Research article
15 Apr 2021
Research article
| 15 Apr 2021
The development and persistence of soil moisture stress during drought across southwestern Germany
Erik Tijdeman and Lucas Menzel
Related authors
Erik Tijdeman, Veit Blauhut, Michael Stoelzle, Lucas Menzel, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 22, 2099–2116, https://doi.org/10.5194/nhess-22-2099-2022, https://doi.org/10.5194/nhess-22-2099-2022, 2022
Short summary
Short summary
We identified different drought types with typical hazard and impact characteristics. The summer drought type with compounding heat was most impactful. Regional drought propagation of this drought type exhibited typical characteristics that can guide drought management. However, we also found a large spatial variability that caused distinct differences among propagating drought signals. Accordingly, local multivariate drought information was needed to explain the full range of drought impacts.
Mathilde Erfurt, Georgios Skiadaresis, Erik Tijdeman, Veit Blauhut, Jürgen Bauhus, Rüdiger Glaser, Julia Schwarz, Willy Tegel, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 20, 2979–2995, https://doi.org/10.5194/nhess-20-2979-2020, https://doi.org/10.5194/nhess-20-2979-2020, 2020
Short summary
Short summary
Droughts are multifaceted hazards with widespread negative consequences for the environment and society. This study explores different perspectives on drought and determines the added value of multidisciplinary datasets for a comprehensive understanding of past drought events in southwestern Germany. A long-term evaluation of drought frequency since 1801 revealed that events occurred in all decades, but a particular clustering was found in the mid-19th century and the most recent decade.
Kerstin Stahl, Jean-Philippe Vidal, Jamie Hannaford, Erik Tijdeman, Gregor Laaha, Tobias Gauster, and Lena M. Tallaksen
Proc. IAHS, 383, 291–295, https://doi.org/10.5194/piahs-383-291-2020, https://doi.org/10.5194/piahs-383-291-2020, 2020
Short summary
Short summary
Numerous indices exist for the description of hydrological drought, some are based on absolute thresholds of overall streamflows or water levels and some are based on relative anomalies with respect to the season. This article discusses paradigms and experiences with such index uses in drought monitoring and drought analysis to raise awareness of the different interpretations of drought severity.
Erik Tijdeman, Veit Blauhut, Michael Stoelzle, Lucas Menzel, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 22, 2099–2116, https://doi.org/10.5194/nhess-22-2099-2022, https://doi.org/10.5194/nhess-22-2099-2022, 2022
Short summary
Short summary
We identified different drought types with typical hazard and impact characteristics. The summer drought type with compounding heat was most impactful. Regional drought propagation of this drought type exhibited typical characteristics that can guide drought management. However, we also found a large spatial variability that caused distinct differences among propagating drought signals. Accordingly, local multivariate drought information was needed to explain the full range of drought impacts.
Mathilde Erfurt, Georgios Skiadaresis, Erik Tijdeman, Veit Blauhut, Jürgen Bauhus, Rüdiger Glaser, Julia Schwarz, Willy Tegel, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 20, 2979–2995, https://doi.org/10.5194/nhess-20-2979-2020, https://doi.org/10.5194/nhess-20-2979-2020, 2020
Short summary
Short summary
Droughts are multifaceted hazards with widespread negative consequences for the environment and society. This study explores different perspectives on drought and determines the added value of multidisciplinary datasets for a comprehensive understanding of past drought events in southwestern Germany. A long-term evaluation of drought frequency since 1801 revealed that events occurred in all decades, but a particular clustering was found in the mid-19th century and the most recent decade.
Kerstin Stahl, Jean-Philippe Vidal, Jamie Hannaford, Erik Tijdeman, Gregor Laaha, Tobias Gauster, and Lena M. Tallaksen
Proc. IAHS, 383, 291–295, https://doi.org/10.5194/piahs-383-291-2020, https://doi.org/10.5194/piahs-383-291-2020, 2020
Short summary
Short summary
Numerous indices exist for the description of hydrological drought, some are based on absolute thresholds of overall streamflows or water levels and some are based on relative anomalies with respect to the season. This article discusses paradigms and experiences with such index uses in drought monitoring and drought analysis to raise awareness of the different interpretations of drought severity.
Related subject area
Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Modelling evaporation with local, regional and global BROOK90 frameworks: importance of parameterization and forcing
Hydrological concept formation inside long short-term memory (LSTM) networks
A two-step merging strategy for incorporating multi-source precipitation products and gauge observations using machine learning classification and regression over China
Hydrometeorological evaluation of two nowcasting systems for Mediterranean heavy precipitation events with operational considerations
On the links between sub-seasonal clustering of extreme precipitation and high discharge in Switzerland and Europe
Regional, multi-decadal analysis on the Loire River basin reveals that stream temperature increases faster than air temperature
Investigating the response of leaf area index to droughts in southern African vegetation using observations and model simulations
Recent decrease in summer precipitation over the Iberian Peninsula closely links to reduction in local moisture recycling
Exploring the possible role of satellite-based rainfall data in estimating inter- and intra-annual global rainfall erosivity
Critical transitions in the hydrological system: early-warning signals and network analysis
Testing a maximum evaporation theory over saturated land: implications for potential evaporation estimation
The role of morphology in the spatial distribution of short-duration rainfall extremes in Italy
Impact of correcting sub-daily climate model biases for hydrological studies
The Mesoamerican mid-summer drought: the impact of its definition on occurrences and recent changes
Reconstructing climate trends adds skills to seasonal reference crop evapotranspiration forecasting
Influence of initial soil moisture in a regional climate model study over West Africa – Part 1: Impact on the climate mean
Influence of initial soil moisture in a regional climate model study over West Africa – Part 2: Impact on the climate extremes
Compound flood impact forecasting: integrating fluvial and flash flood impact assessments into a unified system
Ensemble streamflow forecasting over a cascade reservoir catchment with integrated hydrometeorological modeling and machine learning
Machine-learning methods to assess the effects of a non-linear damage spectrum taking into account soil moisture on winter wheat yields in Germany
Extreme precipitation events in the Mediterranean area: contrasting two different models for moisture source identification
Flexible and consistent quantile estimation for intensity–duration–frequency curves
Evaluation of Asian summer precipitation in different configurations of a high-resolution general circulation model in a range of decision-relevant spatial scales
A comparison of hydrological models with different level of complexity in Alpine regions in the context of climate change
Rainfall-induced shallow landslides and soil wetness: comparison of physically based and probabilistic predictions
Land use and climate change effects on water yield from East African forested water towers
Easy-to-use spatial random-forest-based downscaling-calibration method for producing precipitation data with high resolution and high accuracy
Improved parameterization of snow albedo in Noah coupled with Weather Research and Forecasting: applicability to snow estimates for the Tibetan Plateau
A 10 km North American precipitation and land-surface reanalysis based on the GEM atmospheric model
Contribution of moisture sources to precipitation changes in the Three Gorges Reservoir Region
Impacts of land use and land cover change and reforestation on summer rainfall in the Yangtze River basin
Mass balance and hydrological modeling of the Hardangerjøkulen ice cap in south-central Norway
Long-term relative decline in evapotranspiration with increasing runoff on fractional land surfaces
Decision tree-based detection of blowing snow events in the European Alps
Changes in the simulation of atmospheric instability over the Iberian Peninsula due to the use of 3DVAR data assimilation
Simulating the evolution of the topography–climate coupled system
Using data assimilation to optimize pedotransfer functions using field-scale in situ soil moisture observations
Impact of frozen soil processes on soil thermal characteristics at seasonal to decadal scales over the Tibetan Plateau and North China
Summary and synthesis of Changing Cold Regions Network (CCRN) research in the interior of western Canada – Part 2: Future change in cryosphere, vegetation, and hydrology
Improving soil moisture prediction of a high-resolution land surface model by parameterising pedotransfer functions through assimilation of SMAP satellite data
Evaluating a land surface model at a water-limited site: implications for land surface contributions to droughts and heatwaves
A two-stage blending approach for merging multiple satellite precipitation estimates and rain gauge observations: an experiment in the northeastern Tibetan Plateau
Identifying robust bias adjustment methods for European extreme precipitation in a multi-model pseudo-reality setting
Developing a hydrological monitoring and sub-seasonal to seasonal forecasting system for South and Southeast Asian river basins
Simulation analysis of local land atmosphere coupling in rainy season over a typical underlying surface in the Tibetan Plateau
Intensification characteristics of hydroclimatic extremes in the Asian monsoon region under 1.5 and 2.0 °C of global warming
Last-decade progress in understanding and modeling the land surface processes on the Tibetan Plateau
On the potential of variational calibration for a fully distributed hydrological model: application on a Mediterranean catchment
Accelerated hydrological cycle over the Sanjiangyuan region induces more streamflow extremes at different global warming levels
Contrasting seasonal changes in total and intense precipitation in the European Alps from 1903 to 2010
Ivan Vorobevskii, Thi Thanh Luong, Rico Kronenberg, Thomas Grünwald, and Christian Bernhofer
Hydrol. Earth Syst. Sci., 26, 3177–3239, https://doi.org/10.5194/hess-26-3177-2022, https://doi.org/10.5194/hess-26-3177-2022, 2022
Short summary
Short summary
In the study we analysed the uncertainties of the meteorological data and model parameterization for evaporation modelling. We have taken a physically based lumped BROOK90 model and applied it in three different frameworks using global, regional and local datasets. Validating the simulations with eddy-covariance data from five stations in Germany, we found that the accuracy model parameterization plays a bigger role than the quality of the meteorological forcing.
