Articles | Volume 25, issue 6
https://doi.org/10.5194/hess-25-3577-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-3577-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
River runoff in Switzerland in a changing climate – changes in moderate extremes and their seasonality
Regula Muelchi
CORRESPONDING AUTHOR
Institute of Geography and Oeschger Centre for Climate Change
Research, University of Bern, Bern, Switzerland
Ole Rössler
Institute of Geography and Oeschger Centre for Climate Change
Research, University of Bern, Bern, Switzerland
now at: German Federal Institute of Hydrology (BfG), Koblenz, Germany
Jan Schwanbeck
Institute of Geography and Oeschger Centre for Climate Change
Research, University of Bern, Bern, Switzerland
Rolf Weingartner
Institute of Geography and Oeschger Centre for Climate Change
Research, University of Bern, Bern, Switzerland
Mobiliar Lab for Natural Risks, University of Bern, Bern, Switzerland
Olivia Martius
Institute of Geography and Oeschger Centre for Climate Change
Research, University of Bern, Bern, Switzerland
Mobiliar Lab for Natural Risks, University of Bern, Bern, Switzerland
Related authors
Regula Muelchi, Ole Rössler, Jan Schwanbeck, Rolf Weingartner, and Olivia Martius
Hydrol. Earth Syst. Sci., 25, 3071–3086, https://doi.org/10.5194/hess-25-3071-2021, https://doi.org/10.5194/hess-25-3071-2021, 2021
Short summary
Short summary
Runoff regimes in Switzerland will change significantly under climate change. Projected changes are strongly elevation dependent with earlier time of emergence and stronger changes in high-elevation catchments where snowmelt and glacier melt play an important role. The magnitude of change and the climate model agreement on the sign increase with increasing global mean temperatures and stronger emission scenarios. This amplification highlights the importance of climate change mitigation.
Duncan Pappert, Alexandre Tuel, Dim Coumou, Mathieu Vrac, and Olivia Martius
Weather Clim. Dynam., 6, 769–788, https://doi.org/10.5194/wcd-6-769-2025, https://doi.org/10.5194/wcd-6-769-2025, 2025
Short summary
Short summary
This study compares the dynamical structures that characterise long-lasting (persistent) and short hot spells in Western Europe. We find differences in large-scale atmospheric flow patterns during the events and particular soil moisture evolutions, which can account for the variation in event duration. There is variability in how drivers combine in individual events. Understanding persistent heat extremes can help improve their representation in models and ultimately their prediction.
Hugo Banderier, Alexandre Tuel, Tim Woollings, and Olivia Martius
Weather Clim. Dynam., 6, 715–739, https://doi.org/10.5194/wcd-6-715-2025, https://doi.org/10.5194/wcd-6-715-2025, 2025
Short summary
Short summary
The jet stream is the main feature of upper-level flow and drives the weather at the surface. It is stronger and better defined in winter and has mostly been studied in that season. However, it is very important for (extreme) weather in summer. In this work, we improve and use two existing and complementary methods to study the jet stream(s) in the Euro-Atlantic sector, with a focus on summer. We find that our methods can verify each other and agree on interesting signals and trends.
Monika Feldmann, Daniela I. V. Domeisen, and Olivia Martius
EGUsphere, https://doi.org/10.5194/egusphere-2025-2296, https://doi.org/10.5194/egusphere-2025-2296, 2025
Short summary
Short summary
Severe thunderstorm outbreaks are a source of major damage across Europe. Using historical data, we analysed the large-scale weather patterns that lead to these outbreaks in eight different regions. Three types of regions emerge: those limited by temperature, limited by moisture and overall favourable for thunderstorms; consistent with their associated weather patterns and the general climate. These findings help explain regional differences and provide a basis for future forecast improvements.
Edgar Dolores-Tesillos, Olivia Martius, and Julian Quinting
Weather Clim. Dynam., 6, 471–487, https://doi.org/10.5194/wcd-6-471-2025, https://doi.org/10.5194/wcd-6-471-2025, 2025
Short summary
Short summary
An accurate representation of synoptic weather systems in climate models is required to estimate their societal and economic impacts under climate warming. Current climate models poorly represent the frequency of atmospheric blocking. Few studies have analysed the role of moist processes as a source of the bias of blocks. Here, we implement ELIAS2.0, a deep-learning tool, to validate the representation of moist processes in CMIP6 models and their link to the Euro-Atlantic blocking biases.
