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Abstract. With the rapid accumulation of water flux obser-
vations from global eddy-covariance flux sites, many studies
have used data-driven approaches to model water fluxes, with
various predictors and machine learning algorithms used.
However, it is unclear how various model features affect
prediction accuracy. To fill this gap, we evaluated this is-
sue based on records of 139 developed models collected
from 32 such studies. Support vector machines (SVMs; av-
erage R-squared= 0.82) and RF (random forest; average
R-squared= 0.81) outperformed other evaluated algorithms
with sufficient sample size in both cross-study and intra-
study (with the same data) comparisons. The average ac-
curacy of the model applied to arid regions is higher than
in other climate types. The average accuracy of the model
was slightly lower for forest sites (average R-squared= 0.76)
than for croplands and grasslands (average R-squared= 0.8
and 0.79) but higher than for shrubland sites (average R-
squared= 0.67). Using Rn/Rs, precipitation, Ta, and the
fraction of absorbed photosynthetically active radiation (FA-
PAR) improved the model accuracy. The combined use of
Ta and Rn/Rs is very effective, especially in forests, while
in grasslands the combination of Ws and Rn/Rs is also

effective. Random cross-validation showed higher model
accuracy than spatial cross-validation and temporal cross-
validation, but spatial cross-validation is more important in
spatial extrapolation. The findings of this study are promis-
ing to guide future research on such machine-learning-based
modeling.

1 Introduction

Evapotranspiration (ET) is one of the most important com-
ponents of the water cycle in terrestrial ecosystems. It also
represents the key variable in linking ecosystem functioning,
carbon and climate feedback, agricultural management, and
water resources (Fisher et al., 2017). The quantification of
ET for regions, continents, or the globe can improve our un-
derstanding of water, heat, and carbon interactions, which is
important for global change research (Xu et al., 2018). In-
formation on ET has been used in many fields, including,
but not limited to, droughts and heat waves (Miralles et al.,
2014), regional water balance closures (Chen et al., 2014;
Sahoo et al., 2011), agricultural management (Allen et al.,
2011), water resources management (Anderson et al., 2012),
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and biodiversity patterns (Gaston, 2000). In addition, accu-
rate large-scale and long-term time series ET prediction at
high spatial and temporal resolution has been of great inter-
est (Fisher et al., 2017).

Currently, there are three main approaches for simulation
and spatial and temporal prediction of ET: (i) physical mod-
els based on remote sensing, such as surface energy bal-
ance models (Minacapilli et al., 2009; Wagle et al., 2017),
the Penman–Monteith equation (Mu et al., 2011; Zhang et
al., 2010), and the Priestley–Taylor equation (Miralles et al.,
2011); (ii) process-based land surface models, biogeochemi-
cal models, and hydrological models (Barman et al., 2014;
Pan et al., 2015; Sándor et al., 2016; Chen et al., 2019);
and (iii) the observation-based machine learning modeling
approach with in situ eddy-covariance (EC) observations of
water flux (Jung et al., 2011; Li et al., 2018; Van Wijk and
Bouten, 1999; Xie et al., 2021; Xu et al., 2018; Yang et al.,
2006; Zhang et al., 2021). For remote-sensing-based physical
models and process-based land surface models, some phys-
ical processes have not been well characterized due to the
lack of understanding of the detailed mechanisms influenc-
ing ET under different environmental conditions. For exam-
ple, the inaccurate representation and estimation of stomatal
conductance (Li et al., 2019) and the linearization (McColl,
2020) of the Clausius–Clapeyron relation in the Penman–
Monteith equation may introduce both empirical and concep-
tual errors into estimates of ET. Limited by complicated as-
sumptions and model parametrizations, these process-based
models face challenges in the accuracy of their ET estima-
tions over heterogeneous landscapes (Pan et al., 2020; Zhang
et al., 2021). Therefore, many researchers have used data-
driven approaches for the simulation and prediction of ET
with the accumulation of a large volume of measured ob-
servational data of water fluxes in the past decades. Various
machine learning models have been developed to simulate
water fluxes at the flux site scale. Further, various predic-
tor variables (e.g., meteorological factors, vegetation condi-
tions, and moisture supply conditions) have been incorpo-
rated into such models for upscaling (Fang et al., 2020; Jung
et al., 2009) of water flux to a larger scale or understanding
the driving mechanisms with the variable importance analy-
sis performed in such models.

However, to date, the systematic assessment of the uncer-
tainty in the processes of water flux prediction models con-
structed using the machine learning approach is limited. Al-
though considerable effort has been invested in improving
the accuracy of such prediction models, our understanding of
the expected accuracy of such models under different condi-
tions is still limited. It is still not easy for us to give the gen-
eral guidelines for selecting appropriate predictor variables
and models. Which predictor variables are the best in water
flux simulations? How can the prediction accuracy of wa-
ter flux effectively be improved? Such questions still confuse
the researchers in the field. Therefore, we should synthesize
the findings from published studies to determine which pre-

dictor variables, machine learning models, and other features
can significantly improve the prediction accuracy of water
flux. Also, we are interested in understanding under which
specific conditions they are more effective.

