Articles | Volume 26, issue 18
https://doi.org/10.5194/hess-26-4603-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-4603-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluation of water flux predictive models developed using eddy-covariance observations and machine learning: a meta-analysis
Haiyang Shi
State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, Xinjiang, 830011, China
College of Resources and Environment, University of the Chinese Academy of Sciences, 19 (A) Yuquan Road, Beijing, 100049, China
Department of Geography, Ghent University, Ghent 9000, Belgium
Sino-Belgian Joint Laboratory for Geo-Information, Ghent 9000, Belgium
Geping Luo
CORRESPONDING AUTHOR
State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, Xinjiang, 830011, China
College of Resources and Environment, University of the Chinese Academy of Sciences, 19 (A) Yuquan Road, Beijing, 100049, China
Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Ürümqi, 830011, China
Sino-Belgian Joint Laboratory for Geo-Information, Ghent 9000, Belgium
Olaf Hellwich
CORRESPONDING AUTHOR
Department of Computer Vision & Remote Sensing, Technische Universität Berlin, 10587 Berlin, Germany
Mingjuan Xie
State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, Xinjiang, 830011, China
College of Resources and Environment, University of the Chinese Academy of Sciences, 19 (A) Yuquan Road, Beijing, 100049, China
Department of Geography, Ghent University, Ghent 9000, Belgium
Sino-Belgian Joint Laboratory for Geo-Information, Ghent 9000, Belgium
Chen Zhang
State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, Xinjiang, 830011, China
College of Resources and Environment, University of the Chinese Academy of Sciences, 19 (A) Yuquan Road, Beijing, 100049, China
Yu Zhang
State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, Xinjiang, 830011, China
College of Resources and Environment, University of the Chinese Academy of Sciences, 19 (A) Yuquan Road, Beijing, 100049, China
Yuangang Wang
State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, Xinjiang, 830011, China
College of Resources and Environment, University of the Chinese Academy of Sciences, 19 (A) Yuquan Road, Beijing, 100049, China
Xiuliang Yuan
State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, Xinjiang, 830011, China
Xiaofei Ma
State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, Xinjiang, 830011, China
Wenqiang Zhang
State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, Xinjiang, 830011, China
College of Resources and Environment, University of the Chinese Academy of Sciences, 19 (A) Yuquan Road, Beijing, 100049, China
Department of Geography, Ghent University, Ghent 9000, Belgium
Sino-Belgian Joint Laboratory for Geo-Information, Ghent 9000, Belgium
Alishir Kurban
State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, Xinjiang, 830011, China
College of Resources and Environment, University of the Chinese Academy of Sciences, 19 (A) Yuquan Road, Beijing, 100049, China
Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Ürümqi, 830011, China
Sino-Belgian Joint Laboratory for Geo-Information, Ghent 9000, Belgium
Philippe De Maeyer
State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, Xinjiang, 830011, China
College of Resources and Environment, University of the Chinese Academy of Sciences, 19 (A) Yuquan Road, Beijing, 100049, China
Department of Geography, Ghent University, Ghent 9000, Belgium
Sino-Belgian Joint Laboratory for Geo-Information, Ghent 9000, Belgium
Tim Van de Voorde
Department of Geography, Ghent University, Ghent 9000, Belgium
Sino-Belgian Joint Laboratory for Geo-Information, Ghent 9000, Belgium
Related authors
Haiyang Shi, Geping Luo, Olaf Hellwich, Xiufeng He, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Hydrol. Earth Syst. Sci., 27, 4551–4562, https://doi.org/10.5194/hess-27-4551-2023, https://doi.org/10.5194/hess-27-4551-2023, 2023
Short summary
Short summary
Using evidence from meteorological stations, this study assessed the climatic, hydrological, and ecological aridity changes in global drylands and their associated mechanisms. A decoupling between atmospheric, hydrological, and vegetation aridity was found. This highlights the added value of using station-scale data to assess dryland change as a complement to results based on coarse-resolution reanalysis data and land surface models.
