Articles | Volume 25, issue 9
Hydrol. Earth Syst. Sci., 25, 5047–5064, 2021
https://doi.org/10.5194/hess-25-5047-2021
Hydrol. Earth Syst. Sci., 25, 5047–5064, 2021
https://doi.org/10.5194/hess-25-5047-2021

Technical note 20 Sep 2021

Technical note | 20 Sep 2021

Technical note: Introduction of a superconducting gravimeter as novel hydrological sensor for the Alpine research catchment Zugspitze

Christian Voigt et al.

Related authors

GNSS signal-based snow water equivalent determination for different snowpack conditions along a steep elevation gradient
Achille Capelli, Franziska Koch, Patrick Henkel, Markus Lamm, Florian Appel, Christoph Marty, and Jürg Schweizer
The Cryosphere, 16, 505–531, https://doi.org/10.5194/tc-16-505-2022,https://doi.org/10.5194/tc-16-505-2022, 2022
Short summary
LamaH-CE: LArge-SaMple DAta for Hydrology and Environmental Sciences for Central Europe
Christoph Klingler, Karsten Schulz, and Mathew Herrnegger
Earth Syst. Sci. Data, 13, 4529–4565, https://doi.org/10.5194/essd-13-4529-2021,https://doi.org/10.5194/essd-13-4529-2021, 2021
Short summary
Evaluating a prediction system for snow management
Pirmin Philipp Ebner, Franziska Koch, Valentina Premier, Carlo Marin, Florian Hanzer, Carlo Maria Carmagnola, Hugues François, Daniel Günther, Fabiano Monti, Olivier Hargoaa, Ulrich Strasser, Samuel Morin, and Michael Lehning
The Cryosphere, 15, 3949–3973, https://doi.org/10.5194/tc-15-3949-2021,https://doi.org/10.5194/tc-15-3949-2021, 2021
Short summary
Rosalia: an experimental research site to study hydrological processes in a forest catchment
Josef Fürst, Hans Peter Nachtnebel, Josef Gasch, Reinhard Nolz, Michael Paul Stockinger, Christine Stumpp, and Karsten Schulz
Earth Syst. Sci. Data, 13, 4019–4034, https://doi.org/10.5194/essd-13-4019-2021,https://doi.org/10.5194/essd-13-4019-2021, 2021
Short summary
Machine-learning methods for stream water temperature prediction
Moritz Feigl, Katharina Lebiedzinski, Mathew Herrnegger, and Karsten Schulz
Hydrol. Earth Syst. Sci., 25, 2951–2977, https://doi.org/10.5194/hess-25-2951-2021,https://doi.org/10.5194/hess-25-2951-2021, 2021
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Instruments and observation techniques
Comment on “A comparison of catchment travel times and storage deduced from deuterium and tritium tracers using StorAge Selection functions” by Rodriguez et al. (2021)
Michael Kilgour Stewart, Uwe Morgenstern, and Ian Cartwright
Hydrol. Earth Syst. Sci., 25, 6333–6338, https://doi.org/10.5194/hess-25-6333-2021,https://doi.org/10.5194/hess-25-6333-2021, 2021
Short summary
Use of water isotopes and chemistry to infer the type and degree of exchange between groundwater and lakes in an esker complex of northeastern Ontario, Canada
Maxime P. Boreux, Scott F. Lamoureux, and Brian F. Cumming
Hydrol. Earth Syst. Sci., 25, 6309–6332, https://doi.org/10.5194/hess-25-6309-2021,https://doi.org/10.5194/hess-25-6309-2021, 2021
Short summary
CABra: a novel large-sample dataset for Brazilian catchments
André Almagro, Paulo Tarso S. Oliveira, Antônio Alves Meira Neto, Tirthankar Roy, and Peter Troch
Hydrol. Earth Syst. Sci., 25, 3105–3135, https://doi.org/10.5194/hess-25-3105-2021,https://doi.org/10.5194/hess-25-3105-2021, 2021
Short summary
Benefits from high-density rain gauge observations for hydrological response analysis in a small alpine catchment
Anthony Michelon, Lionel Benoit, Harsh Beria, Natalie Ceperley, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 25, 2301–2325, https://doi.org/10.5194/hess-25-2301-2021,https://doi.org/10.5194/hess-25-2301-2021, 2021
Short summary
Hydrologic regimes drive nitrate export behavior in human-impacted watersheds
Galen Gorski and Margaret A. Zimmer
Hydrol. Earth Syst. Sci., 25, 1333–1345, https://doi.org/10.5194/hess-25-1333-2021,https://doi.org/10.5194/hess-25-1333-2021, 2021
Short summary

Cited articles

Abe, M., Kroner, C., Förste, C., Petrovic, S., Barthelmes, F., Weise, A., Güntner, A., Creutzfeldt, B., Jahr, T., Wilmes, H., and Wziontek, H.: A comparison of GRACE-derived temporal gravity variations with observations of six European superconducting gravimeters, Geophys. J. Int., 191, 545–556, https://doi.org/10.1111/j.1365-246X.2012.05641.x, 2012. 
AlpEnDAC: SSG | Snow Water Equivalent @ Zugspitzplatt LWD Station, [data set], available at: https://www.alpendac.eu/spa#!/products/badd6e5e-1030-45e8-aefc-a79cc7832a07-01, last access: 14 September 2021. 
Bahrami, A., Goita, K., and Magagi, R.: Analysing the contribution of snow water equivalent to the terrestrial water storage over Canada, Hydrol. Process., 34, 175–188, https://doi.org/10.1002/hyp.13625, 2020. 
Bernhardt, M., Härer, S., Feigl, M., and Schulz, K.: Der Wert Alpiner Forschungseinzugsgebiete im Bereich der Fernerkundung, der Schneedeckenmodellierung und der lokalen Klimamodellierung, Österr. Wasser- und Abfallw., 70, 515–528, https://doi.org/10.1007/s00506-018-0510-8, 2018. 
Download
Short summary
A continuously operating superconducting gravimeter at the Zugspitze summit is introduced to support hydrological studies of the Partnach spring catchment known as the Zugspitze research catchment. The observed gravity residuals reflect total water storage variations at the observation site. Hydro-gravimetric analysis show a high correlation between gravity and the snow water equivalent, with a gravimetric footprint of up to 4 km radius enabling integral insights into this high alpine catchment.