Thomas Lees, Steven Reece, Frederik Kratzert, Daniel Klotz, Martin Gauch, Jens De Bruijn, Reetik Kumar Sahu, Peter Greve, Louise Slater, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 26, 3079–3101, https://doi.org/10.5194/hess-26-3079-2022, https://doi.org/10.5194/hess-26-3079-2022, 2022
Short summary
Short summary
Despite the accuracy of deep learning rainfall-runoff models, we are currently uncertain of what these models have learned. In this study we explore the internals of one deep learning architecture and demonstrate that the model learns about intermediate hydrological stores of soil moisture and snow water, despite never having seen data about these processes during training. Therefore, we find evidence that the deep learning approach learns a physically realistic mapping from inputs to outputs.
Huajin Lei, Hongyu Zhao, and Tianqi Ao
Hydrol. Earth Syst. Sci., 26, 2969–2995, https://doi.org/10.5194/hess-26-2969-2022, https://doi.org/10.5194/hess-26-2969-2022, 2022
Short summary
Short summary
How to combine multi-source precipitation data effectively is one of the hot topics in hydrometeorological research. This study presents a two-step merging strategy based on machine learning for multi-source precipitation merging over China. The results demonstrate that the proposed method effectively distinguishes the occurrence of precipitation events and reduces the error in precipitation estimation. This method is robust and may be successfully applied to other areas even with scarce data.
Alexane Lovat, Béatrice Vincendon, and Véronique Ducrocq
Hydrol. Earth Syst. Sci., 26, 2697–2714, https://doi.org/10.5194/hess-26-2697-2022, https://doi.org/10.5194/hess-26-2697-2022, 2022
Short summary
Short summary
The hydrometeorological skills of two new nowcasting systems for forecasting Mediterranean intense rainfall events and floods are investigated. The results reveal that up to 75 or 90 min of forecast the performance of the nowcasting system blending numerical weather prediction and extrapolation of radar estimation is higher than the numerical weather model. For lead times up to 3 h the skills are equivalent in general. Using these nowcasting systems for flash flood forecasting is also promising.
Alexandre Tuel, Bettina Schaefli, Jakob Zscheischler, and Olivia Martius
Hydrol. Earth Syst. Sci., 26, 2649–2669, https://doi.org/10.5194/hess-26-2649-2022, https://doi.org/10.5194/hess-26-2649-2022, 2022
Short summary
Short summary
River discharge is strongly influenced by the temporal structure of precipitation. Here, we show how extreme precipitation events that occur a few days or weeks after a previous event have a larger effect on river discharge than events occurring in isolation. Windows of 2 weeks or less between events have the most impact. Similarly, periods of persistent high discharge tend to be associated with the occurrence of several extreme precipitation events in close succession.
Hanieh Seyedhashemi, Jean-Philippe Vidal, Jacob S. Diamond, Dominique Thiéry, Céline Monteil, Frédéric Hendrickx, Anthony Maire, and Florentina Moatar
Hydrol. Earth Syst. Sci., 26, 2583–2603, https://doi.org/10.5194/hess-26-2583-2022, https://doi.org/10.5194/hess-26-2583-2022, 2022
Short summary
Short summary
Stream temperature appears to be increasing globally, but its rate remains poorly constrained due to a paucity of long-term data. Using a thermal model, this study provides a large-scale understanding of the evolution of stream temperature over a long period (1963–2019). This research highlights that air temperature and streamflow can exert joint influence on stream temperature trends, and riparian shading in small mountainous streams may mitigate warming in stream temperatures.
Shakirudeen Lawal, Stephen Sitch, Danica Lombardozzi, Julia E. M. S. Nabel, Hao-Wei Wey, Pierre Friedlingstein, Hanqin Tian, and Bruce Hewitson
Hydrol. Earth Syst. Sci., 26, 2045–2071, https://doi.org/10.5194/hess-26-2045-2022, https://doi.org/10.5194/hess-26-2045-2022, 2022
Short summary
Short summary
To investigate the impacts of drought on vegetation, which few studies have done due to various limitations, we used the leaf area index as proxy and dynamic global vegetation models (DGVMs) to simulate drought impacts because the models use observationally derived climate. We found that the semi-desert biome responds strongly to drought in the summer season, while the tropical forest biome shows a weak response. This study could help target areas to improve drought monitoring and simulation.
Yubo Liu, Monica Garcia, Chi Zhang, and Qiuhong Tang
Hydrol. Earth Syst. Sci., 26, 1925–1936, https://doi.org/10.5194/hess-26-1925-2022, https://doi.org/10.5194/hess-26-1925-2022, 2022
Short summary
Short summary
Our findings indicate that the reduction in contribution to the Iberian Peninsula (IP) summer precipitation is mainly concentrated in the IP and its neighboring grids. Compared with 1980–1997, both local recycling and external moisture were reduced during 1998–2019. The reduction in local recycling in the IP closely links to the disappearance of the wet years and the decreasing contribution in the dry years.
Nejc Bezak, Pasquale Borrelli, and Panos Panagos
Hydrol. Earth Syst. Sci., 26, 1907–1924, https://doi.org/10.5194/hess-26-1907-2022, https://doi.org/10.5194/hess-26-1907-2022, 2022
Short summary
Short summary
Rainfall erosivity is one of the main factors in soil erosion. A satellite-based global map of rainfall erosivity was constructed using data with a 30 min time interval. It was shown that the satellite-based precipitation products are an interesting option for estimating rainfall erosivity, especially in regions with limited ground data. However, ground-based high-frequency precipitation measurements are (still) essential for accurate estimates of rainfall erosivity.