Haiyang Shi, Geping Luo, Olaf Hellwich, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Biogeosciences, 20, 2727–2741, https://doi.org/10.5194/bg-20-2727-2023, https://doi.org/10.5194/bg-20-2727-2023, 2023
Short summary
Short summary
In studies on the relationship between ecosystem functions and climate and plant traits, previously used data-driven methods such as multiple regression and random forest may be inadequate for representing causality due to limitations such as covariance between variables. Based on FLUXNET site data, we used a causal graphical model to revisit the control of climate and vegetation traits over ecosystem functions.
Haiyang Shi, Geping Luo, Olaf Hellwich, Mingjuan Xie, Chen Zhang, Yu Zhang, Yuangang Wang, Xiuliang Yuan, Xiaofei Ma, Wenqiang Zhang, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Biogeosciences, 19, 3739–3756, https://doi.org/10.5194/bg-19-3739-2022, https://doi.org/10.5194/bg-19-3739-2022, 2022
Short summary
Short summary
A number of studies have been conducted by using machine learning approaches to simulate carbon fluxes. We performed a meta-analysis of these net ecosystem exchange (NEE) simulations. Random forests and support vector machines performed better than other algorithms. Models with larger timescales had a lower accuracy. For different plant functional types (PFTs), there were significant differences in the predictors used and their effects on model accuracy.
Haiyang Shi, Geping Luo, Hongwei Zheng, Chunbo Chen, Olaf Hellwich, Jie Bai, Tie Liu, Shuang Liu, Jie Xue, Peng Cai, Huili He, Friday Uchenna Ochege, Tim Van de Voorde, and Philippe de Maeyer
Hydrol. Earth Syst. Sci., 25, 901–925, https://doi.org/10.5194/hess-25-901-2021, https://doi.org/10.5194/hess-25-901-2021, 2021
Short summary
Short summary
Some river basins are considered to be very similar because they have a similar background such as a transboundary, facing threats of human activities. But we still lack understanding of differences under their general similarities. Therefore, we proposed a framework based on a Bayesian network to group watersheds based on similarity levels and compare the causal and systematic differences within the group. We applied it to the Amu and Syr Darya River basin and discussed its universality.
Philippe de Maeyer and Jan Vandersmissen
Abstr. Int. Cartogr. Assoc., 10, 55, https://doi.org/10.5194/ica-abs-10-55-2025, https://doi.org/10.5194/ica-abs-10-55-2025, 2025
Haiyang Shi, Geping Luo, Olaf Hellwich, Xiufeng He, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Hydrol. Earth Syst. Sci., 27, 4551–4562, https://doi.org/10.5194/hess-27-4551-2023, https://doi.org/10.5194/hess-27-4551-2023, 2023
Short summary
Short summary
Using evidence from meteorological stations, this study assessed the climatic, hydrological, and ecological aridity changes in global drylands and their associated mechanisms. A decoupling between atmospheric, hydrological, and vegetation aridity was found. This highlights the added value of using station-scale data to assess dryland change as a complement to results based on coarse-resolution reanalysis data and land surface models.
Philippe De Maeyer
Abstr. Int. Cartogr. Assoc., 6, 49, https://doi.org/10.5194/ica-abs-6-49-2023, https://doi.org/10.5194/ica-abs-6-49-2023, 2023
Haiyang Shi, Geping Luo, Olaf Hellwich, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Biogeosciences, 20, 2727–2741, https://doi.org/10.5194/bg-20-2727-2023, https://doi.org/10.5194/bg-20-2727-2023, 2023
Short summary
Short summary
In studies on the relationship between ecosystem functions and climate and plant traits, previously used data-driven methods such as multiple regression and random forest may be inadequate for representing causality due to limitations such as covariance between variables. Based on FLUXNET site data, we used a causal graphical model to revisit the control of climate and vegetation traits over ecosystem functions.