A variety of features control the accuracy of such models,
including the predictor variables used, the inherent hetero-
geneity within the dataset, the plant functional type (PFT)
and characteristics of the flux sites, model construction and
validation skills, and the algorithms used.

Predictor variables used. Compared to process-based
models, the data used may have a more significant impact
on the final model performance in data-driven models. Var-
ious biophysical covariates and other environmental factors
have been used for the simulation and prediction of water
fluxes. The most commonly used factors include mainly pre-
cipitation (P ), air temperature (Ta), wind speed (Ws), net/sun
radiation (Rn/Rs), soil temperature (Ts), soil texture, vapor-
pressure deficit (VPD), the fraction of absorbed photosyn-
thetically active radiation (FAPAR), vegetation index (e.g.,
normalized difference vegetation index (NDVI), enhanced
vegetation index (EVI)), leaf area index (LAI), and carbon
fluxes (e.g., gross primary productivity (GPP)). These pre-
dictor variables used and their complex interactions drive the
fluctuations and variability of water fluxes. They affect the
accuracy of water flux simulations in two ways: their ac-
tual impact on water fluxes at the process-based level and
their spatiotemporal resolution and inherent accuracy. The
relationship between water fluxes and these variables at the
process-based driving mechanism level is very different un-
der different PFTs, different climate types, and different hy-
drometeorological conditions. For example, in irrigated crop-
lands in arid regions, water fluxes may be highly correlated
with irrigation practices, and thus soil moisture may be a
very important predictor variable, and its importance may
be significantly higher than in other PFTs. And in models
that incorporate data from multiple PFTs, some variables
that play important roles in multiple PFTs may have higher
importance. In terms of data spatial and temporal resolu-
tion, the data for these predictor variables may have different
scales. In terms of spatial resolution, meteorological obser-
vations such as precipitation and air temperature are at the
flux site scale, while factors extracted from satellite remote
sensing and reanalysis climate datasets cover a much larger
spatial scale (i.e., the grid scale). This leads to considerable
differences in the degree of spatial match between different
variables and the site-scale EC observations (approximately
100 m× 100 m). It is therefore difficult for some variables to
be fairly compared in the subsequent importance analysis of
driving factors. In terms of temporal resolution, the impor-
tance of predictor variables with different temporal resolu-
tions may be variable for models with different timescales
(e.g., half-hourly, daily, and monthly models). For example,
the daily or 8 d NDVI data based on MODIS satellite imagery
may better capture the temporal dynamics of water fluxes
concerning vegetation growth than the 16 d NDVI data de-
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rived from Landsat images. In addition, data on non-temporal
dynamic variables such as soil texture cannot explain tempo-
ral variability in water fluxes in the data-driven simulations,
although soil texture may be important in the interpretation
of the actual driving mechanisms of ET (which may need to
be quantified in detail in ET simulations by process-based
models). In addition, some inherent accuracy issues (e.g.,
remote-sensing-based NDVI may not be effective at high val-
ues) of the predictors may propagate into the consequent ma-
chine learning models, thus affecting the modeling and our
understanding of its importance. Therefore, it is necessary to
consider the spatial and temporal resolution of the data and
their inherent accuracy for the predictors used in different
studies in the systematic evaluation of data-driven water flux
simulations.

The heterogeneity of the dataset and model validation.
The volume and inherent spatiotemporal heterogeneity of the
training dataset (with more variability and extremes incor-
porated) may affect model accuracy. Typically, training data
with larger regions, multiple sites, multiple PFTs, and longer
year spans may have a higher degree of imbalance (Kaur et
al., 2019; Van Hulse et al., 2007; Virkkala et al., 2021; Zeng
et al., 2020). And in machine learning, in general, model-
ing with unbalanced data (with significant differences in the
distribution between the training and validation sets) may re-
sult in lower model accuracy. Currently, the most common
ways of model validation include spatial, temporal, and ran-
dom cross-validation. Spatial validation is mainly to evaluate
the ability of the model to be applied in different regions or
flux sites with different PFT types, and one of the common
methods is “leave one site out” (Fang et al., 2020; Papale et
al., 2015; Zhang et al., 2021). If the data of the site left out
for validation differ significantly from the distribution of the
training dataset, the expected accuracy of the model applied
at that site may be low because the trained model may not
capture the specific and local relationships between the wa-
ter flux and the various predictor variables at that site. For
temporal validation, to assess the ability of the models to
adapt to the interannual variability, typically some years of
data are used for training and the remaining years for model
validation (Lu and Zhuang, 2010). If a year with extreme cli-
mate is used for validation, the accuracy may be low because
the training dataset may not contain such extreme climate
conditions. In the case of PFTs that are significantly affected
by human activities, such as cropland, the possible different
crops grown and different land use practices (e.g., irrigation)
across years can also lead to low accuracy in temporal vali-
dation.

Various machine learning algorithms. Some machine
learning algorithms may have specific advantages when ap-
plied to model the relationships between water fluxes and
covariates. For example, neural networks may have an ad-
vantage in nonlinear fitting, while random forests can avoid
serious overfitting problems. However, which algorithm is
better overall in different situations (i.e., applied to different

datasets)? Which algorithm is generally more accurate than
the others when using the same dataset? A comprehensive
evaluation is important.