Xueli Yang, Zhi-Hua Wang, and Chenghao Wang
Hydrol. Earth Syst. Sci., 26, 1845–1856, https://doi.org/10.5194/hess-26-1845-2022, https://doi.org/10.5194/hess-26-1845-2022, 2022
Short summary
Short summary
In this study, we investigated potentially catastrophic transitions in hydrological processes by identifying the early-warning signals which manifest as a
critical slowing downin complex dynamic systems. We then analyzed the precipitation network of cities in the contiguous United States and found that key network parameters, such as the nodal density and the clustering coefficient, exhibit similar dynamic behaviour, which can serve as novel early-warning signals for the hydrological system.
Zhuoyi Tu, Yuting Yang, and Michael L. Roderick
Hydrol. Earth Syst. Sci., 26, 1745–1754, https://doi.org/10.5194/hess-26-1745-2022, https://doi.org/10.5194/hess-26-1745-2022, 2022
Short summary
Short summary
Here we test a maximum evaporation theory that acknowledges the interdependence between radiation, surface temperature, and evaporation over saturated land. We show that the maximum evaporation approach recovers observed evaporation and surface temperature under non-water-limited conditions across a broad range of bio-climates. The implication is that the maximum evaporation concept can be used to predict potential evaporation that has long been a major difficulty for the hydrological community.
Paola Mazzoglio, Ilaria Butera, Massimiliano Alvioli, and Pierluigi Claps
Hydrol. Earth Syst. Sci., 26, 1659–1672, https://doi.org/10.5194/hess-26-1659-2022, https://doi.org/10.5194/hess-26-1659-2022, 2022
Short summary
Short summary
We have analyzed the spatial dependence of rainfall extremes upon elevation and morphology in Italy. Regression analyses show that previous rainfall–elevation relations at national scale can be substantially improved with new data, both using topography attributes and constraining the analysis within areas stemming from geomorphological zonation. Short-duration mean rainfall depths can then be estimated, all over Italy, using different parameters in each area of the geomorphological subdivision.
Mina Faghih, François Brissette, and Parham Sabeti
Hydrol. Earth Syst. Sci., 26, 1545–1563, https://doi.org/10.5194/hess-26-1545-2022, https://doi.org/10.5194/hess-26-1545-2022, 2022
Short summary
Short summary
The diurnal cycles of precipitation and temperature generated by climate models are biased. This work investigates whether or not impact modellers should correct the diurnal cycle biases prior to conducting hydrological impact studies at the sub-daily scale. The results show that more accurate streamflows are obtained when the diurnal cycles biases are corrected. This is noticeable for smaller catchments, which have a quicker reaction time to changes in precipitation and temperature.
Edwin P. Maurer, Iris T. Stewart, Kenneth Joseph, and Hugo G. Hidalgo
Hydrol. Earth Syst. Sci., 26, 1425–1437, https://doi.org/10.5194/hess-26-1425-2022, https://doi.org/10.5194/hess-26-1425-2022, 2022
Short summary
Short summary
The mid-summer drought (MSD) is common in Mesoamerica. It is a short (weeks-long) period of reduced rainfall near the middle of the rainy season. When it occurs, how long it lasts, and how dry it is all have important implications for smallholder farmers. Studies of changes in MSD characteristics rely on defining characteristics of an MSD. Different definitions affect whether an area would be considered to experience an MSD as well as the changes that have happened in the last 40 years.
Qichun Yang, Quan J. Wang, Andrew W. Western, Wenyan Wu, Yawen Shao, and Kirsti Hakala
Hydrol. Earth Syst. Sci., 26, 941–954, https://doi.org/10.5194/hess-26-941-2022, https://doi.org/10.5194/hess-26-941-2022, 2022
Short summary
Short summary
Forecasts of evaporative water loss in the future are highly valuable for water resource management. These forecasts are often produced using the outputs of climate models. We developed an innovative method to correct errors in these forecasts, particularly the errors caused by deficiencies of climate models in modeling the changing climate. We apply this method to seasonal forecasts of evaporative water loss across Australia and achieve significant improvements in the forecast quality.
Brahima Koné, Arona Diedhiou, Adama Diawara, Sandrine Anquetin, N'datchoh Evelyne Touré, Adama Bamba, and Arsene Toka Kobea
Hydrol. Earth Syst. Sci., 26, 711–730, https://doi.org/10.5194/hess-26-711-2022, https://doi.org/10.5194/hess-26-711-2022, 2022
Short summary
Short summary
The impact of initial soil moisture anomalies can persist for up to 3–4 months and is greater on temperature than on precipitation over West Africa. The strongest homogeneous impact on temperature is located over the Central Sahel, with a peak change of −1.5 and 0.5 °C in the wet and dry experiments, respectively. The strongest impact on precipitation in the wet and dry experiments is found over the West and Central Sahel, with a peak change of about 40 % and −8 %, respectively.
Brahima Koné, Arona Diedhiou, Adama Diawara, Sandrine Anquetin, N'datchoh Evelyne Touré, Adama Bamba, and Arsene Toka Kobea
Hydrol. Earth Syst. Sci., 26, 731–754, https://doi.org/10.5194/hess-26-731-2022, https://doi.org/10.5194/hess-26-731-2022, 2022
Short summary
Short summary
The impact of initial soil moisture is more significant on temperature extremes than on precipitation extremes. A stronger impact is found on maximum temperature than on minimum temperature. The impact on extreme precipitation indices is homogeneous, especially over the Central Sahel, and dry (wet) experiments tend to decrease (increase) the number of precipitation extreme events but not their intensity.
Josias Láng-Ritter, Marc Berenguer, Francesco Dottori, Milan Kalas, and Daniel Sempere-Torres
Hydrol. Earth Syst. Sci., 26, 689–709, https://doi.org/10.5194/hess-26-689-2022, https://doi.org/10.5194/hess-26-689-2022, 2022
Short summary
Short summary
During flood events, emergency managers such as civil protection authorities rely on flood forecasts to make informed decisions. In the current practice, they monitor several separate forecasts, each one of them covering a different type of flooding. This can be time-consuming and confusing, ultimately compromising the effectiveness of the emergency response. This work illustrates how the automatic combination of flood type-specific impact forecasts can improve decision support systems.
Junjiang Liu, Xing Yuan, Junhan Zeng, Yang Jiao, Yong Li, Lihua Zhong, and Ling Yao
Hydrol. Earth Syst. Sci., 26, 265–278, https://doi.org/10.5194/hess-26-265-2022, https://doi.org/10.5194/hess-26-265-2022, 2022
Short summary
Short summary
Hourly streamflow ensemble forecasts with the CSSPv2 land surface model and ECMWF meteorological forecasts reduce both the probabilistic and deterministic forecast error compared with the ensemble streamflow prediction approach during the first week. The deterministic forecast error can be further reduced in the first 72 h when combined with the long short-term memory (LSTM) deep learning method. The forecast skill for LSTM using only historical observations drops sharply after the first 24 h.
Michael Peichl, Stephan Thober, Luis Samaniego, Bernd Hansjürgens, and Andreas Marx
Hydrol. Earth Syst. Sci., 25, 6523–6545, https://doi.org/10.5194/hess-25-6523-2021, https://doi.org/10.5194/hess-25-6523-2021, 2021
Short summary
Short summary
Using a statistical model that can also take complex systems into account, the most important factors affecting wheat yield in Germany are determined. Different spatial damage potentials are taken into account. In many parts of Germany, yield losses are caused by too much soil water in spring. Negative heat effects as well as damaging soil drought are identified especially for north-eastern Germany. The model is able to explain years with exceptionally high yields (2014) and losses (2003, 2018).