Philippe De Maeyer
Abstr. Int. Cartogr. Assoc., 5, 3, https://doi.org/10.5194/ica-abs-5-3-2022, https://doi.org/10.5194/ica-abs-5-3-2022, 2022
Haiyang Shi, Geping Luo, Olaf Hellwich, Mingjuan Xie, Chen Zhang, Yu Zhang, Yuangang Wang, Xiuliang Yuan, Xiaofei Ma, Wenqiang Zhang, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Biogeosciences, 19, 3739–3756, https://doi.org/10.5194/bg-19-3739-2022, https://doi.org/10.5194/bg-19-3739-2022, 2022
Short summary
Short summary
A number of studies have been conducted by using machine learning approaches to simulate carbon fluxes. We performed a meta-analysis of these net ecosystem exchange (NEE) simulations. Random forests and support vector machines performed better than other algorithms. Models with larger timescales had a lower accuracy. For different plant functional types (PFTs), there were significant differences in the predictors used and their effects on model accuracy.
Jana Ameye, Philippe De Maeyer, Mario Hernandez, and Luc Zwartjes
Abstr. Int. Cartogr. Assoc., 3, 5, https://doi.org/10.5194/ica-abs-3-5-2021, https://doi.org/10.5194/ica-abs-3-5-2021, 2021
Sara Top, Lola Kotova, Lesley De Cruz, Svetlana Aniskevich, Leonid Bobylev, Rozemien De Troch, Natalia Gnatiuk, Anne Gobin, Rafiq Hamdi, Arne Kriegsmann, Armelle Reca Remedio, Abdulla Sakalli, Hans Van De Vyver, Bert Van Schaeybroeck, Viesturs Zandersons, Philippe De Maeyer, Piet Termonia, and Steven Caluwaerts
Geosci. Model Dev., 14, 1267–1293, https://doi.org/10.5194/gmd-14-1267-2021, https://doi.org/10.5194/gmd-14-1267-2021, 2021
Short summary
Short summary
Detailed climate data are needed to assess the impact of climate change on human and natural systems. The performance of two high-resolution regional climate models, ALARO-0 and REMO2015, was investigated over central Asia, a vulnerable region where detailed climate information is scarce. In certain subregions the produced climate data are suitable for impact studies, but bias adjustment is required for subregions where significant biases have been identified.
Haiyang Shi, Geping Luo, Hongwei Zheng, Chunbo Chen, Olaf Hellwich, Jie Bai, Tie Liu, Shuang Liu, Jie Xue, Peng Cai, Huili He, Friday Uchenna Ochege, Tim Van de Voorde, and Philippe de Maeyer
Hydrol. Earth Syst. Sci., 25, 901–925, https://doi.org/10.5194/hess-25-901-2021, https://doi.org/10.5194/hess-25-901-2021, 2021
Short summary
Short summary
Some river basins are considered to be very similar because they have a similar background such as a transboundary, facing threats of human activities. But we still lack understanding of differences under their general similarities. Therefore, we proposed a framework based on a Bayesian network to group watersheds based on similarity levels and compare the causal and systematic differences within the group. We applied it to the Amu and Syr Darya River basin and discussed its universality.
Cited articles
Adams, D. C., Gurevitch, J., and Rosenberg, M. S.: Resampling tests for
meta of ecological data, Ecology, 78, 1277–1283, 1997.
Allen, R. G., Pereira, L. S., Howell, T. A., and Jensen, M. E.:
Evapotranspiration information reporting: I. Factors governing measurement
accuracy, Agr. Water Manage., 98, 899–920,
https://doi.org/10.1016/j.agwat.2010.12.015, 2011.
Anderson, M. C., Allen, R. G., Morse, A., and Kustas, W. P.: Use of Landsat
thermal imagery in monitoring evapotranspiration and managing water
resources, Remote Sens. Environ., 122, 50–65,
https://doi.org/10.1016/j.rse.2011.08.025, 2012.
Barman, R., Jain, A. K., and Liang, M.: Climate-driven uncertainties in
modeling terrestrial energy and water fluxes: a site-level to global-scale
analysis, Global Change Biol., 20, 1885–1900,
https://doi.org/10.1111/gcb.12473, 2014.
