform
4 32 32 64 0 0.2 0  Uniform
5 32 32 64 32 0.2 0.2 Uniform
6 16 16 64 16 0.2 0.2 Uniform
7 16 16 64 32 0.2 0.2 Uniform
8 16 16 64 32 0.2 02 2,32,1,1,1,1,1,1,1,1, 1
9 16 16 64 32 0.2 02 1,2,2,1,1,1,1,1,1,1,1, 1
10 16 16 32 32 0.2 02 1,2,2,1,1,1,1,1,1,1,1, 1
11 32 32 32 32 0.2 02 1,2,2,1,1,1,1,1,1,1,1, 1
12 32 32 64 32 0.2 02 1,2,2,1,1,1,1,1,1,1,1, 1
13 16 16 32 32 0.2 02 2,2,2,1,1,1,1,1,1,1, 1, 1
14 16 16 32 32 0.2 02 2,2,3,1,1,1,1,1,1,1, 1, 1
15 32 32 32 32 0.2 02 2,2,31,1,1,1,1,1,1,1, 1
16 32 32 32 32 0.2 02 2,3,2,1,1,1,1,1,1,1,1, 1
17 32 32 32 32 0.2 02 2,3,2,1,2,1,1,1,1,1, 1, 1
18 32 32 32 32 0.2 02 2,3,31,2,1,1,1,1,1,1, 1
19 32 32 32 0 0.2 0 2,331,21,1,1,1,1,1,1
20 32 32 32 0 0.3 0 2,331,2,1,1,1,1,1, 1,1
21 32 32 64 0 0.3 0 2,331,21,1,1,1,1,1,1
22 32 32 16 0 0.3 0 2,331,2,1,1,1,1,1, 1,1
23 32 32 16 32 0.3 03 2,331,211,1,1,1,1,1
24 32 32 16 32 0.3 0 2,331,2,1,1,1,1,1, 1,1
25 32 32 16 32 0 03 2,331,2,1,1,1,1,1,1, 1
26 32 32 16 32 0.5 05 2,3,31,2,1,1,1,1,1,1, 1
27 32 32 32 32 0.5 05 2,331,2,1,1,1,1,1,1, 1
28 32 32 32 32 0.5 0 2,331,21,1,1,1,1,1,1
29 64 64 32 64 0.5 05 2,3,31,2,1,1,1,1,1,1, 1
30 64 64 32 0 0.5 0 2,331,2,1,1,1,1,1,1,1
31 128 128 32 0 0.5 0 2,331,2,1,1,1,1,1, 1,1
32 128 128 32 0 0.2 0 2,331,21,1,1,1,1,1,1
33 32 32 32 0 0.5 0 2,331,2,1,1,1,1,1,1,1
34 32 32 64 0 0.5 0 2,331,2,1,1,1,1,1,1,1
35 32 32 16 0 0.5 0 2,331,21,1,1,1,1,1,1
36 32 32 16 0 0.2 0 2,331,21,1,1,1,1,1,1
37 32 32 64 0 0.2 0 2,331,2,1,1,1,1,1,1, 1
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Table C2. RMSE for three randomly initialized models per hyperparameter setup. Every run shows the results of one model. Model numbers
correspond to the hyperparameter sets in Table C1. RMSE was calculated for three lead times: ¢, 714 and z7. RMSE can range from
0 (perfect) to infinity (wrong). Model 21 (values in bold) was selected as the best performing model (Table 2).

Model RMSE (mgL~1)
no. Run 1 Run 2 Run 3
I+1 44 147 AT R AT N I4+1 144 147

1 19 26 27 24 32 34 20 27 28
2 20 28 29 19 25 28 19 26 28
3 19 25 26 20 26 28 20 28 31
4 20 26 28 18 24 27 19 25 28
5 19 23 25 20 26 29 22 28 30
6 23 29 32 24 30 36 23 30 33
7 23 32 35 20 28 31 23 28 30
8 20 26 29 21 31 33 22 28 31
9 20 26 28 22 28 31 19 26 28
10 23 29 30 21 27 29 19 27 29
11 19 25 26 18 27 29 18 23 25
12 19 27 28 18 24 27 21 30 32
13 21 30 32 21 31 32 21 29 30
14 20 28 30 21 29 31 20 27 30
15 18 25 27 18 23 25 17 22 24
16 21 26 28 18 26 28 19 27 30
17 21 28 29 21 28 29 19 25 27
18 20 27 28 18 26 28 19 26 27
19 18 25 27 18 25 27 20 27 29
20 21 28 31 20 27 28 18 25 26
21 19 24 26 19 27 28 18 23 24
22 21 28 30 20 27 29 18 24 25
23 20 27 29 19 26 28 21 28 29
24 18 25 27 17 24 26 19 24 26
25 19 27 29 21 30 32 17 23 25
26 25 32 35 27 36 37 24 32 33
27 22 30 31 22 30 31 22 28 29
28 17 25 27 20 29 31 21 28 29
29 18 26 27 20 26 28 20 26 29
30 19 25 27 20 25 26 18 24 25
31 18 22 24 17 24 25 18 23 25
32 19 25 26 19 25 26 18 22 23
33 21 30 31 21 29 30 20 27 28
34 22 28 30 22 30 32 20 28 29
35 20 30 31 20 26 28 19 26 28
36 19 24 26 21 25 26 18 23 25
37 19 27 29 20 26 28 20 28 29
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Table C3. Precision for three randomly initialized models per hyperparameter setup. Every run shows the results of one model. Model
numbers correspond to the hyperparameter sets in Table C1. Precision was calculated for three lead times: 71, 14 and 71 7. Precision can