Markus Mosimann, Martina Kauzlaric, Olivia Martius, and Andreas Paul Zischg
Abstr. Int. Cartogr. Assoc., 9, 26, https://doi.org/10.5194/ica-abs-9-26-2025, https://doi.org/10.5194/ica-abs-9-26-2025, 2025
Hans Segura, Xabier Pedruzo-Bagazgoitia, Philipp Weiss, Sebastian K. Müller, Thomas Rackow, Junhong Lee, Edgar Dolores-Tesillos, Imme Benedict, Matthias Aengenheyster, Razvan Aguridan, Gabriele Arduini, Alexander J. Baker, Jiawei Bao, Swantje Bastin, Eulàlia Baulenas, Tobias Becker, Sebastian Beyer, Hendryk Bockelmann, Nils Brüggemann, Lukas Brunner, Suvarchal K. Cheedela, Sushant Das, Jasper Denissen, Ian Dragaud, Piotr Dziekan, Madeleine Ekblom, Jan Frederik Engels, Monika Esch, Richard Forbes, Claudia Frauen, Lilli Freischem, Diego García-Maroto, Philipp Geier, Paul Gierz, Álvaro González-Cervera, Katherine Grayson, Matthew Griffith, Oliver Gutjahr, Helmuth Haak, Ioan Hadade, Kerstin Haslehner, Shabeh ul Hasson, Jan Hegewald, Lukas Kluft, Aleksei Koldunov, Nikolay Koldunov, Tobias Kölling, Shunya Koseki, Sergey Kosukhin, Josh Kousal, Peter Kuma, Arjun U. Kumar, Rumeng Li, Nicolas Maury, Maximilian Meindl, Sebastian Milinski, Kristian Mogensen, Bimochan Niraula, Jakub Nowak, Divya Sri Praturi, Ulrike Proske, Dian Putrasahan, René Redler, David Santuy, Domokos Sármány, Reiner Schnur, Patrick Scholz, Dmitry Sidorenko, Dorian Spät, Birgit Sützl, Daisuke Takasuka, Adrian Tompkins, Alejandro Uribe, Mirco Valentini, Menno Veerman, Aiko Voigt, Sarah Warnau, Fabian Wachsmann, Marta Wacławczyk, Nils Wedi, Karl-Hermann Wieners, Jonathan Wille, Marius Winkler, Yuting Wu, Florian Ziemen, Janos Zimmermann, Frida A.-M. Bender, Dragana Bojovic, Sandrine Bony, Simona Bordoni, Patrice Brehmer, Marcus Dengler, Emanuel Dutra, Saliou Faye, Erich Fischer, Chiel van Heerwaarden, Cathy Hohenegger, Heikki Järvinen, Markus Jochum, Thomas Jung, Johann H. Jungclaus, Noel S. Keenlyside, Daniel Klocke, Heike Konow, Martina Klose, Szymon Malinowski, Olivia Martius, Thorsten Mauritsen, Juan Pedro Mellado, Theresa Mieslinger, Elsa Mohino, Hanna Pawłowska, Karsten Peters-von Gehlen, Abdoulaye Sarré, Pajam Sobhani, Philip Stier, Lauri Tuppi, Pier Luigi Vidale, Irina Sandu, and Bjorn Stevens
EGUsphere, https://doi.org/10.5194/egusphere-2025-509, https://doi.org/10.5194/egusphere-2025-509, 2025
Short summary
Short summary
The nextGEMS project developed two Earth system models that resolve processes of the order of 10 km, giving more fidelity to the representation of local phenomena, globally. In its fourth cycle, nextGEMS performed simulations with coupled ocean, land, and atmosphere over the 2020–2049 period under the SSP3-7.0 scenario. Here, we provide an overview of nextGEMS, insights into the model development, and the realism of multi-decadal, kilometer-scale simulations.
Lena Wilhelm, Cornelia Schwierz, Katharina Schröer, Mateusz Taszarek, and Olivia Martius
Nat. Hazards Earth Syst. Sci., 24, 3869–3894, https://doi.org/10.5194/nhess-24-3869-2024, https://doi.org/10.5194/nhess-24-3869-2024, 2024
Short summary
Short summary
In our study we used statistical models to reconstruct past hail days in Switzerland from 1959–2022. This new time series reveals a significant increase in hail day occurrences over the last 7 decades. We link this trend to increases in moisture and instability variables in the models. This time series can now be used to unravel the complexities of Swiss hail occurrence and to understand what drives its year-to-year variability.
Raphaël Rousseau-Rizzi, Shira Raveh-Rubin, Jennifer L. Catto, Alice Portal, Yonatan Givon, and Olivia Martius
Weather Clim. Dynam., 5, 1079–1101, https://doi.org/10.5194/wcd-5-1079-2024, https://doi.org/10.5194/wcd-5-1079-2024, 2024
Short summary
Short summary
We identify situations when rain and wind, rain and wave, or heat and dust hazards co-occur within Mediterranean cyclones. These hazard combinations are associated with risk to infrastructure, risk of coastal flooding and risk of respiratory issues. The presence of Mediterranean cyclones is associated with increased probability of all three hazard combinations. We identify weather configurations and cyclone structures, particularly those associated with specific co-occurrence combinations.
Alice Portal, Shira Raveh-Rubin, Jennifer L. Catto, Yonatan Givon, and Olivia Martius
Weather Clim. Dynam., 5, 1043–1060, https://doi.org/10.5194/wcd-5-1043-2024, https://doi.org/10.5194/wcd-5-1043-2024, 2024
Short summary
Short summary
Mediterranean cyclones are associated with extended rain, wind, and wave impacts. Although beneficial for regional water resources, their passage may induce extreme weather, which is especially impactful when multiple hazards combine together. Here we show how the passage of Mediterranean cyclones increases the likelihood of rain–wind and wave–wind compounding and how compound–cyclone statistics vary by region and season, depending on the presence of specific airflows around the cyclone.
