Articles | Volume 25, issue 6
https://doi.org/10.5194/hess-25-3577-2021
https://doi.org/10.5194/hess-25-3577-2021
Research article
 | 
23 Jun 2021
Research article |  | 23 Jun 2021

River runoff in Switzerland in a changing climate – changes in moderate extremes and their seasonality

Regula Muelchi, Ole Rössler, Jan Schwanbeck, Rolf Weingartner, and Olivia Martius

Related authors

River runoff in Switzerland in a changing climate – runoff regime changes and their time of emergence
Regula Muelchi, Ole Rössler, Jan Schwanbeck, Rolf Weingartner, and Olivia Martius
Hydrol. Earth Syst. Sci., 25, 3071–3086, https://doi.org/10.5194/hess-25-3071-2021,https://doi.org/10.5194/hess-25-3071-2021, 2021
Short summary

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Modelling approaches
Timing of spring events changes under modelled future climate scenarios in a mesotrophic lake
Jorrit P. Mesman, Inmaculada C. Jiménez-Navarro, Ana I. Ayala, Javier Senent-Aparicio, Dennis Trolle, and Don C. Pierson
Hydrol. Earth Syst. Sci., 28, 1791–1802, https://doi.org/10.5194/hess-28-1791-2024,https://doi.org/10.5194/hess-28-1791-2024, 2024
Short summary
Effects of high-quality elevation data and explanatory variables on the accuracy of flood inundation mapping via Height Above Nearest Drainage
Fernando Aristizabal, Taher Chegini, Gregory Petrochenkov, Fernando Salas, and Jasmeet Judge
Hydrol. Earth Syst. Sci., 28, 1287–1315, https://doi.org/10.5194/hess-28-1287-2024,https://doi.org/10.5194/hess-28-1287-2024, 2024
Short summary
Isotopic evaluation of the National Water Model reveals missing agricultural irrigation contributions to streamflow across the western United States
Annie Putman, Patrick Longley, Morgan McDonnell, James Reddy, Michelle Katoski, Olivia Miller, and J. Renee Brooks
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-308,https://doi.org/10.5194/hess-2023-308, 2024
Revised manuscript accepted for HESS
Short summary
Understanding the compound flood risk along the coast of the contiguous United States
Dongyu Feng, Zeli Tan, Donghui Xu, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 27, 3911–3934, https://doi.org/10.5194/hess-27-3911-2023,https://doi.org/10.5194/hess-27-3911-2023, 2023
Short summary
Benchmarking high-resolution hydrologic model performance of long-term retrospective streamflow simulations in the contiguous United States
Erin Towler, Sydney S. Foks, Aubrey L. Dugger, Jesse E. Dickinson, Hedeff I. Essaid, David Gochis, Roland J. Viger, and Yongxin Zhang
Hydrol. Earth Syst. Sci., 27, 1809–1825, https://doi.org/10.5194/hess-27-1809-2023,https://doi.org/10.5194/hess-27-1809-2023, 2023
Short summary

Cited articles

Addor, N., Rössler, O., Köplin, N., Huss, M., Weingartner, R., and Seibert, J.: Robust changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments, Water Resour. Res., 50, 7541–7562, https://doi.org/10.1002/2014WR015549, 2014. 
Alderlieste, M., Van Lanen, H., and Wanders, N.: Future low flows and hydrological drought: How certain are these for Europe?, in: Proceedings of FRIEND-Water 2014, vol. 363, IAHS, Montpellier, 60–65, 2014. 
Allamano, P., Claps, P., and Laio, F.: Global warming increases flood risk in mountainous areas, Geophys. Res. Lett., 36, L24404, https://doi.org/10.1029/2009GL041395, 2009. 
Ban, N., Schmidli, J., and Schär, C.: Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster?, Geophys. Res. Lett., 42, 1165–1172, https://doi.org/10.1002/2014GL062588, 2015. 
Beniston, M. and Stoffel, M.: Rain-on-snow events, floods and climate change in the Alps: Events may increase with warming up to 4 C and decrease thereafter, Sci. Total Environ., 571, 228–236, https://doi.org/10.1016/j.scitotenv.2016.07.146, 2016. 
Short summary
This study analyses changes in magnitude, frequency, and seasonality of moderate low and high flows for 93 catchments in Switzerland. In lower-lying catchments (below 1500 m a.s.l.), moderate low-flow magnitude (frequency) will decrease (increase). In Alpine catchments (above 1500 m a.s.l.), moderate low-flow magnitude (frequency) will increase (decrease). Moderate high flows tend to occur more frequent, and their magnitude increases in most catchments except some Alpine catchments.