range from 0 (wrong) to 1 (perfect). Model 21 (values in bold) was selected as the best performing model (Table 2).

Model Precision
no. Run 1 Run 2 Run 3

41 144 147 1 44 147 41 144 147
1 0.83 090 0.88 091 097 097 0.82 0.82 0.82
2 0.87 0.81 0.85 0.83 0.83 0.83 0.84 091 091
3 0.88 0.81 0.80 093 097 094 0.86 0.88 0.89
4 0.86 0.83 0.76 091 094 0.89 097 0.87 0.89
5 0.89 0.86 0.81 0.81 0.78 0.72 094 093 0093
6 097 0.85 0.75 0.87 0.72 0.60 0.86 0.86 0.82
7 093 097 096 094 091 091 0.83 0.86 0.83
8 085 0.79 0.78 094 097 094 094 0.77 0.77
9 0.86 0.89 0.79 091 0.89 0.73 091 0.88 0.89
10 076 0.73 0.70 0.89 091 0.88 0.82 0.87 0.81
11 0.89 0.87 0.80 0.85 0.89 0.86 092 0.83 0.81
12 0.83 0.83 0.85 0.89 0.89 0.82 091 091 0091
13 097 1.00 1.00 0.94 097 0.96 0.86 0.89 0.85
14 085 0.85 0.78 093 097 1.00 0.81 0.78 0.78
15 085 0.92 092 0.84 0.84 0.79 0.89 0.80 0.73
16 0.88 0.81 0.83 0.86 0.89 0091 0.86 0.83 0.81
17 0.82 0.78 0.82 094 091 094 0.89 0.86 0.84
18 0.85 0.89 091 0.80 0.87 0.77 0.89 0.85 0.89
19 094 097 094 091 092 094 0.87 0.87 0.87
20 094 0.80 0.69 0.86 091 0.89 094 091 0.89
21 091 0.89 091 0.87 0.82 0.80 092 092 0.85
22 091 091 091 0.92 0.89 0.89 0.87 0.83 0.79
23 097 0.83 0.80 0.80 0.83 0.80 097 097 091
24 0.84 0.89 0.87 094 097 094 0.88 0.86 0.86
25 0.88 0.90 0.87 0.86 0.89 0.82 091 0.87 0.87
26 0.83 0.71 0.62 094 097 094 1.00 093 0.93
27 094 094 0091 091 091 0.86 0.88 0.89 0.86
28 0.87 0.89 0.85 0.86 092 0.82 092 092 091
29 0.89 095 090 090 0.83 0.83 0.87 0.80 0.79
30 0.83 0.86 0.84 0.85 0.85 0.85 0.89 091 0091
31 097 0.89 0.88 094 094 091 091 097 091
32 086 0.86 0.75 092 0.86 0.83 097 1.00 1.00
33 097 096 0.96 097 097 097 0.86 0.88 0.83
34 0.86 0.86 0.86 0.86 0.86 0.83 091 091 0.88
35 0.87 0.87 0.86 0.82 0.82 0.84 0.89 092 0.87
36 091 097 097 0.89 0.83 0.83 0.89 092 092
37 091 0.89 0.87 094 0.89 0.74 0.85 0.89 0.89
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Table C4. Recall for three randomly initialized models per hyperparameter setup. Every run shows the results of one model. Model numbers
correspond to the hyperparameter sets in Table C1. Recall was calculated for three lead times: 741, f14 and z47. Recall can range from
0 (wrong) to 1 (perfect). Model 21 (values in bold) was selected as the best performing model (Table 2).