Jérôme Kopp, Alessandro Hering, Urs Germann, and Olivia Martius
Atmos. Meas. Tech., 17, 4529–4552, https://doi.org/10.5194/amt-17-4529-2024, https://doi.org/10.5194/amt-17-4529-2024, 2024
Short summary
Short summary
We present a verification of two products based on weather radars to detect the presence of hail and estimate its size. Radar products are remote detection of hail, so they must be verified against ground-based observations. We use reports from users of the Swiss Weather Services phone app to do the verification. We found that the product estimating the presence of hail provides fair results but that it should be recalibrated and that estimating the hail size with radar is more challenging.
Christoph Nathanael von Matt, Regula Muelchi, Lukas Gudmundsson, and Olivia Martius
Nat. Hazards Earth Syst. Sci., 24, 1975–2001, https://doi.org/10.5194/nhess-24-1975-2024, https://doi.org/10.5194/nhess-24-1975-2024, 2024
Short summary
Short summary
The simultaneous occurrence of meteorological (precipitation), agricultural (soil moisture), and hydrological (streamflow) drought can lead to augmented impacts. By analysing drought indices derived from the newest climate scenarios for Switzerland (CH2018, Hydro-CH2018), we show that with climate change the concurrence of all drought types will increase in all studied regions of Switzerland. Our results stress the benefits of and need for both mitigation and adaptation measures at early stages.
Alexandre Tuel and Olivia Martius
Weather Clim. Dynam., 5, 263–292, https://doi.org/10.5194/wcd-5-263-2024, https://doi.org/10.5194/wcd-5-263-2024, 2024
Short summary
Short summary
Warm and cold spells often have damaging consequences for agriculture, power demand, human health and infrastructure, especially when they occur over large areas and persist for a week or more. Here, we split the Northern Hemisphere extratropics into coherent regions where 3-week warm and cold spells in winter and summer are associated with the same large-scale circulation patterns. To understand their physical drivers, we analyse the associated circulation and temperature budget anomalies.
Marvin Höge, Martina Kauzlaric, Rosi Siber, Ursula Schönenberger, Pascal Horton, Jan Schwanbeck, Marius Günter Floriancic, Daniel Viviroli, Sibylle Wilhelm, Anna E. Sikorska-Senoner, Nans Addor, Manuela Brunner, Sandra Pool, Massimiliano Zappa, and Fabrizio Fenicia
Earth Syst. Sci. Data, 15, 5755–5784, https://doi.org/10.5194/essd-15-5755-2023, https://doi.org/10.5194/essd-15-5755-2023, 2023
Short summary
Short summary
CAMELS-CH is an open large-sample hydro-meteorological data set that covers 331 catchments in hydrologic Switzerland from 1 January 1981 to 31 December 2020. It comprises (a) daily data of river discharge and water level as well as meteorologic variables like precipitation and temperature; (b) yearly glacier and land cover data; (c) static attributes of, e.g, topography or human impact; and (d) catchment delineations. CAMELS-CH enables water and climate research and modeling at catchment level.
Alexandre Tuel and Olivia Martius
Earth Syst. Dynam., 14, 955–987, https://doi.org/10.5194/esd-14-955-2023, https://doi.org/10.5194/esd-14-955-2023, 2023
Short summary
Short summary
Weather persistence on sub-seasonal to seasonal timescales has been a topic of research since the early days of meteorology. Stationary or recurrent behavior are common features of weather dynamics and are strongly related to fundamental physical processes, weather predictability and surface weather impacts. In this review, we propose a typology for the broad concepts related to persistence and discuss various methods that have been used to characterize persistence in weather data.
Pauline Rivoire, Olivia Martius, Philippe Naveau, and Alexandre Tuel
Nat. Hazards Earth Syst. Sci., 23, 2857–2871, https://doi.org/10.5194/nhess-23-2857-2023, https://doi.org/10.5194/nhess-23-2857-2023, 2023
Short summary
Short summary
Heavy precipitation can lead to floods and landslides, resulting in widespread damage and significant casualties. Some of its impacts can be mitigated if reliable forecasts and warnings are available. In this article, we assess the capacity of the precipitation forecast provided by ECMWF to predict heavy precipitation events on a subseasonal-to-seasonal (S2S) timescale over Europe. We find that the forecast skill of such events is generally higher in winter than in summer.
Jérôme Kopp, Agostino Manzato, Alessandro Hering, Urs Germann, and Olivia Martius
Atmos. Meas. Tech., 16, 3487–3503, https://doi.org/10.5194/amt-16-3487-2023, https://doi.org/10.5194/amt-16-3487-2023, 2023
Short summary
Short summary
We present the first study of extended field observations made by a network of 80 automatic hail sensors from Switzerland. The sensors record the exact timing of hailstone impacts, providing valuable information about the local duration of hailfall. We found that the majority of hailfalls lasts just a few minutes and that most hailstones, including the largest, fall during a first phase of high hailstone density, while a few remaining and smaller hailstones fall in a second low-density phase.
S. Mubashshir Ali, Matthias Röthlisberger, Tess Parker, Kai Kornhuber, and Olivia Martius
Weather Clim. Dynam., 3, 1139–1156, https://doi.org/10.5194/wcd-3-1139-2022, https://doi.org/10.5194/wcd-3-1139-2022, 2022
Short summary
Short summary
Persistent weather can lead to extreme weather conditions. One such atmospheric flow pattern, termed recurrent Rossby wave packets (RRWPs), has been shown to increase persistent weather in the Northern Hemisphere. Here, we show that RRWPs are also an important feature in the Southern Hemisphere. We evaluate the role of RRWPs during south-eastern Australian heatwaves and find that they help to persist the heatwaves by forming upper-level high-pressure systems over south-eastern Australia.