Sara Cloux, Daniel Garaboa-Paz, Damián Insua-Costa, Gonzalo Miguez-Macho, and Vicente Pérez-Muñuzuri
Hydrol. Earth Syst. Sci., 25, 6465–6477, https://doi.org/10.5194/hess-25-6465-2021, https://doi.org/10.5194/hess-25-6465-2021, 2021
Short summary
Short summary
We examine the performance of a widely used Lagrangian method for moisture tracking by comparing it with a highly accurate Eulerian tool, both operating on the same WRF atmospheric model fields. Although the Lagrangian approach is very useful for a qualitative analysis of moisture sources, it has important limitations in quantifying the contribution of individual sources to precipitation. These drawbacks should be considered by other authors in the future so as to not draw erroneous conclusions.
Felix S. Fauer, Jana Ulrich, Oscar E. Jurado, and Henning W. Rust
Hydrol. Earth Syst. Sci., 25, 6479–6494, https://doi.org/10.5194/hess-25-6479-2021, https://doi.org/10.5194/hess-25-6479-2021, 2021
Short summary
Short summary
Extreme rainfall events are modeled in this study for different timescales. A new parameterization of the dependence between extreme values and their timescale enables our model to estimate extremes on very short (1 min) and long (5 d) timescales simultaneously. We compare different approaches of modeling this dependence and find that our new model improves performance for timescales between 2 h and 2 d without affecting model performance on other timescales.
Mark R. Muetzelfeldt, Reinhard Schiemann, Andrew G. Turner, Nicholas P. Klingaman, Pier Luigi Vidale, and Malcolm J. Roberts
Hydrol. Earth Syst. Sci., 25, 6381–6405, https://doi.org/10.5194/hess-25-6381-2021, https://doi.org/10.5194/hess-25-6381-2021, 2021
Short summary
Short summary
Simulating East Asian Summer Monsoon (EASM) rainfall poses many challenges because of its multi-scale nature. We evaluate three setups of a 14 km global climate model against observations to see if they improve simulated rainfall. We do this over catchment basins of different sizes to estimate how model performance depends on spatial scale. Using explicit convection improves rainfall diurnal cycle, yet more model tuning is needed to improve mean and intensity biases in simulated summer rainfall.
Francesca Carletti, Adrien Michel, Francesca Casale, Daniele Bocchiola, Michael Lehning, and Mathias Bavay
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-562, https://doi.org/10.5194/hess-2021-562, 2021
Revised manuscript accepted for HESS
Short summary
Short summary
High Alpine catchments are dominated by the melting of seasonal snow cover and glaciers, whose amount and seasonality are expected to be modified by climate change. This paper compares the performances of different types of models in reproducing discharge among two catchments under present conditions and climate change. Despite many advantages, the use of simpler models for climate change applications is controversial as they don't fully reproduce the physics of the involved processes.
Elena Leonarduzzi, Brian W. McArdell, and Peter Molnar
Hydrol. Earth Syst. Sci., 25, 5937–5950, https://doi.org/10.5194/hess-25-5937-2021, https://doi.org/10.5194/hess-25-5937-2021, 2021
Short summary
Short summary
Landslides are a dangerous natural hazard affecting alpine regions, calling for effective warning systems. Here we consider different approaches for the prediction of rainfall-induced shallow landslides at the regional scale, based on open-access datasets and operational hydrological forecasting systems. We find antecedent wetness useful to improve upon the classical rainfall thresholds and the resolution of the hydrological model used for its estimate to be a critical aspect.
Charles Nduhiu Wamucii, Pieter R. van Oel, Arend Ligtenberg, John Mwangi Gathenya, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 25, 5641–5665, https://doi.org/10.5194/hess-25-5641-2021, https://doi.org/10.5194/hess-25-5641-2021, 2021
Short summary
Short summary
East African water towers (WTs) are under pressure from human influences within and without, but the water yield (WY) is more sensitive to climate changes from within. Land use changes have greater impacts on WY in the surrounding lowlands. The WTs have seen a strong shift towards wetter conditions while, at the same time, the potential evapotranspiration is gradually increasing. The WTs were identified as non-resilient, and future WY may experience more extreme variations.
Chuanfa Chen, Baojian Hu, and Yanyan Li
Hydrol. Earth Syst. Sci., 25, 5667–5682, https://doi.org/10.5194/hess-25-5667-2021, https://doi.org/10.5194/hess-25-5667-2021, 2021
Short summary
Short summary
This study proposes an easy-to-use downscaling-calibration method based on a spatial random forest with the incorporation of high-resolution variables. The proposed method is general, robust, accurate and easy to use as it shows more accurate results than the classical methods in the study area with heterogeneous terrain morphology and precipitation. It can be easily applied to other regions where precipitation data with high resolution and high accuracy are urgently required.
Lian Liu, Yaoming Ma, Massimo Menenti, Rongmingzhu Su, Nan Yao, and Weiqiang Ma
Hydrol. Earth Syst. Sci., 25, 4967–4981, https://doi.org/10.5194/hess-25-4967-2021, https://doi.org/10.5194/hess-25-4967-2021, 2021
Short summary
Short summary
Albedo is a key factor in land surface energy balance, which is difficult to successfully reproduce by models. Here, we select eight snow events on the Tibetan Plateau to evaluate the universal improvements of our improved albedo scheme. The RMSE relative reductions for temperature, albedo, sensible heat flux and snow depth reach 27%, 32%, 13% and 21%, respectively, with remarkable increases in the correlation coefficients. This presents a strong potential of our scheme for modeling snow events.
Nicolas Gasset, Vincent Fortin, Milena Dimitrijevic, Marco Carrera, Bernard Bilodeau, Ryan Muncaster, Étienne Gaborit, Guy Roy, Nedka Pentcheva, Maxim Bulat, Xihong Wang, Radenko Pavlovic, Franck Lespinas, Dikra Khedhaouiria, and Juliane Mai
Hydrol. Earth Syst. Sci., 25, 4917–4945, https://doi.org/10.5194/hess-25-4917-2021, https://doi.org/10.5194/hess-25-4917-2021, 2021
Short summary
Short summary
In this paper, we highlight the importance of including land-data assimilation as well as offline precipitation analysis components in a regional reanalysis system. We also document the performance of the first multidecadal 10 km reanalysis performed with the GEM atmospheric model that can be used for seamless land-surface and hydrological modelling in North America. It is of particular interest for transboundary basins, as existing datasets often show discontinuities at the border.
Ying Li, Chenghao Wang, Hui Peng, Shangbin Xiao, and Denghua Yan
Hydrol. Earth Syst. Sci., 25, 4759–4772, https://doi.org/10.5194/hess-25-4759-2021, https://doi.org/10.5194/hess-25-4759-2021, 2021
Short summary
Short summary
Precipitation change in the Three Gorges Reservoir Region (TGRR) plays a critical role in the operation and regulation of the Three Gorges Dam and the protection of residents and properties. We investigated the long-term contribution of moisture sources to precipitation changes in this region with an atmospheric moisture tracking model. We found that southwestern source regions (especially the southeastern tip of the Tibetan Plateau) are the key regions that control TGRR precipitation changes.
Wei Li, Lu Li, Jie Chen, Qian Lin, and Hua Chen
Hydrol. Earth Syst. Sci., 25, 4531–4548, https://doi.org/10.5194/hess-25-4531-2021, https://doi.org/10.5194/hess-25-4531-2021, 2021
Short summary
Short summary
Reforestation can influence climate, but the sensitivity of summer rainfall to reforestation is rarely investigated. We take two reforestation scenarios to assess the impacts of reforestation on summer rainfall under different reforestation proportions and explore the potential mechanisms. This study concludes that reforestation increases summer rainfall amount and extremes through thermodynamics processes, and the effects are more pronounced in populated areas than over the whole basin.