Borenstein, M., Hedges, L. V., Higgins, J. P., and Rothstein, H. R.: Introduction to meta-analysis, John Wiley & Sons, https://doi.org/10.1002/9780470743386, 2011.
Charuchittipan, D., Babel, W., Mauder, M., Leps, J.-P., and Foken, T.:
Extension of the Averaging Time in Eddy-Covariance Measurements and Its
Effect on the Energy Balance Closure, Bound.-Lay. Meteorol., 152,
303–327, https://doi.org/10.1007/s10546-014-9922-6, 2014.
Chen, Y., Xia, J., Liang, S., Feng, J., Fisher, J. B., Li, X., Li, X., Liu,
S., Ma, Z., Miyata, A., Mu, Q., Sun, L., Tang, J., Wang, K., Wen, J., Xue,
Y., Yu, G., Zha, T., Zhang, L., Zhang, Q., Zhao, T., Zhao, L., and Yuan, W.:
Comparison of satellite-based evapotranspiration models over terrestrial
ecosystems in China, Remote Sens. Environ., 140, 279–293,
https://doi.org/10.1016/j.rse.2013.08.045, 2014.
Chen, Y., Wang, S., Ren, Z., Huang, J., Wang, X., Liu, S., Deng, H., and
Lin, W.: Increased evapotranspiration from land cover changes intensified
water crisis in an arid river basin in northwest China, J. Hydrol., 574, 383–397, https://doi.org/10.1016/j.jhydrol.2019.04.045,
2019.
Don, A., Schumacher, J., and Freibauer, A.: Impact of tropical land-use
change on soil organic carbon stocks – a meta-analysis, Global Change Biol., 17, 1658–1670, https://doi.org/10.1111/j.1365-2486.2010.02336.x,
2011.
Eichelmann, E., Mantoani, M. C., Chamberlain, S. D., Hemes, K. S., Oikawa,
P. Y., Szutu, D., Valach, A., Verfaillie, J., and Baldocchi, D. D.: A novel
approach to partitioning evapotranspiration into evaporation and
transpiration in flooded ecosystems, Global Change Biol., 28, 990–1007,
https://doi.org/10.1111/gcb.15974, 2022.
Eshonkulov, R., Poyda, A., Ingwersen, J., Wizemann, H.-D., Weber, T. K. D., Kremer, P., Högy, P., Pulatov, A., and Streck, T.: Evaluating multi-year, multi-site data on the energy balance closure of eddy-covariance flux measurements at cropland sites in southwestern Germany, Biogeosciences, 16, 521–540, https://doi.org/10.5194/bg-16-521-2019, 2019.
Fang, B., Lei, H., Zhang, Y., Quan, Q., and Yang, D.: Spatio-temporal
patterns of evapotranspiration based on upscaling eddy covariance
measurements in the dryland of the North China Plain, Agr. Forest Meteorol., 281, 107844, https://doi.org/10.1016/j.agrformet.2019.107844,
2020.
Field, A. P. and Gillett, R.: How to do a meta, British J.
Math. Stat. Psychol., 63, 665–694, 2010.
Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R.,
McCabe, M. F., Hook, S., Baldocchi, D., Townsend, P. A., Kilic, A., Tu, K.,
Miralles, D. D., Perret, J., Lagouarde, J.-P., Waliser, D., Purdy, A. J.,
French, A., Schimel, D., Famiglietti, J. S., Stephens, G., and Wood, E. F.:
The future of evapotranspiration: Global requirements for ecosystem
functioning, carbon and climate feedbacks, agricultural management, and
water resources, Water Resour. Res., 53, 2618–2626,
https://doi.org/10.1002/2016WR020175, 2017.
Foken, T.: The energy balance closure problem: An overview, Ecol. Appl., 18, 1351–1367, 2008.
Gaston, K. J.: Global patterns in biodiversity, Nature, 405, 220–227,
https://doi.org/10.1038/35012228, 2000.
Hui, D., Wan, S., Su, B., Katul, G., Monson, R., and Luo, Y.: Gap-filling
missing data in eddy covariance measurements using multiple imputation (MI)
for annual estimations, Agr. Forest Meteorol., 121, 93–111,
https://doi.org/10.1016/S0168-1923(03)00158-8, 2004.