Model Recall
no. Run 1 Run 2 Run 3

41 144 147 |5 R S 41 144 147
1 0.89 0.88 0.85 0.73 0.70 0.70 0.80 0.80 0.80
2 083 0.85 0.85 0.75 0.88 0.83 0.78 0.73 0.78
3 0.88 0.88 0.85 0.68 0.75 0.75 0.75 0.75 0.78
4 0.80 0.83 0.85 0.78 0.78 0.83 0.85 0.85 0.83
5 0.80 0.80 0.85 0.88 090 0.90 0.73 0.68 0.70
6 075 0.73 0.75 0.83 0.83 0.80 0.80 0.78 0.78
7 0.70 0.73 0.65 0.75 073 0.73 0.75 0.78 0.83
8 0.83 0.83 0.80 0.83 0.75 0.78 0.80 0.83 0.85
9 0.75 0.83 0.83 0.78 0.83 0.83 0.80 0.73 0.80
10 0.88 0.88 0.88 0.78 0.73 0.75 0.80 0.85 0.83
11 0.80 0.83 0.83 0.83 0.78 0.80 0.88 0.85 0.85
12 085 0.85 0.83 0.80 0.78 0.78 0.73 0.75 0.78
13 0.73 0.70 0.65 0.73 0.70 0.68 0.78 0.83 0.83
14 0.83 0.83 0.80 0.70 0.70 0.70 0.88 0.88 0.88
15 0.80 0.85 0.83 090 095 093 0.83 0.88 0.88
16 0.88 0.88 0.88 0.75 0.78 0.73 0.78 0.88 0.85
17 0.78 0.78 0.80 0.75 0.73 0.73 0.78 0.80 0.78
18 0.73 0.80 0.78 0.80 0.83 0.83 0.83 0.83 0.83
19 0.75 0.78 0.75 0.78 0.83 0.80 0.83 0.83 0.83
20 0.80 0.80 0.85 0.80 0.78 0.80 0.80 0.80 0.83
21 0.78 0.78 0.78 0.83 090 0.90 0.83 0.83 0.88
22 0.75 0.75 0.75 0.85 0.83 0.80 0.83 0.85 093
23 0.85 0.85 0.90 0.83 0.88 0.88 0.75 0.78 0.78
24 0.80 0.83 0.83 0.75 0.70 0.73 0.75 0.80 0.80
25 0.80 0.68 0.68 0.75 0.83 0.80 0.80 0.85 0.85
26 0.88 0.88 0.90 0.78 0.75 0.83 0.70 0.68 0.65
27 078 0.73 0.75 0.75 0.78 0.78 0.73 0.80 0.80
28 0.83 0.83 0.83 0.80 0.83 0.90 0.83 0.85 0.80
29 0.83 0.88 0.88 0.88 0.85 0.83 0.85 0.88 0093
30 0.83 0.80 0.80 0.85 0.85 0.85 0.78 0.80 0.80
31 093 0.85 0.88 0.83 0.78 0.78 0.78 0.80 0.75
32 093 095 0095 0.83 090 0.88 0.85 0.80 0.83
33 0.75 0.63 0.63 0.83 0.83 0.83 0.80 0.88 0.88
34 0.75 0.80 0.75 0.78 0.80 0.83 0.75 0.75 0.75
35 0.83 0.83 0.80 0.80 0.80 0.80 0.78 0.83 0.83
36 078 0.73 0.75 0.85 0.88 0.88 0.85 0.88 0.85
37 0.75 0.85 0.85 0.78 0.80 0.80 0.83 0.83 0.78
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Table CS5. F1 score for three randomly initialized models per hyperparameter setup. Every run shows the results of one model. The F1 score
is the harmonic mean of precision and recall. Model numbers correspond to the hyperparameter sets in Table C1. F1 score was calculated for
three lead times: f 1, #44 and ¢47. F1 can range from 0 (wrong) to 1 (perfect). Model 21 (values in bold) was selected as the best performing
model (Table 2).