Trude Eidhammer, Adam Booth, Sven Decker, Lu Li, Michael Barlage, David Gochis, Roy Rasmussen, Kjetil Melvold, Atle Nesje, and Stefan Sobolowski
Hydrol. Earth Syst. Sci., 25, 4275–4297, https://doi.org/10.5194/hess-25-4275-2021, https://doi.org/10.5194/hess-25-4275-2021, 2021
Short summary
Short summary
We coupled a detailed snow–ice model (Crocus) to represent glaciers in the Weather Research and Forecasting (WRF)-Hydro model and tested it on a well-studied glacier. Several observational systems were used to evaluate the system, i.e., satellites, ground-penetrating radar (used over the glacier for snow depth) and stake observations for glacier mass balance and discharge measurements in rivers from the glacier. Results showed improvements in the streamflow projections when including the model.
Ren Wang, Pierre Gentine, Jiabo Yin, Lijuan Chen, Jianyao Chen, and Longhui Li
Hydrol. Earth Syst. Sci., 25, 3805–3818, https://doi.org/10.5194/hess-25-3805-2021, https://doi.org/10.5194/hess-25-3805-2021, 2021
Short summary
Short summary
Assessment of changes in the global water cycle has been a challenge. This study estimated long-term global latent heat and sensible heat fluxes for recent decades using machine learning and ground observations. The results found that the decline in evaporative fraction was typically accompanied by an increase in long-term runoff in over 27.06 % of the global land areas. The observation-driven findings emphasized that surface vegetation has great impacts in regulating water and energy cycles.
Zhipeng Xie, Weiqiang Ma, Yaoming Ma, Zeyong Hu, Genhou Sun, Yizhe Han, Wei Hu, Rongmingzhu Su, and Yixi Fan
Hydrol. Earth Syst. Sci., 25, 3783–3804, https://doi.org/10.5194/hess-25-3783-2021, https://doi.org/10.5194/hess-25-3783-2021, 2021
Short summary
Short summary
Ground information on the occurrence of blowing snow has been sorely lacking because direct observations of blowing snow are sparse in time and space. In this paper, we investigated the potential capability of the decision tree model to detect blowing snow events in the European Alps. Trained with routine meteorological observations, the decision tree model can be used as an efficient tool to detect blowing snow occurrences across different regions requiring limited meteorological variables.
Santos J. González-Rojí, Sheila Carreno-Madinabeitia, Jon Sáenz, and Gabriel Ibarra-Berastegi
Hydrol. Earth Syst. Sci., 25, 3471–3492, https://doi.org/10.5194/hess-25-3471-2021, https://doi.org/10.5194/hess-25-3471-2021, 2021
Short summary
Short summary
The simulation of precipitation extreme events is a known problem in modelling. That is why the atmospheric conditions favourable for its development as simulated by two WRF experiments are evaluated in this paper. The experiment including 3DVAR data assimilation outperforms the one without in simulating the TT index, CAPE, and CIN over the Iberian Peninsula. The ingredients for convective precipitation in winter are found at the Atlantic coast, but in summer they are at the Mediterranean coast.
Kyungrock Paik and Won Kim
Hydrol. Earth Syst. Sci., 25, 2459–2474, https://doi.org/10.5194/hess-25-2459-2021, https://doi.org/10.5194/hess-25-2459-2021, 2021
Short summary
Short summary
Climate, topography, and tectonics evolve together. To simulate their co-evolution, a fully coupled computer simulation model between local climate and topography is developed in this study. We simulated how the mountain development enhances local rainfall and its feedback on topography through stronger erosion. We found that the evolution of the coupled system can be more complicated than previously thought. The channel concavity on the windward side becomes lower as the wind grows.
Elizabeth Cooper, Eleanor Blyth, Hollie Cooper, Rich Ellis, Ewan Pinnington, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 25, 2445–2458, https://doi.org/10.5194/hess-25-2445-2021, https://doi.org/10.5194/hess-25-2445-2021, 2021
Short summary
Short summary
Soil moisture estimates from land surface models are important for forecasting floods, droughts, weather, and climate trends. We show that by combining model estimates of soil moisture with measurements from field-scale, ground-based sensors, we can improve the performance of the land surface model in predicting soil moisture values.
Qian Li, Yongkang Xue, and Ye Liu
Hydrol. Earth Syst. Sci., 25, 2089–2107, https://doi.org/10.5194/hess-25-2089-2021, https://doi.org/10.5194/hess-25-2089-2021, 2021
Short summary
Short summary
Most land surface models have difficulty in capturing the freeze–thaw cycle in the Tibetan Plateau and North China. This paper introduces a physically more realistic and efficient frozen soil module (FSM) into the SSiB3 model (SSiB3-FSM). A new and more stable semi-implicit scheme and a physics-based freezing–thawing scheme were applied, and results show that SSiB3-FSM can be used as an effective model for soil thermal characteristics at seasonal to decadal scales over frozen ground.
Chris M. DeBeer, Howard S. Wheater, John W. Pomeroy, Alan G. Barr, Jennifer L. Baltzer, Jill F. Johnstone, Merritt R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn Marshall, Elizabeth Campbell, Philip Marsh, Sean K. Carey, William L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren D. Helgason, Andrew M. Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, Michael N. Demuth, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 25, 1849–1882, https://doi.org/10.5194/hess-25-1849-2021, https://doi.org/10.5194/hess-25-1849-2021, 2021
Short summary
Short summary
This article examines future changes in land cover and hydrological cycling across the interior of western Canada under climate conditions projected for the 21st century. Key insights into the mechanisms and interactions of Earth system and hydrological process responses are presented, and this understanding is used together with model application to provide a synthesis of future change. This has allowed more scientifically informed projections than have hitherto been available.
Ewan Pinnington, Javier Amezcua, Elizabeth Cooper, Simon Dadson, Rich Ellis, Jian Peng, Emma Robinson, Ross Morrison, Simon Osborne, and Tristan Quaife
Hydrol. Earth Syst. Sci., 25, 1617–1641, https://doi.org/10.5194/hess-25-1617-2021, https://doi.org/10.5194/hess-25-1617-2021, 2021
Short summary
Short summary
Land surface models are important tools for translating meteorological forecasts and reanalyses into real-world impacts at the Earth's surface. We show that the hydrological predictions, in particular soil moisture, of these models can be improved by combining them with satellite observations from the NASA SMAP mission to update uncertain parameters. We find a 22 % reduction in error at a network of in situ soil moisture sensors after combining model predictions with satellite observations.
Mengyuan Mu, Martin G. De Kauwe, Anna M. Ukkola, Andy J. Pitman, Teresa E. Gimeno, Belinda E. Medlyn, Dani Or, Jinyan Yang, and David S. Ellsworth
Hydrol. Earth Syst. Sci., 25, 447–471, https://doi.org/10.5194/hess-25-447-2021, https://doi.org/10.5194/hess-25-447-2021, 2021
Short summary
Short summary
Land surface model (LSM) is a critical tool to study land responses to droughts and heatwaves, but lacking comprehensive observations limited past model evaluations. Here we use a novel dataset at a water-limited site, evaluate a typical LSM with a range of competing model hypotheses widely used in LSMs and identify marked uncertainty due to the differing process assumptions. We show the extensive observations constrain model processes and allow better simulated land responses to these extremes.
