

Supplement of

A system dynamic model to quantify the impacts of water resources allocation on water–energy–food–society (WEFS) nexus

Yujie Zeng et al.

Correspondence to: Dedi Liu (dediliu@whu.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

N-	Name	Total	Total Storage at normal Dead		Storage at flood limiting	
NO.		storage	water level	storage	water level	
R1	Sanliping	510.0	211.0	261.0	389.0/468.5	
R2	Siping	269.0	247.0	10.2	127.0	
R3	Danjiangkou	33,910.0	29,050.0	12,690.0	22,910.0/25,790.0	
R4	Mengqiaochuan	110.3	88.2	2.7	90.9	
R5	Huayanghe	107.0	70.8	1.4	72.2	
R6	Xionghe	195.9	115.9	20.0	135.9	
R7	Xipaizihe	220.4	122.0	2.2	124.2	
R8	Hongshuihe	103.6	58.9	5.4	64.3	
R9	Shimenji	154.0	114.7	1.9	99.0	
R10	Sandaohe	154.6	127.4	0.0	127.4	
R11	Yuntaishan	123.0	89.0	5.0	89.0	
R12	Yinghe	121.6	76.3	3.6	79.9	
R13	Huangpi	125.6	70.3	10.1	63.6	
R14	Wenxiakou	520.0	269.0	176.0	388.0	
R15	Shimen	159.1	68.6	13.0	81.6	
R16	Gaoguan	201.1	154.3	30.9	145.9	
R17	Huiting	313.4	173.5	32.50	206.0	

1 Table S1 Characteristics of the seventeen reservoirs (million m³).

3 Table S2 Calibrated parameters for the WEFS model.

Notation	Description	Unit	Value

к _Р , <i>φ</i> _Р	Auxiliary parameters for population evolution	[-]	1.0, 0.0856
κ _G , φ _G	Auxiliary parameters for GDP evolution		3.3, 0.0856
КСА, ФСА	Auxiliary parameters for crop area evolution		6.0, 0.0856
κ_{qwu} , $arphi_{qwu}$	Auxiliary parameters for water use quota simulation	[-]	3.8, 0.0856
κ_{e}, φ_{e}	Auxiliary parameters for energy use quota evolution		15.0, 0.0856
κ_{pro} , $arphi_{pro}$	Auxiliary parameters for crop yield evolution [-]		24.5, 0.0856
ηw	Perception factors describing the community's ability	Гl	450
	to identify the threats of degradation in water system	[-]	
η_E	Perception factors describing the community's ability	٢٦	50
	to identify the threats of degradation in energy system	[-]	
η_F	Perception factors describing the community's ability	[_]	120
	to identify the threats of degradation in food system	[-]	
$ heta_W$	Accumulation factor for water shortage awareness	[-]	0.0856
$ heta_E$	Accumulation factor for energy shortage awareness	[-]	0.0856
$ heta_F$	Accumulation factor for food shortage awareness	[-]	0.0856
ωw	Lapse factor for water shortage awareness	[-]	0.1
ω_E	Lapse factor for energy shortage awareness	[-]	0.1
ω_F	Lapse factor for food shortage awareness	[-]	0.1
WSRcrit	Critical water shortage rate	[-]	0.07
ESRcrit	Critical energy shortage rate	[-]	0.05
FSRcrit	Critical food shortage rate	[-]	0.05
FAcrit	Critical food shortage awareness	[-]	1.5

Ecrit	Critical environmental awareness	[-]	8
ζ1	Auxiliary factors for feedback on population	[-]	0.0856
ζ2	Auxiliary factors for feedback on GDP	[-]	0.0856
ζ_3^E	Auxiliary factors for feedback on crop area by E	[-]	0.0856
ζ_3^F	Auxiliary factors for feedback on crop area by FA	[-]	0.0856
$\delta^{\scriptscriptstyle E}_{\scriptscriptstyle rp}$	Factor describing feedback capability of	[-]	0.005
	environmental awareness to population		
$\delta^{\scriptscriptstyle E}_{\scriptscriptstyle rg}$	Factor describing feedback capability of	[-]	0.05
	environmental awareness to GDP		
$\delta^{\scriptscriptstyle E}_{\scriptscriptstyle ra}$	Factors describing feedback capability of	[-]	0.03
	environmental awareness to crop area		
$\delta^{\scriptscriptstyle F}_{\scriptscriptstyle ra}$	Factors describing feedback capability of food	[-]	0.1
	shortage awareness to crop area		•

4

Figure S1. Trajectories of water demand with varied shortage awareness weight factors.

Figure S2. Trajectories of energy consumption with varied shortage awareness weight 8 9

factors.

14 factors.