Therefore, to systematically and comprehensively assess
the impact of various features in such modeling, we perform
a meta-analysis of published water flux simulation studies
that combine the flux site water flux observations, various
predictors, and machine learning. The accuracy of model
records collected from the literature was linked with vari-
ous model features to assess the impacts of predictor data
types, algorithms, and other features on model accuracy. The
findings of this study may be promising to improve our un-
derstanding of the impact of various features of the models to
guide future research on such machine-learning-based mod-
eling.

2 Methodology

2.1 Protocol for selecting the sample of articles

We applied a general query (on 1 December 2021) on ti-
tle, abstract, and keywords to include articles with the “OR”
operator applied among expressions (Table 1) in the Scopus
database. Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) (Moher et al., 2009) are fol-
lowed when filtering the papers. We first excluded articles
that obviously did not fit the topic of this study based on the
abstract and then performed the article screening with the
full-text reading.

The inclusion of articles follows the following criteria:

a. Articles were filtered for those with water fluxes (or la-
tent heat) simulated.

b. The water flux or latent heat observations used in the
prediction models should be from the eddy-covariance
flux measurements.

c. Articles focusing only on gap-filling (Hui et al., 2004)
techniques (i.e., the objective was not simulation and
extrapolation of water fluxes using machine learning)
were excluded.

d. Only articles that used multivariate regression (with the
number of covariates greater than or equal to 3) were
included.

e. The determination coefficient (R-squared) of the vali-
dation step should be reported as the metric of model
performance (Shi et al., 2021; Tramontana et al., 2016;
Zeng et al., 2020) in the articles.

f. The articles should be published in English-language
journals.

Although RMSE is also often used for model accuracy as-
sessment, its dependence on the magnitude of water flux val-
ues makes it difficult to use for fair comparisons between
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Table 1. Article search: “[A1 OR A2 OR A3. . .] AND [B1 OR B2
OR B3. . .] AND [C1 OR C2 OR C3 OR C4. . .]”.

ID A B C

1 Water flux Eddy covariance Machine learning
2 Evapotranspiration Flux tower Support vector
3 Latent heat Flux site Neural network
4 Random forest

studies. For example, due to the difference in the range of ET
values, models developed from flux stations in dry grasslands
will typically have lower RMSE than models developed by
flux stations based on forests in humid regions. Therefore,
RMSE may not be a good metric for cross-study compar-
isons in this meta-analysis.

2.2 Features of the prediction processes evaluated

The various features (Table 2) involved in the water flux
modeling framework (Fig. 1) include the PFTs of the sites,
the predictors used, the machine learning algorithms, the val-
idation methods, and other features. Each model for which
R-squared is reported is treated as a data record. If multiple
algorithms were applied to the same dataset, then multiple
records were extracted. Models using different data or fea-
tures are also recorded as multiple records.

3 Results

3.1 Articles included in the meta-analysis

A total of 32 articles (Table S1 in the Supplement) containing
a total of 139 model records were included. The geographical
scope of these articles was mainly Europe, North America,
and China (Fig. 2).

3.2 The formal meta-analysis

3.2.1 Algorithms

SVM and RF outperformed (Fig. 3a) other algorithms across
studies (better than other algorithms with sufficient sample
size in Fig. 3a such as ANN). These three machine learn-
ing algorithms (i.e., ANN, SVM, and RF) were significantly
more accurate than the traditional MLR. Other algorithms
such as MTE, ELM, and Cubist also have a high accuracy
but with limited evidence sample size (Fig. 3a). In the in-
ternal comparison (different algorithms applied to the same
dataset) in single studies, we also find that SVM and RF were
slightly more accurate than ANN (Fig. 3b), and all these three
(i.e., ANN, SVM, and RF) are considerably more accurate
than MLR. Overall, SVM and RF have shown higher accu-
racy in water flux simulations in both inter- and intra-study
comparisons with sufficient sample size as evidence.

Figure 1. Features of the machine-learning-based water flux pre-
diction process. (a) The eddy-covariance-based water flux observa-
tions of various plant function types (PFTs), modified from (Paul-
Limoges et al., 2020). ET – evapotranspiration. E – evaporation. T

– transpiration. (b) Predictors and their spatial and temporal reso-
lution. (c) The machine learning algorithms used for the modeling,
such as neural networks and random forests. (d) The model vali-
dation methods used, including the spatial, temporal, and random
cross-validations.

3.2.2 Climate types and PFTs

We found higher average model accuracy in arid climate
zones (Fig. 4a), such as the cold semi-arid (steppe) climate
(BSk) and cold desert climate (BWk). Most of these stud-
ies were located in northwest China and the western United
States. It may be caused by the simpler relationship between
water fluxes and biophysical covariates in arid regions. In
arid zones, due to the high potential ET, the variability in
the actual ET may be largely explained by water availability
(moisture supply) and vegetation change, with the effect of
variability in thermal conditions reduced. As for the various
PFTs, the average model accuracy was slightly lower for for-
est types than for cropland and grassland types (Fig. 4b). The
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Table 2. Model feature-related information collected from the papers included in this meta-analysis.