Jacobs, A. F. G., Heusinkveld, B. G., and Holtslag, A. A. M.: Towards
Closing the Surface Energy Budget of a Mid-latitude Grassland,
Bound.-Lay. Meteorol., 126, 125–136,
https://doi.org/10.1007/s10546-007-9209-2, 2008.
Jung, M., Reichstein, M., and Bondeau, A.: Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model, Biogeosciences, 6, 2001–2013, https://doi.org/10.5194/bg-6-2001-2009, 2009.
Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson, A. D.,
Arain, M. A., Arneth, A., Bernhofer, C., Bonal, D., Chen, J., Gianelle, D.,
Gobron, N., Kiely, G., Kutsch, W., Lasslop, G., Law, B. E., Lindroth, A.,
Merbold, L., Montagnani, L., Moors, E. J., Papale, D., Sottocornola, M.,
Vaccari, F., and Williams, C.: Global patterns of land-atmosphere fluxes of
carbon dioxide, latent heat, and sensible heat derived from eddy covariance,
satellite, and meteorological observations, J. Geophys. Res.-Biogeo., 116, G00J07, https://doi.org/10.1029/2010JG001566, 2011.
Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Camps-Valls, G.,
Papale, D., Schwalm, C., Tramontana, G., and Reichstein, M.: The FLUXCOM
ensemble of global land-atmosphere energy fluxes, Sci. Data, 6, 74,
https://doi.org/10.1038/s41597-019-0076-8, 2019.
Kaur, H., Pannu, H. S., and Malhi, A. K.: A Systematic Review on Imbalanced
Data Challenges in Machine Learning: Applications and Solutions, ACM Comput.
Surv., 52, 1–36, https://doi.org/10.1145/3343440, 2019.
Li, X., He, Y., Zeng, Z., Lian, X., Wang, X., Du, M., Jia, G., Li, Y., Ma,
Y., Tang, Y., Wang, W., Wu, Z., Yan, J., Yao, Y., Ciais, P., Zhang, X.,
Zhang, Y., Zhang, Y., Zhou, G., and Piao, S.: Spatiotemporal pattern of
terrestrial evapotranspiration in China during the past thirty years,
Agr. Forest Meteorol., 259, 131–140,
https://doi.org/10.1016/j.agrformet.2018.04.020, 2018.
Li, X., Kang, S., Niu, J., Huo, Z., and Liu, J.: Improving the
representation of stomatal responses to CO2 within the Penman–Monteith
model to better estimate evapotranspiration responses to climate change,
J. Hydrol., 572, 692–705,
https://doi.org/10.1016/j.jhydrol.2019.03.029, 2019.
Liu, Q., Zhang, Y., Liu, B., Amonette, J. E., Lin, Z., Liu, G., Ambus, P.,
and Xie, Z.: How does biochar influence soil N cycle?, A meta-analysis, Plant
Soil, 426, 211–225, 2018a.
Liu, Y., Xiao, J., Ju, W., Zhu, G., Wu, X., Fan, W., Li, D., and Zhou, Y.:
Satellite-derived LAI products exhibit large discrepancies and can lead to
substantial uncertainty in simulated carbon and water fluxes, Remote Sens. Environ., 206, 174–188, https://doi.org/10.1016/j.rse.2017.12.024,
2018b.
Lu, X. and Zhuang, Q.: Evaluating evapotranspiration and water-use
efficiency of terrestrial ecosystems in the conterminous United States using
MODIS and AmeriFlux data, Remote Sens. Environ., 114, 1924–1939,
https://doi.org/10.1016/j.rse.2010.04.001, 2010.
Mauder, M., Cuntz, M., Drüe, C., Graf, A., Rebmann, C., Schmid, H. P.,
Schmidt, M., and Steinbrecher, R.: A strategy for quality and uncertainty
assessment of long-term eddy-covariance measurements, Agr. Forest Meteorol., 169, 122–135,
https://doi.org/10.1016/j.agrformet.2012.09.006, 2013.