Nicole Clerx, Horst Machguth, Andrew Tedstone, Nicolas Jullien, Nander Wever, Rolf Weingartner, and Ole Roessler
The Cryosphere, 16, 4379–4401, https://doi.org/10.5194/tc-16-4379-2022, https://doi.org/10.5194/tc-16-4379-2022, 2022
Short summary
Short summary
Meltwater runoff is one of the main contributors to mass loss on the Greenland Ice Sheet that influences global sea level rise. However, it remains unclear where meltwater runs off and what processes cause this. We measured the velocity of meltwater flow through snow on the ice sheet, which ranged from 0.17–12.8 m h−1 for vertical percolation and from 1.3–15.1 m h−1 for lateral flow. This is an important step towards understanding where, when and why meltwater runoff occurs on the ice sheet.
Daniel Viviroli, Anna E. Sikorska-Senoner, Guillaume Evin, Maria Staudinger, Martina Kauzlaric, Jérémy Chardon, Anne-Catherine Favre, Benoit Hingray, Gilles Nicolet, Damien Raynaud, Jan Seibert, Rolf Weingartner, and Calvin Whealton
Nat. Hazards Earth Syst. Sci., 22, 2891–2920, https://doi.org/10.5194/nhess-22-2891-2022, https://doi.org/10.5194/nhess-22-2891-2022, 2022
Short summary
Short summary
Estimating the magnitude of rare to very rare floods is a challenging task due to a lack of sufficiently long observations. The challenge is even greater in large river basins, where precipitation patterns and amounts differ considerably between individual events and floods from different parts of the basin coincide. We show that a hydrometeorological model chain can provide plausible estimates in this setting and can thus inform flood risk and safety assessments for critical infrastructure.
Kathrin Wehrli, Fei Luo, Mathias Hauser, Hideo Shiogama, Daisuke Tokuda, Hyungjun Kim, Dim Coumou, Wilhelm May, Philippe Le Sager, Frank Selten, Olivia Martius, Robert Vautard, and Sonia I. Seneviratne
Earth Syst. Dynam., 13, 1167–1196, https://doi.org/10.5194/esd-13-1167-2022, https://doi.org/10.5194/esd-13-1167-2022, 2022
Short summary
Short summary
The ExtremeX experiment was designed to unravel the contribution of processes leading to the occurrence of recent weather and climate extremes. Global climate simulations are carried out with three models. The results show that in constrained experiments, temperature anomalies during heatwaves are well represented, although climatological model biases remain. Further, a substantial contribution of both atmospheric circulation and soil moisture to heat extremes is identified.
Alexandre Tuel, Bettina Schaefli, Jakob Zscheischler, and Olivia Martius
Hydrol. Earth Syst. Sci., 26, 2649–2669, https://doi.org/10.5194/hess-26-2649-2022, https://doi.org/10.5194/hess-26-2649-2022, 2022
Short summary
Short summary
River discharge is strongly influenced by the temporal structure of precipitation. Here, we show how extreme precipitation events that occur a few days or weeks after a previous event have a larger effect on river discharge than events occurring in isolation. Windows of 2 weeks or less between events have the most impact. Similarly, periods of persistent high discharge tend to be associated with the occurrence of several extreme precipitation events in close succession.
Daniel Steinfeld, Adrian Peter, Olivia Martius, and Stefan Brönnimann
EGUsphere, https://doi.org/10.5194/egusphere-2022-92, https://doi.org/10.5194/egusphere-2022-92, 2022
Preprint archived
Short summary
Short summary
We assess the performance of various fire weather indices to predict wildfire occurrence in Northern Switzerland. We find that indices responding readily to weather changes have the best performance during spring; in the summer and autumn seasons, indices that describe persistent hot and dry conditions perform best. We demonstrate that a logistic regression model trained on local historical fire activity can outperform existing fire weather indices.
Lisa-Ann Kautz, Olivia Martius, Stephan Pfahl, Joaquim G. Pinto, Alexandre M. Ramos, Pedro M. Sousa, and Tim Woollings
Weather Clim. Dynam., 3, 305–336, https://doi.org/10.5194/wcd-3-305-2022, https://doi.org/10.5194/wcd-3-305-2022, 2022
Short summary
Short summary
Atmospheric blocking is associated with stationary, self-sustaining and long-lasting high-pressure systems. They can cause or at least influence surface weather extremes, such as heat waves, cold spells, heavy precipitation events, droughts or wind extremes. The location of the blocking determines where and what type of extreme event will occur. These relationships are also important for weather prediction and may change due to global warming.
Hélène Barras, Olivia Martius, Luca Nisi, Katharina Schroeer, Alessandro Hering, and Urs Germann
Weather Clim. Dynam., 2, 1167–1185, https://doi.org/10.5194/wcd-2-1167-2021, https://doi.org/10.5194/wcd-2-1167-2021, 2021
Short summary
Short summary
In Switzerland hail may occur several days in a row. Such multi-day hail events may cause significant damage, and understanding and forecasting these events is important. Using reanalysis data we show that weather systems over Europe move slower before and during multi-day hail events compared to single hail days. Surface temperatures are typically warmer and the air more humid over Switzerland and winds are slower on multi-day hail clusters. These results may be used for hail forecasting.