Field Definition & categories adopted Harmonization

Climate Climate zones of the study location derived from the Köppen
climate classification (Peel et al., 2007)

Plant functional type (PFT) PFT of the flux sites: 1 – forest, 2 – grassland, 3 – cropland,
4 – wetland, 5 – shrubland, 6 – savannah, and multi-PFTs

The categorization is based on the descriptions in the article.
For example, cropland for various crops is classified as “crop-
land”, and both woody savannah and savannah are classified
as “savannah”.

Location More precise location (with the latitude and longitude of the
center of the studied sites): latitude, longitude

Algorithms Random forests (RF), multiple linear regressions (MLRs),
artificial neural networks (ANNs), support vector machines
(SVMs), Cubist, model tree ensembles (MTE), K-nearest
neighbors (KNNs), long short-term memory (LSTM), gra-
dient boosting regression tree (GBRT), extra tree regressor
(ETR), Gaussian process regression (GPR), Bayesian model
averaging (BMA), extreme learning machine (ELM), and
deep belief network (DBN)

Various model algorithms with parameter optimization or
other improvements are categorized as their algorithm fam-
ily. For example, various improved models of RF algorithms
are classified as RF, rather than as another algorithm family.

Sites number Number of the flux sites used in the prediction model devel-
opment

Spatial scale Area representatively covered by the flux sites: local (less
than 100× 100 km), regional, and global (continental-scale
and global-scale)

The spatial scale is roughly categorized based on the area cov-
ered by the site. The model is classified as “global” only when
the spatial extent reaches the continental scale.

Temporal scale The temporal scale of the model: half-hourly, hourly, daily,
4 d, 8 d, monthly, seasonally (i.e., 0.02, 0.04, 1, 4, 8, 30, 90 d)

Models with a temporal scale greater than 1 month and less
than 1 year are classified as seasonal-scale models.

Year span The span of years of the flux observations Year span is calculated as the span from the earliest to the
latest year of available flux data.

Site year The volume of total flux data aggregated by the number of
sites and years

Cross-validation Strategies in model validation: spatial (e.g., “leave one site
out”), temporal (e.g., “leave one year out”), and random (e.g.,
“k-fold”)

Training / validation The ratio of the data volume in the training and validation sets In spatial validation, this ratio is represented by the ratio of
the number of sites used for training to the number of sites
used for validation. In temporal validation, this is represented
by the ratio of the span of time periods used for training to the
span of time periods used for validation.

Satellite images The source of satellite images used to derive remote-sensing-
based predictors (e.g., leaf area index (LAI)): Landsat,
MODIS, and AVHRR

Biophysical predictors NDVI/EVI, the fraction of absorbed photosynthetically active
radiation/photosynthetically active radiation (FAPAR/PAR),
LAI, and carbon fluxes (CFs) including NEE/GPP.

The predictor variables of different measurement methods are
categorized according to their definitions. For example, using
both the NDVI calculated based on satellite remote-sensing
bands and in situ measurements was classified as the use of
NDVI.

Meteorological variables Precipitation (P ), net radiation / solar radiation (Rn/Rs), air
temperature (Ta), vapor-pressure deficit (VPD), and relative
humidity (RH), etc.

The way meteorological data are measured is not differenti-
ated. For example, using both Ta from reanalysis data and Ta
measured at flux sites was classified as the use of Ta.

Ancillary data The ancillary predictor variables used in the modeling: soil
texture, terrain (DEM), soil moisture/land surface water index
(SM/LSWI), etc

Both the use of in situ-measured soil moisture and the use of
remote-sensing-based LSWI was classified as using surface-
moisture-related indicators SM/LSWI.

Accuracy metric Accuracy metric used: R-squared (in the validation phase)
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Figure 2. Location of the included studies in the meta-analysis. (a) PFTs and the climate zones (from Köppen climate classification) of
these studies and (b) the number of flux sites included in each study. Global- and continental-scale studies (e.g., models developed based on
FLUXNET of the global scale) are not shown on the map due to the difficulty of identifying specific locations.
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Figure 3. Model accuracy (R-squared) using various algorithms
across studies (a) and internal comparisons of selected pairs of
algorithms within studies (b). Algorithms: random forests (RFs),
multiple linear regressions (MLRs), artificial neural networks
(ANNs), support vector machines (SVMs), Bayesian model averag-
ing (BMA), Cubist, model tree ensembles (MTE), gradient boost-
ing regression tree (GBRT), extra tree regressor (ETR), K-nearest
neighbors (KNNs), long short-term memory (LSTM), Gaussian
process regression (GPR), extreme learning machine (ELM), and
deep belief network (DBN).

lowest average accuracy was found for shrub sites, which
may be related to the difficulty of the remote-sensing-based
vegetation index (e.g., NDVI) to quantify the physiological
and ecological conditions of shrubs (Zeng et al., 2022), and
the heterogeneity of the spatial distribution of shrubs within
the EC observation area may also cause difficulties in cap-
turing their relationships with biophysical variables. We also
found high model accuracy for the wetland type, although
records as evidence to support this finding may be limited.
Compared to other PFTs, the more steady and adequate wa-
ter availability in the wetland type may make the variations of
water fluxes less explained by other biophysical covariates.