Mauder, M., Genzel, S., Fu, J., Kiese, R., Soltani, M., Steinbrecher, R.,
Zeeman, M., Banerjee, T., De Roo, F., and Kunstmann, H.: Evaluation of
energy balance closure adjustment methods by independent evapotranspiration
estimates from lysimeters and hydrological simulations, Hydrol. Proc., 32, 39–50, https://doi.org/10.1002/hyp.11397, 2018.
McColl, K. A.: Practical and Theoretical Benefits of an Alternative to the
Penman-Monteith Evapotranspiration Equation, Water Resour. Res., 56,
e2020WR027106, https://doi.org/10.1029/2020WR027106, 2020.
Minacapilli, M., Agnese, C., Blanda, F., Cammalleri, C., Ciraolo, G., D'Urso, G., Iovino, M., Pumo, D., Provenzano, G., and Rallo, G.: Estimation of actual evapotranspiration of Mediterranean perennial crops by means of remote-sensing based surface energy balance models, Hydrol. Earth Syst. Sci., 13, 1061–1074, https://doi.org/10.5194/hess-13-1061-2009, 2009.
Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C. A., and Dolman, A. J.: Global land-surface evaporation estimated from satellite-based observations, Hydrol. Earth Syst. Sci., 15, 453–469, https://doi.org/10.5194/hess-15-453-2011, 2011.
Miralles, D. G., Teuling, A. J., van Heerwaarden, C. C., and Vilà-Guerau
de Arellano, J.: Mega-heatwave temperatures due to combined soil desiccation
and atmospheric heat accumulation, Nat. Geosci, 7, 345–349,
https://doi.org/10.1038/ngeo2141, 2014.
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., and Prisma Group: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement, PLoS medicine, 6, e1000097, https://doi.org/10.1136/bmj.b2535, 2009.
Mu, Q., Zhao, M., and Running, S. W.: Improvements to a MODIS global
terrestrial evapotranspiration algorithm, Remote Sens. Environ.,
115, 1781–1800, https://doi.org/10.1016/j.rse.2011.02.019, 2011.
Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C.,
Tucker, C. J., Myneni, R. B., and Running, S. W.: Climate-Driven Increases
in Global Terrestrial Net Primary Production from 1982 to 1999, Science,
300, 1560–1563, https://doi.org/10.1126/science.1082750, 2003.
Pan, S., Tian, H., Dangal, S. R. S., Yang, Q., Yang, J., Lu, C., Tao, B.,
Ren, W., and Ouyang, Z.: Responses of global terrestrial evapotranspiration
to climate change and increasing atmospheric CO2 in the 21st century,
Earth's Future, 3, 15–35, https://doi.org/10.1002/2014EF000263, 2015.
Pan, S., Pan, N., Tian, H., Friedlingstein, P., Sitch, S., Shi, H., Arora, V. K., Haverd, V., Jain, A. K., Kato, E., Lienert, S., Lombardozzi, D., Nabel, J. E. M. S., Ottlé, C., Poulter, B., Zaehle, S., and Running, S. W.: Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling, Hydrol. Earth Syst. Sci., 24, 1485–1509, https://doi.org/10.5194/hess-24-1485-2020, 2020.
Papale, D., Black, T. A., Carvalhais, N., Cescatti, A., Chen, J., Jung, M.,
Kiely, G., Lasslop, G., Mahecha, M. D., Margolis, H., Merbold, L.,
Montagnani, L., Moors, E., Olesen, Jø. E., Reichstein, M., Tramontana,
G., Van Gorsel, E., Wohlfahrt, G., and Ráduly, B.: Effect of spatial
sampling from European flux towers for estimating carbon and water fluxes
with artificial neural networks, J. Geophys. Res.-Biogeo., 120, 1941–1957, https://doi.org/10.1002/2015JG002997, 2015.