Model F1 score
no. Run 1 Run 2 Run 3

I+1 44 147 1 44 147 I+1 144 147
1 0.86 0.89 0.86 0.81 0.81 0.81 0.81 0.81 0.81
2 0.85 0.83 0.85 0.79 0.85 0.83 0.81 0.81 0.84
3 0.88 0.84 0.82 0.79 0.85 0.83 0.80 0.81 0.83
4 0.83 0.83 0.80 0.84 0.85 0.86 091 0.86 0.86
5 0.84 0.83 0.83 0.84 0.84 0.80 0.82 0.79 0.80
6 085 0.79 0.75 0.85 0.77 0.69 0.83 0.82 0.80
7 0.80 0.83 0.78 0.83 0.81 0.81 0.79 0.82 0.83
8 0.84 0.81 0.79 0.88 0.85 0.85 0.86 0.80 0.81
9 0.80 0.86 0.81 0.84 0.86 0.78 0.85 0.80 0.84
10 0.82 0.80 0.78 0.83 0.81 0.81 0.81 0.86 0.82
11 0.84 0.85 0.81 0.84 0.83 0.83 0.90 0.84 0.83
12 0.84 0.84 0.84 0.84 0.83 0.80 0.81 0.82 0.84
13 0.83 0.82 0.79 0.82 0.81 0.80 0.82 0.86 0.84
14 0.84 0.84 0.79 0.80 0.81 0.82 0.84 0.83 0.83
15 0.82 0.88 0.87 0.87 0.89 0.85 0.86 0.84 0.80
16 0.88 0.84 0.85 0.80 0.83 0.81 0.82 0.85 0.83
17 0.80 0.78 0.81 0.83 0.81 0.82 0.83 0.83 0.81
18 079 0.84 0.84 0.80 0.85 0.80 0.86 0.84 0.86
19 0.83 0.86 0.83 0.84 0.87 0.86 0.85 0.85 0.85
20 0.86 0.80 0.76 0.83 0.84 0.84 0.86 0.85 0.86
21 0.84 0.83 0.84 0.85 086 0.85 0.87 0.87 0.86
22 0.82 0.82 0.82 0.88 0.86 0.84 0.85 0.84 0.85
23 091 0.84 0.85 0.81 0.85 0.84 0.85 0.86 0.84
24 0.82 0.86 0.85 0.83 0.81 0.82 0.81 0.83 0.83
25 0.84 0.77 0.76 0.80 0.86 0.81 0.85 0.86 0.86
26 0.85 0.79 0.73 0.85 0.85 0.88 0.82 0.79 0.77
27 085 0.82 0.82 0.82 0.84 0.82 0.80 0.84 0.83
28 0.85 0.86 0.84 0.83 0.87 0.86 0.87 0.88 0.85
29 0.86 091 0.89 0.89 0.84 0.83 0.86 0.84 0.85
30 0.83 0.83 0.82 0.85 0.85 0.85 0.83 0.85 0.85
31 095 0.87 0.88 0.88 0.85 0.84 0.84 0.88 0.82
32 0.89 090 0.84 0.87 0.88 0.85 091 0.89 0091
33 085 0.76 0.76 0.89 0.89 0.89 0.83 0.88 0.85
34 0.80 0.83 0.80 0.82 0.83 0.83 0.82 0.82 0.81
35 085 0.85 0.83 0.81 0.81 0.82 0.83 0.87 0.85
36 0.84 0.83 0.85 0.87 0.85 0.85 0.87 090 0.88
37 0.82 0.87 0.86 0.85 0.84 0.77 0.84 0.86 0.83
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Appendix D: Results of ensemble members

Figures D1 and D2 show the forecasts and fits for the training
dataset (2011-2017) and test dataset (2018-2020) as separate
ensemble members.
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Figure D1. Model performance for the training period (2011-2017). Panels (a), (¢) and (e) show a collection of forecasts of C1Kr400Mean
made with lead times of (a) 1d, (¢) 4d and (e) 7 d for the year 2011, along with observed values. The predicted value is given as an ensemble
prediction for each day of the year, created with the lead time mentioned. For each ensemble member, a separate line is plotted. Panels (b),
(d) and (f) show predicted vs. observed values for the full training dataset with lead times of 1, 4 and 7 d respectively. For each day in the
training dataset, a single dot represents the prediction of a single ensemble member. This figure is summarized in Fig. 5.
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Figure D2. Model performance for the training period (2018-2020). Panels (a), (c¢) and (e) show a collection of forecasts of C1IKr400Mean
made with lead times of (a) 1d, (c) 4d and (e) 7 d for the year 2011, along with observed values. The predicted value is given as an ensemble
prediction for each day of the year, created with the lead time mentioned. For each ensemble member, a separate line is plotted. Panels (b),
(d) and (f) show predicted vs. observed values for the full training dataset with lead times of 1, 4 and 7 d respectively. For each day in the
training dataset, a single dot represents the prediction of a single ensemble member. This figure is summarized in Fig. 7.

Code and data availability. Data and software are available on the
4TU repository, using https://doi.org/10.4121/21944249 (Wullems
et al., 2023a) for the data and https://doi.org/10.4121/21946724
(Wullems et al., 2023b) for the software. Raw data can be found
on https://www.knmi.nl/nederland-nu/klimatologie/daggegevens
(KNMI, 2022) and https://waterinfo.rws.nl/#!/kaart/Waterbeheer/
(Rijkswaterstaat, 2022). The software will undergo further de-
velopment in future. The most recent version can be found on
https://doi.org/10.5281/zenodo.10017846 (Wullems et al., 2023c).
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