3.2.3 Predictors and their combinations

On the one hand, for the effects of individual predictors, the
use of Rn/Rs, P , Ta, and FAPAR improved the accuracy of
the model (Fig. S1 in the Supplement). This pattern partially
changed in the different PFTs. In the forest sites, the accuracy
of the models with Rn/Rs and Ta used was higher than that
of the models with Rn/Rs and Ta not used. For the grassland
sites, the use of Ws, FAPAR, P , and Rn/Rs improved the
model accuracy. For the cropland sites, Ta and FAPAR were
more important for improving the model accuracy.

On the other hand, the evaluation of the effect of individ-
ual predictors on model accuracy is not necessarily reliable
because some predictor variables are used together (e.g., the
high model accuracy corresponding to a particular variable
may be because it is often used together with another vari-
able that plays the dominant role in improving accuracy).
Therefore, we tested for independence between the use of
variables and assessed the effect of the combination of vari-
ables on model accuracy. We calculated the correlation ma-
trix (Fig. S2) between the use of various predictors (not used
is set as 0, and used is set as 1). We found there was a de-
pendence between the use of some predictors; the use of ND-
VI/EVI, LAI, and SM was significantly negatively correlated
with the use of Rn/Rs and Ta (Fig. S2). It indicated that many
of the models that used Rn/Rs and Ta did not use NDVI/EVI,
LAI, and SM, and the models that used NDVI/EVI, LAI, and
SM also happened not to use Rn/Rs and Ta. Given this de-
pendence, we evaluated the effect of the combination of vari-
ables on the model accuracy (Fig. 5). In Fig. 5, the three vari-
able combinations on the left side are mainly meteorologi-
cal variables, while the three variable combinations on the
right side are mainly vegetation-related variables based on re-
mote sensing (e.g., NDVI, EVI, LAI, and LSWI). We found
that, overall, the accuracy of the models using only meteo-
rological variable combinations was higher than that of the
models using only remote-sensing-based vegetation-related
variables. It demonstrated the importance of using meteo-
rological variables in machine-learning-based ET prediction
(probably especially for models with small timescales such
as hourly scale, and daily scale). For example, in the forest
type, the combination of Ta and Rn/Rs is very effective com-
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Figure 4. Differences in model accuracy (R-squared) of (a) various climate zones (classified by Köppen climate classification) across
studies and (b) PFTs. BSh – hot semi-arid (steppe) climate. BSk – cold semi-arid (steppe) climate. BWk – cold desert climate. Cfa –
humid subtropical climate. Cfb – temperate oceanic climate. Csa – hot-summer Mediterranean climate. Csb – warm-summer Mediterranean
climate. Dfa – hot-summer humid continental climate. Dfb – warm-summer humid continental climate. Dfc –subarctic climate. Dwa –
monsoon-influenced hot-summer humid continental climate. Dwb – monsoon-influenced warm-summer humid continental climate. Dwc –
monsoon-influenced subarctic climate.

pared to using only remote-sensing-based vegetation index
variable combinations. The combination of Ta and Rn/Rs is
also effective in the grassland and cropland types. The com-
bination of Ws and Rn/Rs played an important role in the
grassland type for improving model accuracy. Despite this,
it does not negate the positive role of remote-sensing-based
vegetation-related variables in ET prediction. This effective-
ness can be dependent on the timescale of the model as well
as the PFTs. In models with large timescales (monthly scale,
seasonal scale) and PFTs in which ET is sensitive to vegeta-
tion dynamics, remote-sensing-based vegetation-related vari-
ables may also be of high importance.

3.2.4 Other model features

We also evaluated the impact of some other features on ac-
curacy. The differences in the accuracy of models with dif-
ferent spatial scales, year spans, number of sites, and volume
of data (Fig. 6) appear to be insignificant. This seems to be
related to the fact that in large-scale water flux simulations,
the sites of similar PFTs are selected such as for modeling
multiple forest sites across Europe (Van Wijk and Bouten,
1999) which focus on “forest” and multiple grassland sites
across arid northern China (Xie et al., 2021; Zhang et al.,
2021) which focus on “grassland”, rather than mixing differ-
ent PFT types to train models as is done in machine learning
modeling of carbon fluxes (Zeng et al., 2020). In terms of the
timescales of the models, the 4 d, 8 d, and monthly scales ap-
pear to correspond to higher accuracy compared to the half-
hourly and daily scales. The higher the ratio of the volume of
data in the training and validation sets, the higher the model
accuracy. Compared to the models using Landsat data, the
models using MODIS data showed slightly higher accuracy
probably due to the advantage of MODIS data in captur-

ing the temporal dynamics of biophysical covariates. There
were significant differences in the accuracy of the models us-
ing different cross-validation methods, with the models using
random cross-validation showing higher accuracy than those
using temporal cross-validation. This suggests that interan-
nual variability may have a high impact on the models in wa-
ter flux simulations. The driving mechanism of ET may vary
significantly across years, and the inclusion of some extreme
climatic conditions in the training set may be important for
model accuracy and robustness.