Yingzhao Ma, Xun Sun, Haonan Chen, Yang Hong, and Yinsheng Zhang
Hydrol. Earth Syst. Sci., 25, 359–374, https://doi.org/10.5194/hess-25-359-2021, https://doi.org/10.5194/hess-25-359-2021, 2021
Short summary
Short summary
A two-stage blending approach is proposed for the data fusion of multiple satellite precipitation estimates (SPEs), which firstly reduces the systematic errors of original SPEs based on a Bayesian correction model and then merges the bias-corrected SPEs with a Bayesian weighting model. The model is evaluated in the warm season of 2010–2014 in the northeastern Tibetan Plateau. Results show that the blended SPE is greatly improved compared with the original SPEs, even in heavy rainfall events.
Torben Schmith, Peter Thejll, Peter Berg, Fredrik Boberg, Ole Bøssing Christensen, Bo Christiansen, Jens Hesselbjerg Christensen, Marianne Sloth Madsen, and Christian Steger
Hydrol. Earth Syst. Sci., 25, 273–290, https://doi.org/10.5194/hess-25-273-2021, https://doi.org/10.5194/hess-25-273-2021, 2021
Short summary
Short summary
European extreme precipitation is expected to change in the future; this is based on climate model projections. But, since climate models have errors, projections are uncertain. We study this uncertainty in the projections by comparing results from an ensemble of 19 climate models. Results can be used to give improved estimates of future extreme precipitation for Europe.
Yifan Zhou, Benjamin F. Zaitchik, Sujay V. Kumar, Kristi R. Arsenault, Mir A. Matin, Faisal M. Qamer, Ryan A. Zamora, and Kiran Shakya
Hydrol. Earth Syst. Sci., 25, 41–61, https://doi.org/10.5194/hess-25-41-2021, https://doi.org/10.5194/hess-25-41-2021, 2021
Short summary
Short summary
South and Southeast Asia face significant food insecurity and hydrological hazards. Here we introduce a South and Southeast Asia hydrological monitoring and sub-seasonal to seasonal forecasting system (SAHFS-S2S) to help local governments and decision-makers prepare for extreme hydroclimatic events. The monitoring system captures soil moisture variability well in most regions, and the forecasting system offers skillful prediction of soil moisture variability 2–3 months in advance, on average.
Genhou Sun, Zeyong Hu, Yaoming Ma, Zhipeng Xie, Jiemin Wang, and Song Yang
Hydrol. Earth Syst. Sci., 24, 5937–5951, https://doi.org/10.5194/hess-24-5937-2020, https://doi.org/10.5194/hess-24-5937-2020, 2020
Short summary
Short summary
We investigate the influence of soil conditions on the planetary boundary layer (PBL) thermodynamics and convective cloud formations over a typical underlying surface, based on a series of simulations on a sunny day in the Tibetan Plateau, using the Weather Research and Forecasting (WRF) model. The real-case simulation and sensitivity simulations indicate that the soil moisture could have a strong impact on PBL thermodynamics, which may be favorable for the convective cloud formations.
Jeong-Bae Kim and Deg-Hyo Bae
Hydrol. Earth Syst. Sci., 24, 5799–5820, https://doi.org/10.5194/hess-24-5799-2020, https://doi.org/10.5194/hess-24-5799-2020, 2020
Short summary
Short summary
We examine changes in hydroclimatic extremes for different climate zones in Asia in response to 1.5 and 2.0 °C global warming. Our results indicate consistent changes in temperature extremes and high precipitation (and maximum runoff) extremes across Asia. Extra 0.5 °C warming will lead to enhanced regional hydroclimatic extremes, especially in cold (and polar) climate zones. However, hydroclimatic sensitivities can differ based on regional climate characteristics and types of extreme variables.
Hui Lu, Donghai Zheng, Kun Yang, and Fan Yang
Hydrol. Earth Syst. Sci., 24, 5745–5758, https://doi.org/10.5194/hess-24-5745-2020, https://doi.org/10.5194/hess-24-5745-2020, 2020
Short summary
Short summary
The Tibetan Plateau (TP), known as the Asian water tower, plays an important role in the regional climate system, while the land surface process is a key component through which the TP impacts the water and energy cycles. In this paper, we reviewed the progress achieved in the last decade in understanding and modeling the land surface processes on the TP. Based on this review, perspectives on the further improvement of land surface modelling on the TP are also provided.
Maxime Jay-Allemand, Pierre Javelle, Igor Gejadze, Patrick Arnaud, Pierre-Olivier Malaterre, Jean-Alain Fine, and Didier Organde
Hydrol. Earth Syst. Sci., 24, 5519–5538, https://doi.org/10.5194/hess-24-5519-2020, https://doi.org/10.5194/hess-24-5519-2020, 2020
Short summary
Short summary
This study contributes to flash flood prediction using a hydrological model. The model describes the spatial properties of the watersheds with hundreds of unknown parameters. The Gardon d'Anduze watershed is chosen as the study benchmark. A sophisticated numerical algorithm and the downstream discharge measurements make the identification of the model parameters possible. Results provide better model predictions and relevant spatial variability of some parameters inside this watershed.
Peng Ji, Xing Yuan, Feng Ma, and Ming Pan
Hydrol. Earth Syst. Sci., 24, 5439–5451, https://doi.org/10.5194/hess-24-5439-2020, https://doi.org/10.5194/hess-24-5439-2020, 2020
Short summary
Short summary
By performing high-resolution land surface modeling driven by the latest CMIP6 climate models, we find both the dry streamflow extreme over the drought-prone Yellow River headwater and the wet streamflow extreme over the flood-prone Yangtze River headwater will increase under 1.5, 2.0 and 3.0 °C global warming levels and emphasize the importance of considering ecological changes (i.e., vegetation greening and CO2 physiological forcing) in the hydrological projection.
Martin Ménégoz, Evgenia Valla, Nicolas C. Jourdain, Juliette Blanchet, Julien Beaumet, Bruno Wilhelm, Hubert Gallée, Xavier Fettweis, Samuel Morin, and Sandrine Anquetin
Hydrol. Earth Syst. Sci., 24, 5355–5377, https://doi.org/10.5194/hess-24-5355-2020, https://doi.org/10.5194/hess-24-5355-2020, 2020
Short summary
Short summary
The study investigates precipitation changes in the Alps, using observations and a 7 km resolution climate simulation over 1900–2010. An increase in mean precipitation is found in winter over the Alps, whereas a drying occurred in summer in the surrounding plains. A general increase in the daily annual maximum of precipitation is evidenced (20 to 40 % per century), suggesting an increase in extreme events that is significant only when considering long time series, typically 50 to 80 years.
Cited articles
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop
Evapotranspiration – Guidelines for computing crop water requirements, FAO
Irrigation and Drainage Paper 56, FAO, Rome, Italy, 1998.
Anderson, M. C., Norman, J. M., Mecikalski, J. R., Otkin, J. P., and Kustas,
W. P.: A climatological study of evapotranspiration and moisture stress
across the continental U.S. based on thermal remote sensing: I. Model
formulation. J. Geophys. Res., 112, D10117, https://doi.org/10.1029/2006JD007506, 2007.
Andreadis, K. M., Clark, E. A., Wood, A. W., Hamlet, A. F., and Lettenmaier,
D. P.: Twentieth-century drought in the conterminous United States, J,
Hydrometeorol., 6, 985–1001, https://doi.org/10.1175/JHM450.1, 2005.
Barker, L. J., Hannaford, J., Chiverton, A., and Svensson, C.: From
meteorological to hydrological drought using standardised indicators,
Hydrol. Earth Syst. Sci., 20, 2483–2505,
https://doi.org/10.5194/hess-20-2483-2016, 2016.
