Articles | Volume 26, issue 15
https://doi.org/10.5194/hess-26-3965-2022
https://doi.org/10.5194/hess-26-3965-2022
Research article
 | 
02 Aug 2022
Research article |  | 02 Aug 2022

A system dynamic model to quantify the impacts of water resources allocation on water–energy–food–society (WEFS) nexus

Yujie Zeng, Dedi Liu, Shenglian Guo, Lihua Xiong, Pan Liu, Jiabo Yin, and Zhenhui Wu

Related authors

Variation and attribution of probable maximum precipitation of China using high-resolution dataset in a changing climate
Jinghua Xiong, Shenglian Guo, Abhishek, Jiabo Yin, Chongyu Xu, Jun Wang, and Jing Guo
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-265,https://doi.org/10.5194/hess-2023-265, 2023
Preprint under review for HESS
Short summary
GTWS-MLrec: global terrestrial water storage reconstruction by machine learning from 1940 to present
Jiabo Yin, Louise J. Slater, Abdou Khouakhi, Le Yu, Pan Liu, Fupeng Li, Yadu Pokhrel, and Pierre Gentine
Earth Syst. Sci. Data, 15, 5597–5615, https://doi.org/10.5194/essd-15-5597-2023,https://doi.org/10.5194/essd-15-5597-2023, 2023
Short summary
ET-WB: water-balance-based estimations of terrestrial evaporation over global land and major global basins
Jinghua Xiong, Abhishek, Li Xu, Hrishikesh A. Chandanpurkar, James S. Famiglietti, Chong Zhang, Gionata Ghiggi, Shenglian Guo, Yun Pan, and Bramha Dutt Vishwakarma
Earth Syst. Sci. Data, 15, 4571–4597, https://doi.org/10.5194/essd-15-4571-2023,https://doi.org/10.5194/essd-15-4571-2023, 2023
Short summary
Machine learning-constrained projection of bivariate hydrological drought magnitudes and socioeconomic risks
Rutong Liu, Jiabo Yin, Louise Slater, Shengyu Kang, Yuanhang Yang, Pan Liu, Jiali Guo, Xihui Gu, and Aliaksandr Volchak
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-181,https://doi.org/10.5194/hess-2023-181, 2023
Revised manuscript under review for HESS
Short summary
Res-CN (Reservoir dataset in China): hydrometeorological time series and landscape attributes across 3254 Chinese reservoirs
Youjiang Shen, Karina Nielsen, Menaka Revel, Dedi Liu, and Dai Yamazaki
Earth Syst. Sci. Data, 15, 2781–2808, https://doi.org/10.5194/essd-15-2781-2023,https://doi.org/10.5194/essd-15-2781-2023, 2023
Short summary

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
Joint optimal operation of the South-to-North Water Diversion Project considering the evenness of water deficit
Bing-Yi Zhou, Guo-Hua Fang, Xin Li, Jian Zhou, and Hua-Yu Zhong
Hydrol. Earth Syst. Sci., 28, 817–832, https://doi.org/10.5194/hess-28-817-2024,https://doi.org/10.5194/hess-28-817-2024, 2024
Short summary
Employing the generalized Pareto distribution to analyze extreme rainfall events on consecutive rainy days in Thailand's Chi watershed: implications for flood management
Tossapol Phoophiwfa, Prapawan Chomphuwiset, Thanawan Prahadchai, Jeong-Soo Park, Arthit Apichottanakul, Watchara Theppang, and Piyapatr Busababodhin
Hydrol. Earth Syst. Sci., 28, 801–816, https://doi.org/10.5194/hess-28-801-2024,https://doi.org/10.5194/hess-28-801-2024, 2024
Short summary
How to account for irrigation withdrawals in a watershed model
Elisabeth Brochet, Youen Grusson, Sabine Sauvage, Ludovic Lhuissier, and Valérie Demarez
Hydrol. Earth Syst. Sci., 28, 49–64, https://doi.org/10.5194/hess-28-49-2024,https://doi.org/10.5194/hess-28-49-2024, 2024
Short summary
Inferring reservoir filling strategies under limited-data-availability conditions using hydrological modeling and Earth observations: the case of the Grand Ethiopian Renaissance Dam (GERD)
Awad M. Ali, Lieke A. Melsen, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 27, 4057–4086, https://doi.org/10.5194/hess-27-4057-2023,https://doi.org/10.5194/hess-27-4057-2023, 2023
Short summary
Process-based three-layer synergistic optimal allocation model for complex water resource systems considering reclaimed water
Jing Liu, Yue-Ping Xu, Wei Zhang, Shiwu Wang, and Siwei Chen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-160,https://doi.org/10.5194/hess-2023-160, 2023
Revised manuscript accepted for HESS
Short summary

Cited articles

Alexandratos, N. and Bruinsma, J.: World agriculture towards 2030/2050, FAO, http://water2return.eu/wp-content/uploads/2017/11/FAO_world-agriculture-towards-2030-2050.pdf (last access: 1 August 2021), 2012. 
Bertalanffy, L. V.: General System Theory: Foundations, Development, Applications, 3, George Braziller, New York, USA, https://doi.org/10.1109/TSMC.1974.4309376, 1976. 
Blanke, A., Rozelle, S., Lohmar, B., Wang, J., and Huang, J.: Water saving technology and saving water in China, Agr. Water Manage., 87, 139–150, https://doi.org/10.1016/j.agwat.2006.06.025, 2007. 
Bonabeau, E.: Agent-based modeling: Methods and techniques for simulating human systems, P. Natl. Acad. Sci. USA, 99, 7280–7287, https://doi.org/10.1073/pnas.082080899, 2002. 
Brekke, L., Larsen, M. D., Ausburn, M., and Takaichi, L.: Suburban water demand modeling using stepwise regression, J. Am. Water Works Assoc., 94, 65–75, 2002. 
Download
Short summary
The sustainability of the water–energy–food (WEF) nexus remains challenge, as interactions between WEF and human sensitivity and water resource allocation in water systems are often neglected. We incorporated human sensitivity and water resource allocation into a WEF nexus and assessed their impacts on the integrated system. This study can contribute to understanding the interactions across the water–energy–food–society nexus and improving the efficiency of resource management.