3.2.5 Linear correlation of quantitative features and
R-squared

We also analyzed the linear correlation (Fig. 7) between mul-
tiple quantitative features and the R-squared. We found that
the magnitude of the linear correlation coefficients between
the use of predictor combinations and the R-squared was
higher than other features. The use of the predictor combi-
nation Ta and Rn/Rs significantly improved the model ac-
curacy. Temporal scale, time span, training / validation ra-
tio, and number of sites showed weak positive correlations
with R-squared (not significant, p value < 0.1). The positive
correlation between temporal scale and R-squared is higher
among these features, although it is not significant. It should
also be paid more attention to in future studies. The features
training / validation ratio and time span are also positively
correlated (although not significantly) with the R-squared,
suggesting the importance of the volume of data in the train-
ing set in a data-driven machine learning model. A larger
training / validation ratio and time span may correspond to
greater proportional coverage of the scenarios/conditions in
the training set over the validation set, and thus correspond
to higher accuracy.
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Figure 5. Effects of combinations of predictor variables on model accuracy in various PFTs (all data, forest, grassland, and cropland).
Dark blue boxes indicate that the predictors were used together in the model (e.g., for “Ta & Rn/Rs”, the dark blue box represents Ta
and Rn/Rs were together used in the model), while dark red boxes indicate the other conditions (i.e., the combination was not used).
Predictors: precipitation (P ), soil moisture/remote-sensing-based land surface water index (SM), net radiation / solar radiation (Rn/Rs),
enhanced vegetation index (EVI), air temperature (Ta), leaf area index (LAI), and normalized difference vegetation index/enhanced vegetation
index (NDVI/EVI).

4 Discussions

With the accumulation of in situ EC observations around the
world, the study of ET simulations based on data-driven ap-
proaches has received more attention from researchers in the
last decade. Many studies have combined EC observations,
various predictors, and machine learning algorithms to im-
prove the prediction accuracy of water fluxes. To date, the
results of these studies have not been comprehensively eval-
uated to provide clear guidance for feature selection in wa-
ter flux prediction models. To better understand the approach
and guide future research, we performed a meta-analysis of
such studies. Machine-learning-based water flux simulations
and predictions still suffer from high uncertainty. By inves-
tigating the expected improvements that can be achieved by
incorporating different features, we can avoid practices that
may reduce model accuracy in future research.

4.1 Opportunities and challenges in the water flux
simulation

In the above meta-analysis of the models, we found that wa-
ter flux simulations based on EC observations can achieve
high accuracy but also have high uncertainty through the
modeling workflow. The R-squared of many water flux simu-
lation models exceeds 0.8, possibly higher than some remote-
sensing-based and process-based models and possibly higher
than carbon flux simulations such as the net ecosystem ex-
change (NEE) in a similar modeling framework (Shi et al.,
2022). This may be because many data on important vari-
ables affecting carbon flux such as soil and biomass pools,
disturbances, ecosystem age, management activities, and
land use history are not yet effectively and continuously mea-
sured (Jung et al., 2011) with the global spatially and tem-
porally explicit information. While ET simulations rely on
observations of moisture and energy conditions and vegeta-

https://doi.org/10.5194/hess-26-4603-2022 Hydrol. Earth Syst. Sci., 26, 4603–4618, 2022



4612 H. Shi et al.: Evaluation of water flux predictive models

Figure 6. The effects of other model features (i.e., spatial scale, number of sites, temporal scale, year span, site year, validation method,
training / validation ratio, and satellite imagery used) on the R-squared.

tion conditions, many of the current available meteorological
and remote-sensing data have been effective to represent and
capture the spatial and temporal dynamics of these predictors
well.

4.1.1 Comprehensive insights on model features

Biophysical and meteorological variables are both consid-
ered important in ET simulations. This study found that
models using a combination of meteorological variables had
higher accuracy than models using only remotely sensed
vegetation dynamic information. However, due to the high
proportion of models with small temporal scales (e.g., half-
hourly scale, hourly scale, and daily scale) in this study, this
advantage of the combination of meteorological variables
may be more suitable for small temporal scales. A possible
explanation is that vegetation-related variables such as NDVI
and LAI at the daily scale, 8 d scale, and 16 d scale have lim-
ited explanatory ability for hourly or daily-scale variability in

ET, especially under cloudy conditions (e.g., tropical rainfor-
est regions); the temporal continuity of the vegetation index
data may be greatly limited (Zeng et al., 2022). This should
be given more attention, and some vegetation indices derived
from hourly temporal resolution satellite remote-sensing data
such as GOES (Zeng et al., 2022) can be used for ET simu-
lations to investigate the possible added value of vegetation
indices at smaller timescales. In contrast, at a small tempo-
ral scale, the use of combinations of meteorological vari-
ables can capture moisture and energy conditions that con-
trol the rapid fluctuations of ET and thus has a dominant
role in hourly or daily-scale ET prediction. This also corrob-
orates the high accuracy of some physic-based ET estimation
models (Rigden and Salvucci, 2015) that use only meteoro-
logical variables and not vegetation-related variables such as
NDVI (only an estimate of vegetation height derived from
land cover maps is used to represent vegetation conditions;
Rigden and Salvucci, 2015).
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Figure 7. Evaluation of linear correlations between multiple features and the R-squared records with the statistical significance test. For the
spatial scale feature , the local scale was set to 1, the regional scale was set to 2, and the global scale was set to 3 in the analysis of linear
correlation. For the use of various predictor combinations with “&”, the value for “used together ” is set as 1, and other conditions are set as
0 (e.g., for the Ta & Rn/Rs & Ws & P feature, if Ta, Rn/Rs, Ws, and P were used together in the model, the value is set as 1). Significance:
the p value < 0.01 (∗∗∗), 0.05 (∗∗), and 0.1 (∗).

