Articles | Volume 24, issue 10
https://doi.org/10.5194/hess-24-4709-2020
https://doi.org/10.5194/hess-24-4709-2020
Technical note
 | 
05 Oct 2020
Technical note |  | 05 Oct 2020

Technical note: A time-integrated sediment trap to sample diatoms for hydrological tracing

Jasper Foets, Carlos E. Wetzel, Núria Martínez-Carreras, Adriaan J. Teuling, Jean-François Iffly, and Laurent Pfister

Related authors

One year of high-frequency monitoring of groundwater physico-chemical parameters in the Weierbach experimental catchment, Luxembourg
Karl Nicolaus van Zweel, Laurent Gourdol, Jean François Iffly, Loïc Léonard, François Barnich, Laurent Pfister, Erwin Zehe, and Christophe Hissler
Earth Syst. Sci. Data, 17, 2217–2229, https://doi.org/10.5194/essd-17-2217-2025,https://doi.org/10.5194/essd-17-2217-2025, 2025
Short summary
CAMELS-LUX: Highly Resolved Hydro-Meteorological and Atmospheric Data for Physiographically Characterized Catchments around Luxembourg
Judith Nijzink, Ralf Loritz, Laurent Gourdol, Davide Zoccatelli, Jean François Iffly, and Laurent Pfister
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-482,https://doi.org/10.5194/essd-2024-482, 2025
Preprint under review for ESSD
Short summary
Bedrock geology controls on new water fractions and catchment functioning in contrasted nested catchments
Guilhem Türk, Christoph J. Gey, Bernd R. Schöne, Marius G. Floriancic, James W. Kirchner, Loic Leonard, Laurent Gourdol, Richard Keim, and Laurent Pfister
EGUsphere, https://doi.org/10.5194/egusphere-2025-1530,https://doi.org/10.5194/egusphere-2025-1530, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Identifying irrigated areas using land surface temperature and hydrological modelling: application to the Rhine basin
Devi Purnamasari, Adriaan J. Teuling, and Albrecht H. Weerts
Hydrol. Earth Syst. Sci., 29, 1483–1503, https://doi.org/10.5194/hess-29-1483-2025,https://doi.org/10.5194/hess-29-1483-2025, 2025
Short summary
Comparing Flood Forecasting and Early Warning Systems in Transboundary River Basins
Tim Busker, Daniela Rodriguez Castro, Sergiy Vorogushyn, Jaap Kwadijk, Davide Zoccatelli, Rafaella Loureiro, Heather J. Murdock, Laurent Pfister, Benjamin Dewals, Kymo Slager, Annegret H. Thieken, Jan Verkade, Patrick Willems, and Jeroen C. J. H. Aerts
EGUsphere, https://doi.org/10.5194/egusphere-2025-828,https://doi.org/10.5194/egusphere-2025-828, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Instruments and observation techniques
Technical note: High-frequency, multi-elemental stream water monitoring – experiences, feedbacks and suggestions from 7 years of running three French field laboratories (Riverlabs)
Nicolai Brekenfeld, Solenn Cotel, Mikael Faucheux, Colin Fourtet, Yannick Hamon, Patrice Petitjean, Arnaud Blanchouin, Celine Bouillis, Marie-Claire Pierret, Hocine Henine, Anne-Catherine Pierson-Wickmann, Sophie Guillon, Paul Floury, and Ophelie Fovet
Hydrol. Earth Syst. Sci., 29, 2615–2631, https://doi.org/10.5194/hess-29-2615-2025,https://doi.org/10.5194/hess-29-2615-2025, 2025
Short summary
Hydrological controls on temporal contributions of three nested forested subcatchments to the export of dissolved organic carbon
Katharina Blaurock, Burkhard Beudert, and Luisa Hopp
Hydrol. Earth Syst. Sci., 29, 2377–2391, https://doi.org/10.5194/hess-29-2377-2025,https://doi.org/10.5194/hess-29-2377-2025, 2025
Short summary
Changes in the flowing drainage network and stream chemistry during rainfall events for two pre-Alpine catchments
Izabela Bujak-Ozga, Jana von Freyberg, Margaret Zimmer, Andrea Rinaldo, Paolo Benettin, and Ilja van Meerveld
Hydrol. Earth Syst. Sci., 29, 2339–2359, https://doi.org/10.5194/hess-29-2339-2025,https://doi.org/10.5194/hess-29-2339-2025, 2025
Short summary
Constructing a geography of heavy-tailed flood distributions: insights from common streamflow dynamics
Hsing-Jui Wang, Ralf Merz, and Stefano Basso
Hydrol. Earth Syst. Sci., 29, 1525–1548, https://doi.org/10.5194/hess-29-1525-2025,https://doi.org/10.5194/hess-29-1525-2025, 2025
Short summary
Trends in hydroclimate extremes: How changes in winter conditions affect seasonal baseflow and storage
Tejshree Tiwari and Hjalmar Laudon
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-337,https://doi.org/10.5194/hess-2024-337, 2024
Revised manuscript accepted for HESS
Short summary

Cited articles

Abonyi, A., Leitão, M., Lançon, A. M., and Padisák, J.: Phytoplankton functional groups as indicators of human impacts along the River Loire (France), Hydrobiologia, 698, 233–249, https://doi.org/10.1007/s10750-012-1130-0, 2012. a
Agrawal, Y. C., Whitmire, A., Mikkelsen, O. A., and Pottsmith, H. C.: Light scattering by random shaped particles and consequences on measuring suspended sediments by laser diffraction, J. Geophys. Res., 113, C04023, https://doi.org/10.1029/2007JC004403, 2008. a
Antonelli, M., Wetzel, C. E., Ector, L., Teuling, A. J., and Pfister, L.: On the potential for terrestrial diatom communities and diatom indices to identify anthropic disturbance in soils, Ecol. Indic., 75, 73–81, https://doi.org/10.1016/j.ecolind.2016.12.003, 2017. a
Ballantine, D. J., Walling, D. E., Collins, A. L., and Leeks, G. J.: The phosphorus content of fluvial suspended sediment in three lowland groundwater-dominated catchments, J. Hydrol., 357, 140–151, https://doi.org/10.1016/j.jhydrol.2008.05.011, 2008. a
Bilotta, G. S. and Brazier, R. E.: Understanding the influence of suspended solids on water quality and aquatic biota, Water Res., 42, 2849–2861, https://doi.org/10.1016/j.watres.2008.03.018, 2008. a
Download
Short summary
Diatoms (microscopic algae) are regarded as useful tracers in catchment hydrology. However, diatom analysis is labour-intensive; therefore, only a limited number of samples can be analysed. To reduce this number, we explored the potential for a time-integrated mass-flux sampler to provide a representative sample of the diatom assemblage for a whole storm run-off event. Our results indicate that the Phillips sampler did indeed sample representative communities during two of the three events.
Share