Timothy H. Raupach, Andrey Martynov, Luca Nisi, Alessandro Hering, Yannick Barton, and Olivia Martius
Geosci. Model Dev., 14, 6495–6514, https://doi.org/10.5194/gmd-14-6495-2021, https://doi.org/10.5194/gmd-14-6495-2021, 2021
Short summary
Short summary
When simulated thunderstorms are compared to observations or other simulations, a match between overall storm properties is often more important than exact matches to individual storms. We tested a comparison method that uses a thunderstorm tracking algorithm to characterise simulated storms. For May 2018 in Switzerland, the method produced reasonable matches to independent observations for most storm properties, showing its feasibility for summarising simulated storms over mountainous terrain.
Philipp Wanner, Noemi Buri, Kevin Wyss, Andreas Zischg, Rolf Weingartner, Jan Baumgartner, Benjamin Berger, and Christoph Wanner
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-512, https://doi.org/10.5194/hess-2021-512, 2021
Preprint withdrawn
Short summary
Short summary
In this study, we quantified the glacial meltwater contribution to mountainous streams using high-resolution stable water isotope analysis. The glacial meltwater made up almost 28 % of the annual mountainous stream discharges. This high contribution demonstrates that the mountainous streamflow regimes will change in the future when the glacial meltwater contribution will disappear due to global warming posing a major challenge for hydropower energy production in mountainous regions.
Alexandre Tuel and Olivia Martius
Nat. Hazards Earth Syst. Sci., 21, 2949–2972, https://doi.org/10.5194/nhess-21-2949-2021, https://doi.org/10.5194/nhess-21-2949-2021, 2021
Short summary
Short summary
Extreme river discharge may be triggered by large accumulations of precipitation over short time periods, which can result from the successive occurrence of extreme-precipitation events. We find a distinct spatiotemporal pattern in the temporal clustering behavior of precipitation extremes over Switzerland, with clustering occurring on the northern side of the Alps in winter and on their southern side in fall. Clusters tend to be followed by extreme discharge, particularly in the southern Alps.
Jérôme Kopp, Pauline Rivoire, S. Mubashshir Ali, Yannick Barton, and Olivia Martius
Hydrol. Earth Syst. Sci., 25, 5153–5174, https://doi.org/10.5194/hess-25-5153-2021, https://doi.org/10.5194/hess-25-5153-2021, 2021
Short summary
Short summary
Episodes of extreme rainfall events happening in close temporal succession can lead to floods with dramatic impacts. We developed a novel method to individually identify those episodes and deduced the regions where they occur frequently and where their impact is substantial. Those regions are the east and northeast of the Asian continent, central Canada and the south of California, Afghanistan, Pakistan, the southwest of the Iberian Peninsula, and north of Argentina and south of Bolivia.
Regula Muelchi, Ole Rössler, Jan Schwanbeck, Rolf Weingartner, and Olivia Martius
Hydrol. Earth Syst. Sci., 25, 3071–3086, https://doi.org/10.5194/hess-25-3071-2021, https://doi.org/10.5194/hess-25-3071-2021, 2021
Short summary
Short summary
Runoff regimes in Switzerland will change significantly under climate change. Projected changes are strongly elevation dependent with earlier time of emergence and stronger changes in high-elevation catchments where snowmelt and glacier melt play an important role. The magnitude of change and the climate model agreement on the sign increase with increasing global mean temperatures and stronger emission scenarios. This amplification highlights the importance of climate change mitigation.
Jakob Zscheischler, Philippe Naveau, Olivia Martius, Sebastian Engelke, and Christoph C. Raible
Earth Syst. Dynam., 12, 1–16, https://doi.org/10.5194/esd-12-1-2021, https://doi.org/10.5194/esd-12-1-2021, 2021
Short summary
Short summary
Compound extremes such as heavy precipitation and extreme winds can lead to large damage. To date it is unclear how well climate models represent such compound extremes. Here we present a new measure to assess differences in the dependence structure of bivariate extremes. This measure is applied to assess differences in the dependence of compound precipitation and wind extremes between three model simulations and one reanalysis dataset in a domain in central Europe.
Cited articles
Addor, N., Rössler, O., Köplin, N., Huss, M., Weingartner, R., and
Seibert, J.: Robust changes and sources of uncertainty in the projected
hydrological regimes of Swiss catchments, Water Resour. Res., 50, 7541–7562,
https://doi.org/10.1002/2014WR015549, 2014.
Alderlieste, M., Van Lanen, H., and Wanders, N.: Future low flows and hydrological drought: How certain are these for Europe?, in: Proceedings of FRIEND-Water 2014, vol. 363, IAHS, Montpellier, 60–65, 2014.
Allamano, P., Claps, P., and Laio, F.: Global warming increases flood risk
in mountainous areas, Geophys. Res. Lett., 36, L24404, https://doi.org/10.1029/2009GL041395, 2009.
Ban, N., Schmidli, J., and Schär, C.: Heavy precipitation in a changing
climate: Does short-term summer precipitation increase faster?, Geophys. Res. Lett., 42, 1165–1172, https://doi.org/10.1002/2014GL062588, 2015.
Beniston, M. and Stoffel, M.: Rain-on-snow events, floods and climate change
in the Alps: Events may increase with warming up to 4 ∘C and decrease thereafter, Sci. Total Environ., 571, 228–236,
https://doi.org/10.1016/j.scitotenv.2016.07.146, 2016.