There are differences in model accuracy among different
PFTs. For example, in forest sites, limitations in data accu-
racy of factors were possible because some remote-sensing-
based predictors such as NDVI, FAPAR, and LAI have lim-
ited accuracy when applied to forest types (Liu et al., 2018b;
Zeng et al., 2022). In addition, factors such as crown den-
sity, which may significantly affect the proportion of soil
evaporation, transpiration, and evaporation of canopy inter-
ception, were not considered in these models, which may
also lead to low model accuracy. This suggests that in wa-
ter flux simulation, the driving mechanisms of water fluxes
in different PFTs do affect the accuracy of machine learn-
ing models, and we need to consider more the actual and
specific influencing factors in specific PFTs. More variables
that can quantify the ratio of evaporation and transpiration
should be considered for inclusion, which also appears to im-
prove the mechanistic interpretability of such machine learn-
ing models. A previous study (Zhao et al., 2019) combined
the physics-based approach (e.g., Penman–Monteith equa-
tion) and machine learning to build hybrid models to improve

interpretability. We should make full use of empirical knowl-
edge and experiences from process-based models to improve
the accuracy and interpretability of the machine learning ap-
proach.

Among the validation methods, random cross-validation
has higher accuracy than spatial cross-validation and tem-
poral cross-validation. However, spatial cross-validation and
temporal cross-validation may be able to better help us rec-
ognize the robustness of the model when extrapolated (i.e.,
applied to new stations and new years). The lower accu-
racy in the temporal cross-validation approach implies that
we need to focus on interannual hydrological and meteo-
rological variability in the water flux simulations. In crop-
land sites, we may also need to pay more attention to the
effects of interannual variability in anthropogenic cropping
patterns. If some extreme weather years are not included,
the robustness of the model when extrapolated to other years
may be challenged, especially in the context of the various
extreme weather events of recent years. This can also in-
form the siting of future flux stations. Regions where cli-
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mate extremes may occur and biogeographic types not cov-
ered by existing flux observation networks should be given
more attention to achieve global-scale, accurate, and robust
machine-learning-based spatiotemporal prediction of water
fluxes. Furthermore, although the R-squared and the train-
ing / validation ratio show a positive correlation (Fig. 7) (i.e.,
a higher training / validation ratio may correspond to a higher
R-squared), we should still be cautious in reducing this ratio
in our modeling. For a really small validation set, it would be
very challenging to determine which model is better given
the potential uncertainty caused by the considerable random-
ness.

4.1.2 Differences from NEE predictions in the similar
model framework

In general, predictors related to meteorological, vegetation,
and soil conditions were common to both ET and NEE simu-
lations in a similar framework (Shi et al., 2022). However, in
NEE predictions, explanatory variables such as soil organic
content, photosynthetic photon flux density, and growing de-
gree days (Shi et al., 2022) are not necessary for ET pre-
dictions. The selection of these variables requires our prior
knowledge of the dominant drivers of ET and NEE anoma-
lies of particular ecosystems and their differences.

The accuracy of NEE predictions (Shi et al., 2022) can be
more limited by global variability across biomes and loca-
tions (Nemani et al., 2003) given the lack of locally mea-
sured data on soil and biomass pools, disturbances, ecosys-
tem age, management activities, and land use history (Jung et
al., 2011). It can result in a higher heterogeneity of the train-
ing data in large-scale modeling with multiple flux sites (Shi
et al., 2022) and the weak ability to capture the NEE anoma-
lies. In contrast, in ET predictions, meteorological variables
and vegetation conditions appear to be already sufficient to
capture a considerably large fraction of the ET variations in
most conditions.

In future ET prediction studies, given that few current ET
products have timescales smaller than the daily scale (Jung et
al., 2019; Pan et al., 2020), improvements in the accuracy of
daily and hourly models may be necessary to fill this gap. In
addition, the partitioning of ET components (i.e., transpira-
tion, interception evaporation, and soil evaporation) can be
more focused to better decouple the contributions of veg-
etation and soil to ET with machine learning (Eichelmann
et al., 2022). It can be further matched with the partitioning
of NEE (i.e., to GPP and ecosystem respiration) to increase
our knowledge of the global water cycle and ecosystem func-
tioning and obtain further refined global carbon–water fluxes
coupling relations (Eichelmann et al., 2022). Also, the above
two promising improvements can be beneficial for research
on topics related to the global terrestrial water cycle (Fisher
et al., 2017).