Berg, A. and Sheffield, J.: Climate Change and Drought: the Soil Moisture
Perspective, Current Climate Change Reports, 4, 180–191.
https://doi.org/10.1007/s40641-018-0095-0, 2018.
Bergström, S.: The HBV model, in: Computer Models of Watershed Hydrology,
edited by: Singh, V. P., Water Resources Publications: Highlands Ranch,
Colorado, USA, 1995.
BKG (Federal Agency for Cartography and Geodesy): Digital Elevation Model
1000 m (DGM1000), available at: http://www.geodatenzentrum.de, last access: 1 July 2019.
Brunner, M. I., Liechti, K., and Zappa, M.: Extremeness of recent drought events in Switzerland: dependence on variable and return period choice, Nat. Hazards Earth Syst. Sci., 19, 2311–2323, https://doi.org/10.5194/nhess-19-2311-2019, 2019.
Bohm, K., Ingwersen, J., Milovac, J., and Streck, T.: Distinguishing between early- and late-covering crops in the land surface model Noah-MP: impact on simulated surface energy fluxes and temperature, Biogeosciences, 17, 2791–2805, https://doi.org/10.5194/bg-17-2791-2020, 2020.
Christian, J. I., Basara, J. B., Otkin, J. A., Hunt, E. D., Wakefield, R.
A., Flanagan, P. X., and Xiao, X.: A Methodology for Flash Drought
Identification: Application of Flash Drought Frequency across the United
States, J. Hydrometeorol., 20, 833–846,
https://doi.org/10.1175/jhm-d-18-0198.1, 2019.
de Boer-Euser, T., McMillan, H. K., Hrachowitz, M., Winsemius, H. C., and
Savenije, H. H.: Influence of soil and climate on root zone storage
capacity. Water Resour. Res., 52, 2009–2024,
https://doi.org/10.1002/2015WR018115, 2016.
Dobler, L., Gerlach, N., and Hinterding, A.: INTERMET – Interpolation
stündlicher und tagesbasierter meteorologischer Parameter, Federal state
office for the environment of Rhineland Palatinate, Mainz, Germany, technical report, 2004 (in
German).
DWD (German Weather Serivce): Dokumentation Bodenfeuchte, German Weather
Service (DWD), Offenbach, Germany, regular documentation, 2018 (in German).
DWD (German Weather Service): Climate Data Center; used are grids and
observation for Germany, available at:
ftp://opendata.dwd.de/climate_environment/CDC/, last access: 1 July 2019.
Fan, J., McConkey, B., Wang, H., and Janzen, H.: Root distribution by depth
for temperate agricultural crops, Field Crop Res., 189, 68–74,
https://doi.org/10.1016/j.fcr.2016.02.013, 2016.
LGRB (Federal State Office for Geology Resources and Mining): Soil maps for
Baden-Württemberg (BK50), available at:
https://lgrb-bw.de/bodenkunde, last access: 1 July 2019.
Hanel, M., Rakovec, O., Markonis, Y., Máca, P., Samaniego, L.,
Kyselý, J., and Kumar, R.: Revisiting the recent European droughts from a
long-term perspective, Sci. Rep.-UK, 8, 1–11,
https://doi.org/10.1038/s41598-018-27464-4, 2018.
Hunt, E. D., Hubbard, K. G., Wilhite, D. A., Arkebauer, T. J., and Dutcher,
A. L.: The development and evaluation of a soil moisture index, Int. J.
Climatol., 29, 747–759, https://doi.org/10.1002/joc.1749, 2009.
Ingwersen, J., Högy, P., Wizemann, H. D., Warrach-Sagi, K., and Streck,
T.: Coupling the land surface model Noah-MP with the generic crop growth
model Gecros: Model description, calibration and validation, Agr. Forest
Meteorol., 262, 322–339,
https://doi.org/10.1016/j.agrformet.2018.06.023, 2018.
Ionita, M., Tallaksen, L. M., Kingston, D. G., Stagge, J. H., Laaha, G., Van Lanen, H. A. J., Scholz, P., Chelcea, S. M., and Haslinger, K.: The European 2015 drought from a climatological perspective, Hydrol. Earth Syst. Sci., 21, 1397–1419, https://doi.org/10.5194/hess-21-1397-2017, 2017.
Kustas, W. P., Rango, A., and Uijlenhoet, R.: A simple energy budget
algorithm for the snowmelt runoff model, Water Resour. Res., 30, 1515–1527,
https://doi.org/10.1029/94WR00152, 1994.
Manning, C., Widmann, M., Bevacqua, E., Van Loon, A. F., Maraun, D., and
Vrac, M.: Soil Moisture Drought in Europe: A Compound Event of Precipitation
and Potential Evapotranspiration on Multiple Time Scales. J. Hydrometeorol.,
19, 1255–1271, https://doi.org/10.1175/jhm-d-18-0017.1, 2018.
McKee, T. B., Doesken, N. J., and Kleist, J.: The relationship of drought
frequency and duration to time scales. Paper presented at Proceedings of the
8th Conference on Applied Climatology, American Meteorological Society,
Anaheim, USA, 17–22 January 1993, 1993.
Menzel, L.: Modelling canopy resistances and transpiration of grassland.
Phys. Chem. Earth, 21, 123–129,
https://doi.org/10.1016/S0079-1946(97)85572-3, 1996.
Menzel, L.: Modellierung der Evapotranspiration im System
Boden-Pflanze-Atmosphäre, Zür. Geogr. Schr., 67, Institute of
Geography, ETH Zürich, Zürich, Switzerland, PhD thesis, 1997 (in German).
Miralles, D. G., Teuling, A. J., van Heerwarden, C. C., and Vilá-Guerau
de Arellano, J.: Mega heatwave temperatures due to combined soil desiccation
and atmospheric heat accumulation, Nat. Geosci., 7, 345–349,
https://doi.org/10.1038/ngeo2141, 2014.
Otkin, J. A., Anderson, M. C., Hain, C., Mladenova, I. E., Basara, J. B., and
Svoboda, M.: Examining Rapid Onset Drought Development Using the Thermal
Infrared–Based Evaporative Stress Index, J. Hydrometeorol., 14, 1057–1074,
https://doi.org/10.1175/jhm-d-12-0144.1, 2013.
Otkin, J. A., Anderson, M. C., Hain, C., Svoboda, M., Johnson, D., Mueller,
R., Tadesse, T., Wardlow, B., and Brown, J.: Assessing the evolution of soil
moisture and vegetation conditions during the 2012 United States flash
drought, Agr. Forest Meteorol., 218, 230–242,
https://doi.org/10.1016/j.agrformet.2015.12.065, 2016.
Otkin, J. A., Svoboda, M., Hunt, E. D., Ford, T. W., Anderson, M. C., Hain,
C., and Basara, J. B.: Flash droughts: A review and assessment of the
challenges imposed by rapid-onset droughts in the United States, B. Am.
Meteorol. Soc, 99, 911–919,
https://doi.org/10.1175/BAMS-D-17-0149.1, 2018.
Palmer, W. C.: Meteorological Drought, Tech. Rep. 45, US Department of
Commerce, Weather Bureau, Washington D.C., USA, 1965.
Pfeifroth, U., Kothe, S., Trentmann, J., Hollmann, R., Fuchs, P., Kaiser, J.,
and Werscheck, M.: Surface Radiation Data Set – Heliosat (SARAH) – Edition
2.1, Satellite Application Facility on Climate Monitoring,
https://doi.org/10.5676/EUM_SAF_CM/SARAH/V002_01, 2019a.