Bernhard, L. and Zappa, M.: Natürlicher Wasserhaushalt der Schweiz und ihrer bedeutendsten Grosseinzugsgebiete, Comissioned by the Swiss Federal Office for the Environment, Bern, 2012.
Bertola, M., Viglione, A., Lun, D., Hall, J., and Blöschl, G.: Flood
trends in Europe: are changes in small and big floods different?, Hydrol.
Earth Syst. Sci., 24, 1805–1822, https://doi.org/10.5194/hess-24-1805-2020, 2020.
Birsan, M.-V., Molnar, P., Burlando, P., and Pfaundler, M.: Streamflow
trends in Switzerland, J. Hydrol., 314, 312–329, https://doi.org/10.1016/j.jhydrol.2005.06.008, 2005.
Blöschl, G., Hall, J., Viglione, A., Perdigão, R. A. P., Parajka, J., Merz, B., Lun, D., Arheimer, B., Aronica, G. T., Bilibashi, A., Boháč, M., Bonacci, O., Borga, M., Čanjevac, I., Castellarin, A., Chirico, G. B., Claps, P., Frolova, N., Ganora, D., Gorbachova, L., Gül, A., Hannaford, J., Harrigan, S., Kireeva, M., Kiss, A., Kjeldsen, T. S., Kohnová, S., Koskela, J. J., Ledvinka, O., Macdonald, N., Mavrova-Guirguinova, M., Mediero, L., Merz, R., Molnar, P., Montanari, A., Murphy, C., Osuch, M., Ovcharuk, V., Radevski, I., Salinas, J. L., Sauquet, E., Šraj, M., Szolgay, J., Volpi, E., Wilson, D., Zaimi, K., and Živković, N.: Changing climate both increases and decreases European river floods, Nature, 573, 108–111, https://doi.org/10.1038/s41586-019-1495-6, 2019.
Brunner, M. I., Farinotti, D., Zekollari, H., Huss, M., and Zappa, M.: Future shifts in extreme flow regimes in Alpine regions, Hydrol. Earth Syst. Sci., 23, 4471–4489, https://doi.org/10.5194/hess-23-4471-2019, 2019a.
Brunner, M. I., Gurung, A. B., Zappa, M., Zekollari, H., Farinotti, D., and
Stähli, M.: Present and future water scarcity in Switzerland: Potential
for alleviation through reservoirs and lakes, Sci. Total Environ., 666, 1033–1047, https://doi.org/10.1016/j.scitotenv.2019.02.169, 2019b.
Castellarin, A. and Pistocchi, A.: An analysis of change in alpine annual
maximum discharges: implications for the selection of design discharges,
Hydrol. Process., 26, 1517–1526, https://doi.org/10.1002/hyp.8249, 2012.
CH2018: CH2018 – Climate Scenarios for Switzerland, Technical report,
National Centre for Climate Services, Zurich, Switzerland, 271 pp., ISBN 978-3-9525031-4-0, 2018.
Feyen, L. and Dankers, R.: Impact of global warming on streamflow drought in
Europe, J. Geophys. Res.-Atmos., 114, D17116, https://doi.org/10.1029/2008JD011438, 2009.
FOEN (Ed.): Effects of climate change on Swiss water bodies. Hydrology,
water ecology and water management, Environmental Studies No. 2101, FOEN – Federal Office for the Environment, Bern, p. 125, 2021.
Forzieri, G., Feyen, L., Rojas, R., Flörke, M., Wimmer, F., and Bianchi,
A.: Ensemble projections of future streamflow droughts in Europe, Hydrol.
Earth Syst. Sci., 18, 85–108, https://doi.org/10.5194/hess-18-85-2014, 2014.
Gaetani, M., Janicot, S., Vrac, M., Famien, A. M., and Sultan, B.: Robust
assessment of the time of emergence of precipitation change in West Africa,
Sci. Rep., 10, 1–10, https://doi.org/10.1038/s41598-020-63782-2, 2020.
Giorgi, F. and Bi, X.: Time of emergence (TOE) of GHG-forced precipitation
change hot-spots, Geophys. Res, Lett., 36, L06709, https://doi.org/10.1029/2009GL037593, 2009.
Gutiérrez, J. M., Maraun, D., Widmann, M., Huth, R., Hertig, E., Benestad, R., Rössler, O., Wibig, J., Wilcke, R., Kotlarski, S., San Martin, D., Herrera, S., Bedia, J., Casanueva, A., Manzanas, R., Iturbide, M., Vrac, M., Dubrovsky, M., Ribalaygua, J., Pórtoles, J., Räty, O. E., Räisänen, J. A., Hingray, B., Raynaud, D., Casado, M., Ramos, P., Zerenner, T., Turco, M., Bosshard, T., Stepanek, P., Bartholy, J., Pongracz, R., Keller, D., Fischer, A., Cardoso, R., Soares, P., Czernecki, B., and Pagé, C.: An intercomparison of a large ensemble of statistical downscaling methods over Europe: Results from the VALUE perfect predictor cross-validation experiment, Int. J. Climatol., 39, 3750–3785,
https://doi.org/10.1002/joc.5462, 2019.