Paul-Limoges, E., Wolf, S., Schneider, F. D., Longo, M., Moorcroft, P.,
Gharun, M., and Damm, A.: Partitioning evapotranspiration with concurrent
eddy covariance measurements in a mixed forest, Agr. Forest Meteorol., 280, 107786, https://doi.org/10.1016/j.agrformet.2019.107786,
2020.
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007.
Rigden, A. J. and Salvucci, G. D.: Evapotranspiration based on equilibrated
relative humidity (ETRHEQ): Evaluation over the continental U.S., Water
Resour. Res., 51, 2951–2973, https://doi.org/10.1002/2014WR016072,
2015.
Sahoo, A. K., Pan, M., Troy, T. J., Vinukollu, R. K., Sheffield, J., and
Wood, E. F.: Reconciling the global terrestrial water budget using satellite
remote sensing, Remote Sens. Environ., 115, 1850–1865,
https://doi.org/10.1016/j.rse.2011.03.009, 2011.
Sándor, R., Barcza, Z., Hidy, D., Lellei-Kovács, E., Ma, S., and
Bellocchi, G.: Modelling of grassland fluxes in Europe: Evaluation of two
biogeochemical models, Agr. Ecosyst. Environ., 215, 1–19,
https://doi.org/10.1016/j.agee.2015.09.001, 2016.
Shi, H., Hellwich, O., Luo, G., Chen, C., He, H., Ochege, F. U., Van de Voorde, T., Kurban, A., and de Maeyer, P.: A global meta-analysis of soil salinity prediction integrating satellite remote sensing, soil sampling, and machine learning, IEEE T. Geosci. Remote, 60, 1–15, https://doi.org/10.1109/TGRS.2021.3109819, 2021.
Shi, H., Luo, G., Hellwich, O., Xie, M., Zhang, C., Zhang, Y., Wang, Y., Yuan, X., Ma, X., Zhang, W., Kurban, A., De Maeyer, P., and Van de Voorde, T.: Variability and uncertainty in flux-site-scale net ecosystem exchange simulations based on machine learning and remote sensing: a systematic evaluation, Biogeosciences, 19, 3739–3756, https://doi.org/10.5194/bg-19-3739-2022, 2022.
Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls, G., Ráduly, B., Reichstein, M., Arain, M. A., Cescatti, A., Kiely, G., Merbold, L., Serrano-Ortiz, P., Sickert, S., Wolf, S., and Papale, D.: Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms, Biogeosciences, 13, 4291–4313, https://doi.org/10.5194/bg-13-4291-2016, 2016.
Van Hulse, J., Khoshgoftaar, T. M., and Napolitano, A.: Experimental
perspectives on learning from imbalanced data, in: Proceedings of the 24th
international conference on Machine learning, New York, NY, USA, 935–942,
https://doi.org/10.1145/1273496.1273614, 2007.
Van Wijk, M. T. and Bouten, W.: Water and carbon fluxes above European
coniferous forests modelled with artificial neural networks, Ecol. Modell., 120, 181–197, https://doi.org/10.1016/S0304-3800(99)00101-5, 1999.
Virkkala, A.-M., Aalto, J., Rogers, B. M., Tagesson, T., Treat, C. C.,
Natali, S. M., Watts, J. D., Potter, S., Lehtonen, A., Mauritz, M., Schuur,
E. A. G., Kochendorfer, J., Zona, D., Oechel, W., Kobayashi, H., Humphreys,
E., Goeckede, M., Iwata, H., Lafleur, P. M., Euskirchen, E. S., Bokhorst,
S., Marushchak, M., Martikainen, P. J., Elberling, B., Voigt, C., Biasi, C.,
Sonnentag, O., Parmentier, F.-J. W., Ueyama, M., Celis, G., St.Louis, V. L.,
Emmerton, C. A., Peichl, M., Chi, J., Järveoja, J., Nilsson, M. B.,
Oberbauer, S. F., Torn, M. S., Park, S.-J., Dolman, H., Mammarella, I.,
Chae, N., Poyatos, R., López-Blanco, E., Christensen, T. R., Kwon, M.
