Articles | Volume 26, issue 15
https://doi.org/10.5194/hess-26-3965-2022
https://doi.org/10.5194/hess-26-3965-2022
Research article
 | 
02 Aug 2022
Research article |  | 02 Aug 2022

A system dynamic model to quantify the impacts of water resources allocation on water–energy–food–society (WEFS) nexus

Yujie Zeng, Dedi Liu, Shenglian Guo, Lihua Xiong, Pan Liu, Jiabo Yin, and Zhenhui Wu

Related authors

Impacts of Inter-basin Water Diversion Projects on the Feedback Loops of Water Supply-Hydropower Generation-Environment Conservation Nexus
Jiaoyang Wang, Dedi Liu, Shenglian Guo, Lihua Xiong, Pan Liu, Hua Chen, Jie Chen, Jiabo Yin, and Yuling Zhang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-399,https://doi.org/10.5194/hess-2024-399, 2025
Preprint under review for HESS
Short summary
Determining the threshold of issuing flash flood warnings based on people's response process simulation
Ruikang Zhang, Dedi Liu, Lihua Xiong, Jie Chen, Hua Chen, and Jiabo Yin
Hydrol. Earth Syst. Sci., 28, 5229–5247, https://doi.org/10.5194/hess-28-5229-2024,https://doi.org/10.5194/hess-28-5229-2024, 2024
Short summary
Machine-learning-constrained projection of bivariate hydrological drought magnitudes and socioeconomic risks over China
Rutong Liu, Jiabo Yin, Louise Slater, Shengyu Kang, Yuanhang Yang, Pan Liu, Jiali Guo, Xihui Gu, Xiang Zhang, and Aliaksandr Volchak
Hydrol. Earth Syst. Sci., 28, 3305–3326, https://doi.org/10.5194/hess-28-3305-2024,https://doi.org/10.5194/hess-28-3305-2024, 2024
Short summary
Quantifying and reducing flood forecast uncertainty by the CHUP-BMA method
Zhen Cui, Shenglian Guo, Hua Chen, Dedi Liu, Yanlai Zhou, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 28, 2809–2829, https://doi.org/10.5194/hess-28-2809-2024,https://doi.org/10.5194/hess-28-2809-2024, 2024
Short summary
Variation and attribution of probable maximum precipitation of China using a high-resolution dataset in a changing climate
Jinghua Xiong, Shenglian Guo, Abhishek, Jiabo Yin, Chongyu Xu, Jun Wang, and Jing Guo
Hydrol. Earth Syst. Sci., 28, 1873–1895, https://doi.org/10.5194/hess-28-1873-2024,https://doi.org/10.5194/hess-28-1873-2024, 2024
Short summary

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
A scalable and modular reservoir implementation for large-scale integrated hydrologic simulations
Benjamin D. West, Reed M. Maxwell, and Laura E. Condon
Hydrol. Earth Syst. Sci., 29, 245–259, https://doi.org/10.5194/hess-29-245-2025,https://doi.org/10.5194/hess-29-245-2025, 2025
Short summary
The interprovincial green water flow in China and its teleconnected effects on the social economy
Shan Sang, Yan Li, Chengcheng Hou, Shuangshuang Zi, and Huiqing Lin
Hydrol. Earth Syst. Sci., 29, 67–84, https://doi.org/10.5194/hess-29-67-2025,https://doi.org/10.5194/hess-29-67-2025, 2025
Short summary
Modeling hydropower operations at the scale of a power grid: a demand-based approach
Laure Baratgin, Jan Polcher, Patrice Dumas, and Philippe Quirion
Hydrol. Earth Syst. Sci., 28, 5479–5509, https://doi.org/10.5194/hess-28-5479-2024,https://doi.org/10.5194/hess-28-5479-2024, 2024
Short summary
Determining the threshold of issuing flash flood warnings based on people's response process simulation
Ruikang Zhang, Dedi Liu, Lihua Xiong, Jie Chen, Hua Chen, and Jiabo Yin
Hydrol. Earth Syst. Sci., 28, 5229–5247, https://doi.org/10.5194/hess-28-5229-2024,https://doi.org/10.5194/hess-28-5229-2024, 2024
Short summary
Modeling water balance components of conifer species using the Noah-MP model in an eastern Mediterranean ecosystem
Mohsen Amini Fasakhodi, Hakan Djuma, Ioannis Sofokleous, Marinos Eliades, and Adriana Bruggeman
Hydrol. Earth Syst. Sci., 28, 5209–5227, https://doi.org/10.5194/hess-28-5209-2024,https://doi.org/10.5194/hess-28-5209-2024, 2024
Short summary

Cited articles

Alexandratos, N. and Bruinsma, J.: World agriculture towards 2030/2050, FAO, http://water2return.eu/wp-content/uploads/2017/11/FAO_world-agriculture-towards-2030-2050.pdf (last access: 1 August 2021), 2012. 
Bertalanffy, L. V.: General System Theory: Foundations, Development, Applications, 3, George Braziller, New York, USA, https://doi.org/10.1109/TSMC.1974.4309376, 1976. 
Blanke, A., Rozelle, S., Lohmar, B., Wang, J., and Huang, J.: Water saving technology and saving water in China, Agr. Water Manage., 87, 139–150, https://doi.org/10.1016/j.agwat.2006.06.025, 2007. 
Bonabeau, E.: Agent-based modeling: Methods and techniques for simulating human systems, P. Natl. Acad. Sci. USA, 99, 7280–7287, https://doi.org/10.1073/pnas.082080899, 2002. 
Brekke, L., Larsen, M. D., Ausburn, M., and Takaichi, L.: Suburban water demand modeling using stepwise regression, J. Am. Water Works Assoc., 94, 65–75, 2002. 
Download
Short summary
The sustainability of the water–energy–food (WEF) nexus remains challenge, as interactions between WEF and human sensitivity and water resource allocation in water systems are often neglected. We incorporated human sensitivity and water resource allocation into a WEF nexus and assessed their impacts on the integrated system. This study can contribute to understanding the interactions across the water–energy–food–society nexus and improving the efficiency of resource management.