Hakala, K., Addor, N., Gobbe, T., Ruffieux, J., and Seibert, J.: Risks and
opportunities for a Swiss hydroelectricity company in a changing climate,
Hydrol. Earth Syst. Sci., 24, 3815–3833, https://doi.org/10.5194/hess-24-3815-2020, 2020.
Hall, J., Arheimer, B., Borga, M., Brázdil, R., Claps, P., Kiss, A., Kjeldsen, T. R., Kriauvciūnienė, J., Kundzewicz, Z. W., Lang, M., Llasat, M. C., Macdonald, N., McIntyre, N., Mediero, L., Merz, B., Merz, R., Molnar, P., Montanari, A., Neuhold, C., Parajka, J., Perdigão, R. A. P., Plavcová, L., Rogger, M., Salinas, J. L., Sauquet, E., Schär, C., Szolgay, J., Viglione, A., and Blöschl, G.: Understanding flood regime changes in Europe: a state-of-the-art assessment, Hydrol. Earth Syst. Sci., 18, 2735–2772, https://doi.org/10.5194/hess-18-2735-2014, 2014.
IPCC: Climate Change 2014: Impacts, Adaptation, and Vulnerability, in: Part A: Global and Sec-toral Aspects, Contribution of Working Group II to the Fifth Assessment Report of the Inter-governmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, USA, 1132 pp., 2014.
Köplin, N., Sch ädler, B., Viviroli, D., and Weingartner, R.:
Seasonality and magnitude of floods in Switzerland under future climate change, Hydrol. Process., 28, 2567–2578, https://doi.org/10.1002/hyp.9757, 2014.
Leng, G., Huang, M., Voisin, N., Zhang, X., Asrar, G. R., and Leung, L. R.:
Emergence of new hydrologic regimes of surface water resources in the
conterminous United States under future warming, Environ. Res. Lett., 11,
11, 114003, https://doi.org/10.1088/1748-9326/11/11/114003, 2016.
Mahlstein, I., Knutti, R., Solomon, S., and Portmann, R. W.: Early onset of significant local warming in low latitude countries, Environ. Res. Lett., 6,
034009, https://doi.org/10.1088/1748-9326/6/3/034009, 2011.
Mangini, W., Viglione, A., Hall, J., Hundecha, Y., Ceola, S., Montanari, A.,
Rogger, M., Salinas,J. L., Borzì, I., and Parajka, J.: Detection of trends in magnitude and frequency of flood peaks across Europe, Hydrolog. Sci. J., 63, 493–512, https://doi.org/10.1080/02626667.2018.1444766, 2018.
Marx, A., Kumar, R., Thober, S., Rakovec, O., Wanders, N., Zink, M., Wood, E. F., Pan, M., Sheffield, J., and Samaniego, L.: Climate change alters low flows in Europe under global warming of 1.5, 2, and 3 ∘C, Hydrol. Earth Syst. Sci., 22, 1017–1032, https://doi.org/10.5194/hess-22-1017-2018, 2018.
Mastrandrea, M. D., Field, C. B., Stocker, T. F., Edenhofer, O., Ebi, K. L.,
Frame, D. J., Held, H., Kriegler, E., Mach, K. J., Matschoss, P. R., Plattner, G.-K., Yohe, G. W., and Zwiers, F. W.: Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties, IPCC – Intergovernmental Panel on Climate Change, Jasper Ridge, 2010.
Meyer, R., Schädler, B., Viviroli, D., and Weingartner, R.: Klimaänderung und Niedrigwasser – Auswirkungen der Klimaänderung auf
die Niedrigwasserverhältnisse im Schweizer Mittelland für 2021–2050
und 2070–2099, Comissioned by the Swiss Federal Office for the Environment,
Bern, 2011.
Michel, A., Schaefli, B., Wever, N., Zekollari, H., Lehning, M., and Huwald, H.: Future water temperature of rivers in Switzerland under climate change investigated with physics-based models, Hydrol. Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/hess-2021-194, in review, 2021.
Moss, R., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., and Wilbanks, T. J.: The next generation of scenarios for climate change research and assessment, Nature, 463, 747–756, https://doi.org/10.1038/nature08823, 2010.
Muelchi, R.: Future changes of Swiss river runoff and extreme vertically
integrated moisture transport, PhD thesis, University of Bern, Bern, Switzerland, 198 pp., 2021.
Muelchi, R., Rössler, O., Schwanbeck, J., Weingartner, R., and Martius,
O.: Hydro-CH2018-Runoff ensemble (version v1), Zenodo,
https://doi.org/10.5281/zenodo.3937485, 2020.
Muelchi, R., Rössler, O., Schwanbeck, J., Weingartner, R., and Martius,
O.: An ensemble of daily simulated runoff data (1981–2099) under climate
change conditions for 93 catchments in Switzerland (Hydro-CH2018-Runoff
ensemble), Geosci. Data J., https://doi.org/10.1002/gdj3.117, in press, 2021a.
Muelchi, R., Rössler, O., Schwanbeck, J., Weingartner, R., and Martius, O.: River runoff in Switzerland in a changing climate – runoff regime changes and their time of emergence, Hydrol. Earth Syst. Sci., 25, 3071–3086, https://doi.org/10.5194/hess-25-3071-2021, 2021b.