J., Sachs, T., Holl, D., and Luoto, M.: Statistical upscaling of ecosystem
CO2 fluxes across the terrestrial tundra and boreal domain: Regional
patterns and uncertainties, Global Change Biol., 27, 4040–4059,
https://doi.org/10.1111/gcb.15659, 2021.
Wagle, P., Bhattarai, N., Gowda, P. H., and Kakani, V. G.: Performance of
five surface energy balance models for estimating daily evapotranspiration
in high biomass sorghum, ISPRS J. Photogr. Remote Sens.,
128, 192–203, https://doi.org/10.1016/j.isprsjprs.2017.03.022, 2017.
Xie, M., Luo, G., Hellwich, O., Frankl, A., Zhang, W., Chen, C., Zhang, C.,
and De Maeyer, P.: Simulation of site-scale water fluxes in desert and
natural oasis ecosystems of the arid region in Northwest China, Hydrol. Proc., 35, e14444, https://doi.org/10.1002/hyp.14444, 2021.
Xu, T., Guo, Z., Liu, S., He, X., Meng, Y., Xu, Z., Xia, Y., Xiao, J.,
Zhang, Y., Ma, Y., and Song, L.: Evaluating Different Machine Learning
Methods for Upscaling Evapotranspiration from Flux Towers to the Regional
Scale, J. Geophys. Res.-Atmos., 123, 8674–8690,
https://doi.org/10.1029/2018JD028447, 2018.
Yang, F., White, M. A., Michaelis, A. R., Ichii, K., Hashimoto, H., Votava,
P., Zhu, A.-X., and Nemani, R. R.: Prediction of Continental-Scale
Evapotranspiration by Combining MODIS and AmeriFlux Data Through Support
Vector Machine, IEEE T. Geosci. Remote Sens., 44,
3452–3461, https://doi.org/10.1109/TGRS.2006.876297, 2006.
Zeng, J., Matsunaga, T., Tan, Z.-H., Saigusa, N., Shirai, T., Tang, Y., Peng, S., and Fukuda, Y.: Global terrestrial carbon fluxes of 1999–2019 estimated by upscaling eddy covariance data with a random forest, Sci. Data, 7, 313, https://doi.org/10.1038/s41597-020-00653-5, 2020.
Zeng, Y., Hao, D., Huete, A., Dechant, B., Berry, J., Chen, J. M., Joiner,
J., Frankenberg, C., Bond-Lamberty, B., Ryu, Y., Xiao, J., Asrar, G. R., and
Chen, M.: Optical vegetation indices for monitoring terrestrial ecosystems
globally, Nat. Rev. Earth Environ., 3, 477–493
https://doi.org/10.1038/s43017-022-00298-5, 2022.
Zhang, C., Luo, G., Hellwich, O., Chen, C., Zhang, W., Xie, M., He, H., Shi,
H., and Wang, Y.: A framework for estimating actual evapotranspiration at
weather stations without flux observations by combining data from MODIS and
flux towers through a machine learning approach, J. Hydrol., 603,
127047, https://doi.org/10.1016/j.jhydrol.2021.127047, 2021.
Zhang, K., Kimball, J. S., Nemani, R. R., and Running, S. W.: A continuous
satellite-derived global record of land surface evapotranspiration from 1983
to 2006, Water Resour. Res., 46, W09522, https://doi.org/10.1029/2009WR008800,
2010.
Zhao, W. L., Gentine, P., Reichstein, M., Zhang, Y., Zhou, S., Wen, Y., Lin,
C., Li, X., and Qiu, G. Y.: Physics-Constrained Machine Learning of
Evapotranspiration, Geophys. Res. Lett., 46, 14496–14507,
https://doi.org/10.1029/2019GL085291, 2019.
Short summary
There have been many machine learning simulation studies based on eddy-covariance observations for water flux and evapotranspiration. We performed a meta-analysis of such studies to clarify the impact of different algorithms and predictors, etc., on the reported prediction accuracy. It can, to some extent, guide future global water flux modeling studies and help us better understand the terrestrial ecosystem water cycle.
There have been many machine learning simulation studies based on eddy-covariance observations...