Articles | Volume 26, issue 15
https://doi.org/10.5194/hess-26-3965-2022
https://doi.org/10.5194/hess-26-3965-2022
Research article
 | 
02 Aug 2022
Research article |  | 02 Aug 2022

A system dynamic model to quantify the impacts of water resources allocation on water–energy–food–society (WEFS) nexus

Yujie Zeng, Dedi Liu, Shenglian Guo, Lihua Xiong, Pan Liu, Jiabo Yin, and Zhenhui Wu

Related authors

ET-WB: water balance-based estimations of terrestrial evaporation over global land and major global basins
Jinghua Xiong, Abhishek, Li Xu, Hrishikesh A. Chandanpurkar, James S. Famiglietti, Chong Zhang, Gionata Ghiggi, Shenglian Guo, Yun Pan, and Bramha Dutt Vishwakarma
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-188,https://doi.org/10.5194/essd-2023-188, 2023
Preprint under review for ESSD
Short summary
Res-CN: hydrometeorological time series and landscape attributes across 3254 Chinese reservoirs
Youjiang Shen, Karina Nielsen, Menaka Revel, Dedi Liu, and Dai Yamazaki
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-422,https://doi.org/10.5194/essd-2022-422, 2023
Revised manuscript accepted for ESSD
Short summary
High-resolution water level and storage variation datasets for 338 reservoirs in China during 2010–2021
Youjiang Shen, Dedi Liu, Liguang Jiang, Karina Nielsen, Jiabo Yin, Jun Liu, and Peter Bauer-Gottwein
Earth Syst. Sci. Data, 14, 5671–5694, https://doi.org/10.5194/essd-14-5671-2022,https://doi.org/10.5194/essd-14-5671-2022, 2022
Short summary
Global evaluation of the “dry gets drier, and wet gets wetter” paradigm from a terrestrial water storage change perspective
Jinghua Xiong, Shenglian Guo, Abhishek, Jie Chen, and Jiabo Yin
Hydrol. Earth Syst. Sci., 26, 6457–6476, https://doi.org/10.5194/hess-26-6457-2022,https://doi.org/10.5194/hess-26-6457-2022, 2022
Short summary
Does non-stationarity induced by multiyear drought invalidate the paired-catchment method?
Yunfan Zhang, Lei Cheng, Lu Zhang, Shujing Qin, Liu Liu, Pan Liu, and Yanghe Liu
Hydrol. Earth Syst. Sci., 26, 6379–6397, https://doi.org/10.5194/hess-26-6379-2022,https://doi.org/10.5194/hess-26-6379-2022, 2022
Short summary

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
Quantifying the trade-offs in re-operating dams for the environment in the Lower Volta River
Afua Owusu, Jazmin Zatarain Salazar, Marloes Mul, Pieter van der Zaag, and Jill Slinger
Hydrol. Earth Syst. Sci., 27, 2001–2017, https://doi.org/10.5194/hess-27-2001-2023,https://doi.org/10.5194/hess-27-2001-2023, 2023
Short summary
Dynamically coupling system dynamics and SWAT+ models using Tinamït: application of modular tools for coupled human–water system models
Joel Z. Harms, Julien J. Malard-Adam, Jan F. Adamowski, Ashutosh Sharma, and Albert Nkwasa
Hydrol. Earth Syst. Sci., 27, 1683–1693, https://doi.org/10.5194/hess-27-1683-2023,https://doi.org/10.5194/hess-27-1683-2023, 2023
Short summary
Development of an integrated socio-hydrological modeling framework for assessing the impacts of shelter location arrangement and human behaviors on flood evacuation processes
Erhu Du, Feng Wu, Hao Jiang, Naliang Guo, Yong Tian, and Chunmiao Zheng
Hydrol. Earth Syst. Sci., 27, 1607–1626, https://doi.org/10.5194/hess-27-1607-2023,https://doi.org/10.5194/hess-27-1607-2023, 2023
Short summary
Cooperation in a transboundary river basin: a large-scale socio-hydrological model of the Eastern Nile
Mohammad Ghoreishi, Amin Elshorbagy, Saman Razavi, Günter Blöschl, Murugesu Sivapalan, and Ahmed Abdelkader
Hydrol. Earth Syst. Sci., 27, 1201–1219, https://doi.org/10.5194/hess-27-1201-2023,https://doi.org/10.5194/hess-27-1201-2023, 2023
Short summary
Flexible forecast value metric suitable for a wide range of decisions: application using probabilistic subseasonal streamflow forecasts
Richard Laugesen, Mark Thyer, David McInerney, and Dmitri Kavetski
Hydrol. Earth Syst. Sci., 27, 873–893, https://doi.org/10.5194/hess-27-873-2023,https://doi.org/10.5194/hess-27-873-2023, 2023
Short summary

Cited articles

Alexandratos, N. and Bruinsma, J.: World agriculture towards 2030/2050, FAO, http://water2return.eu/wp-content/uploads/2017/11/FAO_world-agriculture-towards-2030-2050.pdf (last access: 1 August 2021), 2012. 
Bertalanffy, L. V.: General System Theory: Foundations, Development, Applications, 3, George Braziller, New York, USA, https://doi.org/10.1109/TSMC.1974.4309376, 1976. 
Blanke, A., Rozelle, S., Lohmar, B., Wang, J., and Huang, J.: Water saving technology and saving water in China, Agr. Water Manage., 87, 139–150, https://doi.org/10.1016/j.agwat.2006.06.025, 2007. 
Bonabeau, E.: Agent-based modeling: Methods and techniques for simulating human systems, P. Natl. Acad. Sci. USA, 99, 7280–7287, https://doi.org/10.1073/pnas.082080899, 2002. 
Brekke, L., Larsen, M. D., Ausburn, M., and Takaichi, L.: Suburban water demand modeling using stepwise regression, J. Am. Water Works Assoc., 94, 65–75, 2002. 
Download
Short summary
The sustainability of the water–energy–food (WEF) nexus remains challenge, as interactions between WEF and human sensitivity and water resource allocation in water systems are often neglected. We incorporated human sensitivity and water resource allocation into a WEF nexus and assessed their impacts on the integrated system. This study can contribute to understanding the interactions across the water–energy–food–society nexus and improving the efficiency of resource management.