4.2 Uncertainties and limitations of this meta-analysis

4.2.1 The limited number of available literature and
model records

Despite many articles and model records collected through
our efforts to perform this meta-analysis, there still appears
to be a long way to go to finally and completely under-
stand the various mechanisms involved in water flux simu-
lation with machine learning. Some of the insights provided
by this study can not be robust (due to the limited sam-
ple size available when the goal is to assess the effects of
multiple features), but this does not negate the fact that this
study does obtain some meaningful findings. Therefore, re-
searchers should treat the results of this study with caution,
as they were obtained only statistically. Overall, it is still pos-
itive to conduct a meta-analysis of such studies, considering
their rapid growth in the number and lack of guiding direc-
tions.

4.2.2 Publication bias and weighting

In a meta-analysis in other fields, weights for different stud-
ies can be assigned based on the quality of the journal and
the extent to which the research data are publicly available
(Borenstein et al., 2011; Field and Gillett, 2010). However,
most of the articles included in this study did not fully pub-
lish the flux data they used, the models they developed, and
the predicted ET data. Given this limitation, we were unable
to assign them small weights due to the relatively limited
available sample size of this study. Further, in meta-analyses
in other fields, the sample size and the variance of the results
of the experiments can also be used to adjust the weights of
the effects among studies (Adams et al., 1997; Don et al.,
2011; Liu et al., 2018a). However, for this study, due to the
lack of a convincing way to determine the weights, we briefly
assigned equal weight values to all the included studies.

4.2.3 Uncertainties in the information of the extracted
features

At the information extraction level, the issues detailed here
may also introduce uncertainties. Uncertainties caused by
data quality control (e.g., gap-filling (Hui et al., 2004)) are
difficult to assess effectively. Gap-filling is a commonly used
technique to fill in low-quality data in flux observations.
However, the impact of this practice on machine-learning-
based ET prediction models is unclear, due to the diffi-
culty of directly assessing how this technique is performed
in various studies by this meta-analysis. Typically, models
with small timescales (e.g., hourly scale and daily scale)
can exclude low-quality observations and use only high-
quality data. However, for models with large timescales (e.g.,
monthly scales), gap-filling (e.g., based on meteorological
data) may be unavoidable. This may lead to a decrease in
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training data purity and introduce uncertainty in the subse-
quent prediction model development.

Systematic uncertainties caused by the energy balance
closure (EBC) issue in eddy-covariance flux measurements
are also difficult to assess by this meta-analysis. EBC is
a common problem (Eshonkulov et al., 2019) in eddy-
covariance flux observations. For that reason, the latent heat
flux measured potentially underestimates ET. Some predic-
tion models corrected EBC (e.g., using Bowen ratio preserv-
ing (Mauder et al., 2013, 2018) and energy balance residu-
als (Charuchittipan et al., 2014; Mauder et al., 2018)) in the
processing of training data, but some did not. How this will
affect the accuracy of the prediction model is not clear due to
multiple factors that need to be evaluated that influence EBC
(Foken, 2008), including measurement errors of the energy
balance components, incorrect sensor configurations, influ-
ences of heterogeneous canopy height, unconsidered energy
storage terms in the soil–plant–atmosphere system, inade-
quate time averaging intervals, and longwave eddies (Jacobs
et al., 2008; Foken, 2008; Eshonkulov et al., 2019). To re-
duce this uncertainty, more attention to flux site character-
istics (Eshonkulov et al., 2019) related to PFT, topography,
flux footprint area, etc., to select the appropriate correction
method is necessary for future studies.

As most studies used far more water flux observation
records than the number of covariates in their regression
models, we did not adjust the R-squared in this study to an
adjusted R-squared.

The various specific ways in which the parameters of the
model are optimized are not differentiated. They are broadly
categorized into different families or kinds of algorithms,
which may also introduce uncertainty into the assessment.

The assessment of some features is not detailed due to the
limitations of the available model records. For example, the
classification of PFT could be more detailed. “Forest” could
be further classified as broadleaf forest and coniferous forest,
etc., while “cropland” could be further classified as rainfed
and irrigated cropland based on differences in their response
mechanisms of water fluxes to environmental factors.

5 Conclusions

We performed a meta-analysis of the water flux simulation
studies which focus on using machine learning approaches
to combine flux station observations from flux stations/net-
works, meteorological, biophysical, and other ancillary pre-
dictors. The main conclusions are as follows:

1. SVM (average R-squared= 0.82) and RF (average
R-squared= 0.81) outperformed over evaluated algo-
rithms with sufficient sample size in both cross-study
and intra-study (with the same training dataset) com-
parisons.

2. The average accuracy of the model applied to arid re-
gions is higher than in other climate types.

3. The average accuracy of the model was slightly lower
for forest sites (average R-squared= 0.76) than for
cropland and grassland sites (average R-squared= 0.8
and 0.79) but higher than for shrub sites (average R-
squared= 0.67).

4. Among various predictor variables, the use of Rn/Rs,
P , Ta, and FAPAR improved the model accuracy. The
combination of Ta and Rn/Rs is very effective, espe-
cially in the forest type, while in the grassland type, the
combination of Ws and Rn/Rs is also effective.

5. Among the different validation methods, random cross-
validation shows higher model accuracy than spatial
cross-validation and temporal cross-validation.
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