Papadimitriou, L. V., Koutroulis, A. G., Grillakis, M. G., and Tsanis, I. K.: High-end climate change impact on European runoff and low flows – exploring the effects of forcing biases, Hydrol. Earth Syst. Sci., 20, 1785–1808, https://doi.org/10.5194/hess-20-1785-2016, 2016.
Ragettli, S., Tong, X., Zhang, G., Wang, H., Zhang, P., and Stähli, M.:
Climate change impacts on summer flood frequencies in two mountainous catchments in China and Switzerland, Hydrol. Res., 52, 4–25, https://doi.org/10.2166/nh.2019.118, 2019.
Schaefli, B., Hingray, B., and Musy, A.: Climate change and hydropower production in the Swiss Alps: quantification of potential impacts and
related modelling uncertainties, Hydrol. Earth Syst. Sci., 11, 1191–1205,
https://doi.org/10.5194/hess-11-1191-2007, 2007.
Schmocker-Fackel, P. and Naef, F.: More frequent flooding? Changes in flood
frequency in Switzerland since 1850, J. Hydrol., 381, 1–8,
https://doi.org/10.1016/j.jhydrol.2009.09.022, 2010a.
Schmocker-Fackel, P. and Naef, F.: Changes in flood frequencies in Switzerland since 1500, Hydrol. Earth Syst. Sci., 14, 1581–1594,
https://doi.org/10.5194/hess-14-1581-2010, 2010b.
Stahl, K., Hisdal, H., Hannaford, J., Tallaksen, L., Van Lanen, H., Sauquet,
E., Demuth, S., Fendekova, M., and Jordar, J.: Streamflow trends in Europe:
evidence from a dataset of near-natural catchments, Hydrol. Earth Syst. Sci., 14, 2367–2382, https://doi.org/10.5194/hess-14-2367-2010, 2010.
Stahl, K., Tallaksen, L. M., Hannaford, J., and Van Lanen, H.: Filling the
white space on maps of European runoff trends: estimates from a multi-model
ensemble, Hydrol. Earth Syst. Sci., 16, 2035–2047,
https://doi.org/10.5194/hess-16-2035-2012, 2012.
Tallaksen, L. M. and Van Lanen, H. A.: Hydrological drought: processes and
estimation methods for streamflow and groundwater, in: Developments in Water Sciences 48, Elsevier B. V., Amsterdam, 2004.
Tschurr, F., Feigenwinter, I., Fischer, A. M., and Kotlarski, S.: Climate
Scenarios and Agricultural Indices: A Case Study for Switzerland, Atmosphere, 11, 535, https://doi.org/10.3390/atmos11050535, 2020.
van Vliet, M. T., Franssen, W. H., Yearsley, J. R., Ludwig, F., Haddeland, I., Lettenmaier, D. P., and Kabat, P.: Global river discharge and water
temperature under climate change, Global Environ. Change, 23, 450–464,
https://doi.org/10.1016/j.gloenvcha.2012.11.002, 2013.
van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J. F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The representative concentration pathways: an overview, Climatic Change, 109, 5–31, https://doi.org/10.1007/s10584-011-0148-z, 2011.
Vidal, J.-P., Hingray, B., Magand, C., Sauquet, E., and Ducharne, A.: Hierarchy of climate and hydrological uncertainties in transient low-flow
projections, Hydrol. Earth Syst. Sci., 20, 3651–3672,
https://doi.org/10.5194/hess-20-3651-2016, 2016.
Viviroli, D., Zappa, M., Gurtz, J., and Weingartner, R.: An introduction to
the hydrological modelling system PREVAH and its pre- and post-processing-tools, Environ. Model. Softw., 24, 1209–1222,
https://doi.org/10.1016/j.envsoft.2009.04.001, 2009.
Weingartner, R. and Aschwanden, H.: Discharge regime – the basis for the
estimation of average flows, Tech. Rep. Plate 5.2, Hydrological Atlas of
Switzerland, Bern, Switzerland, 1992.
Weingartner, R., and Schwanbeck, J.: Veränderung der Niedrigwasserablüsse und der kleinsten saisonalen Abflüsse in der
Schweiz im Zeitraum 1961–2018, Comissioned by the Swiss Federal Office for
the Environment, Bern, 41 pp., 2020.
Wilby, R. L. and Dessai, S.: Robust adaptation to climate change, Weather, 65, 180–185, https://doi.org/10.1002/wea.543, 2010.
Zekollari, H., Huss, M., and Farinotti, D.: Modelling the future evolution
of glaciers in the European Alps under the EUROCORDEX RCM ensemble, The
Cryosphere, 13, 1125–1146, https://doi.org/10.5194/tc-13-1125-2019, 2019.
Zierl, B. and Bugmann, H.: Global change impacts on hydrological processes in Alpine catchments, Water Resour. Res., 41, 1–13, https://doi.org/10.1029/2004WR003447, 2005.
Short summary
This study analyses changes in magnitude, frequency, and seasonality of moderate low and high flows for 93 catchments in Switzerland. In lower-lying catchments (below 1500 m a.s.l.), moderate low-flow magnitude (frequency) will decrease (increase). In Alpine catchments (above 1500 m a.s.l.), moderate low-flow magnitude (frequency) will increase (decrease). Moderate high flows tend to occur more frequent, and their magnitude increases in most catchments except some Alpine catchments.
This study analyses changes in magnitude, frequency, and seasonality of moderate low and high...