Pfeifroth, U., Trentmann, J., Hollmann, R., Selbach, N., Werscheck, M., and
Meirink, J. F.: ICDR SEVIRI Radiation – based on SARAH-2 methods, Satellite
Application Facility on Climate Monitoring, available at:
https://wui.cmsaf.eu/safira/action/viewICDRDetails?acronym=SARAH_V002_ICDR, last access: 1 July 2019b.
Rauthe, M., Steiner, H., Riediger, U., Mazurkiewicz, A., and Gratzki, A.: A
Central European precipitation climatology – Part I: Generation and
validation of a high-resolution gridded daily data set (HYRAS), Meteorol.
Z., 22, 235–256, https://doi.org/10.1127/0941-2948/2013/0436,
2013.
Rezaei, E. E., Siebert, S., Hüging, H., and Ewert, F.: Climate change
effect on wheat phenology depends on cultivar change, Sci. Rep.-UK, 8, 1–10,
https://doi.org/10.1038/s41598-018-23101-2, 2018.
Samaniego, L., Kumar, R., and Attinger, S.: Multiscale parameter
regionalization of a grid-based hydrologic model at the mesoscale, Water
Resour. Res., 46, W05523, https://doi.org/10.1029/2008WR007327, 2010.
Samaniego, L., Kumar, R., and Zink, M.: Implications of Parameter Uncertainty
on Soil Moisture Drought Analysis in Germany, J. Hydrometeorol., 14, 47–68,
https://doi.org/10.1175/jhm-d-12-075.1, 2012.
Samaniego, L., Thober, S., Kumar, R., Wanders, N., Rakovec, O., Pan, M.,
Zink, M., Sheffield, J., Wood, E. F., and Marx, A.: Anthropogenic warming
exacerbates European soil moisture droughts, Nat. Clim. Change, 8, 421–426,
https://doi.org/10.1038/s41558-018-0138-5, 2018.
Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B.,
Lehner, I., Orlowsky, B., and Teuling, A. J.: Investigating soil
moisture-climate interactions in a changing climate: A review, Earth-Sci.
Rev., 99, 125–161,
https://doi.org/10.1016/j.earscirev.2010.02.004, 2010.
Sheffield, J. and Wood, E. F.: Characteristics of global and regional
drought, 1950–2000: Analysis of soil moisture data from off-line simulation
of the terrestrial hydrologic cycle, J. Geophys. Res.-Atmos., 112, D17115, https://doi.org/10.1029/2006JD008288, 2007.
Sheffield, J., Goteti, G., Wen, F., and Wood, E. F.: A simulated soil
moisture based drought analysis for the United States, J. Geophys.
Res-Atmos., 109, 1–19, https://doi.org/10.1029/2004JD005182,
2004.
Sheffield, J., Wood, E. F., and Roderick, M. L.: Little change in global
drought over the past 60 years, Nature, 491, 435–438,
https://doi.org/10.1038/nature11575, 2012.
Stahl, K., Kohn, I., Blauhut, V., Urquijo, J., De Stefano, L., Acácio, V., Dias, S., Stagge, J. H., Tallaksen, L. M., Kampragou, E., Van Loon, A. F., Barker, L. J., Melsen, L. A., Bifulco, C., Musolino, D., de Carli, A., Massarutto, A., Assimacopoulos, D., and Van Lanen, H. A. J.: Impacts of European drought events: insights from an international database of text-based reports, Nat. Hazards Earth Syst. Sci., 16, 801–819, https://doi.org/10.5194/nhess-16-801-2016, 2016.
Stork, M. and Menzel, L.: Analysis and simulation of the water and energy
balance of intense agriculture in the Upper Rhine valley, south-west
Germany, Environ. Earth Sci., 75, 1166, https://doi.org/10.1007/s12665-016-5980-z, 2016.
Svoboda, M., LeComte, D., Hayes, M., Heim, R., Gleason, K., Angel, J.,
Rippey, B, Tinker, R., Palecki, M., Stooksbury, D., Miskus, D., and Stephens,
S.: The drought monitor, B. Am. Meteorol. Soc., 83, 1181–1190.
https://doi.org/10.1175/1520-0477(2002)083<1181:TDM>2.3.CO;2, 2002.
Tallaksen, L. M. and Van Lanen, H. A. J.: Hydrological drought: processes and estimation methods for streamflow and groundwater, Dev. Water Sci., 48, Elsevier Science B. V., Amsterdam, The Netherlands, 2004.
Törnros, T. and Menzel, L.: Addressing drought conditions under current and future climates in the Jordan River region, Hydrol. Earth Syst. Sci., 18, 305–318, https://doi.org/10.5194/hess-18-305-2014, 2014.
Tijdeman, E. and Menzel, L.: Daily gridded soil moisture simulations on a 1 km resolution grid covering Baden-Württemberg, Heidata repository,
https://doi.org/10.11588/data/PRXZAS, 2021.
UBA (German Environment Agency): CORINE Land Cover Germany 25 ha – 2006,
available at: https://gis.uba.de/catalog/Start.do, last access: 1 July 2019.
UN/ISDR: Drought Risk Reduction Framework and Practices: contributing to the
implementation of the Hyogo Framework for Action, United Nations Secretariat
of the International Strategy for Disaster Reduction (UNISDR), Geneva,
Switzerland, UN Report, 2009.
Vicente-Serrano, S. M., Beguería, S., and López-Moreno, J. I.: A
multiscalar drought index sensitive to global warming: The standardized
precipitation evapotranspiration index, J. Climate, 23, 1696–1718,
https://doi.org/10.1175/2009JCLI2909.1, 2010.
Wang, A., Lettenmaier, D. P., and Sheffield, J.: Soil moisture drought in
China, 1950–2006, J. Climate, 24, 3257–3271,
https://doi.org/10.1175/2011JCLI3733.1, 2011.
Wilhelmi, O. V. and Wilhite, D. A.: Methodology for assessing vulnerability
to agricultural drought: a Nebraska case study, Nat. Hazards, 25, 37–58,
2002.
Wilhite, D. A. and Glantz, M. H.: Understanding: the Drought Phenomenon: The
Role of Definitions, Water Int., 10, 111–120.
https://doi.org/10.1080/02508068508686328, 1985.
Wimmer, F., Schlaffer, S., aus der Beek, T., and Menzel, L.: Distributed
modelling of climate change impacts on snow sublimation in Northern
Mongolia, Adv. Geosci., 21, 117–124.
https://doi.org/10.5194/adgeo-21-117-2009, 2009.
Zink, M., Samaniego, L., Kumar, R., Thober, S., Mai, J., Schafer, D., and
Marx, A.: The German drought monitor, Environ. Res. Lett., 11, 074002,
https://doi.org/10.1088/1748-9326/11/7/074002, 2016.
Zink, M., Kumar, R., Cuntz, M., and Samaniego, L.: A high-resolution dataset of water fluxes and states for Germany accounting for parametric uncertainty, Hydrol. Earth Syst. Sci., 21, 1769–1790, https://doi.org/10.5194/hess-21-1769-2017, 2017.
Short summary
Low amounts of soil moisture (SM) in the root zone negatively affect crop health. We characterized the development and duration of SM stress across the croplands of southwestern Germany. Development time mainly varied within drought years and was related to the available water-holding capacity of the root zone. Duration varied both within and between drought years and was especially high in 2018. Sensitivity analyses showed that (controls on) SM stress and SM drought characteristics differ.
Low amounts of soil moisture (SM) in the root zone negatively affect crop health. We...