Articles | Volume 24, issue 8
https://doi.org/10.5194/hess-24-4169-2020
https://doi.org/10.5194/hess-24-4169-2020
Research article
 | 
26 Aug 2020
Research article |  | 26 Aug 2020

Hydrological and runoff formation processes based on isotope tracing during ablation period in the source regions of Yangtze River

Zong-Jie Li, Zong-Xing Li, Ling-Ling Song, Juan Gui, Jian Xue, Bai Juan Zhang, and Wen De Gao

Related authors

Soil water sources and their implications for vegetation restoration in the Three-Rivers Headwater Region during different ablation periods
Zongxing Li, Juan Gui, Qiao Cui, Jian Xue, Fa Du, and Lanping Si
Hydrol. Earth Syst. Sci., 28, 719–734, https://doi.org/10.5194/hess-28-719-2024,https://doi.org/10.5194/hess-28-719-2024, 2024
Short summary
Contribution of cryosphere to runoff in the transition zone between the Tibetan Plateau and arid region based on environmental isotopes
Juan Gui, Zongxing Li, Qi Feng, Qiao Cui, and Jian Xue
Hydrol. Earth Syst. Sci., 27, 97–122, https://doi.org/10.5194/hess-27-97-2023,https://doi.org/10.5194/hess-27-97-2023, 2023
Short summary
Soil water sources in permafrost active layer of Three-River Headwater Region, China
Li Zongxing, Gui Juan, Zhang Baijuan, and Feng Qi
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-558,https://doi.org/10.5194/hess-2021-558, 2021
Manuscript not accepted for further review
Short summary
Attribution of growing season evapotranspiration variability considering snowmelt and vegetation changes in the arid alpine basins
Tingting Ning, Zhi Li, Qi Feng, Zongxing Li, and Yanyan Qin
Hydrol. Earth Syst. Sci., 25, 3455–3469, https://doi.org/10.5194/hess-25-3455-2021,https://doi.org/10.5194/hess-25-3455-2021, 2021
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Theory development
Technical note: Isotopic fractionation of evaporating waters: effect of sub-daily atmospheric variations and eventual depletion of heavy isotopes
Francesc Gallart, Sebastián González-Fuentes, and Pilar Llorens
Hydrol. Earth Syst. Sci., 28, 229–239, https://doi.org/10.5194/hess-28-229-2024,https://doi.org/10.5194/hess-28-229-2024, 2024
Short summary
Seasonal and interannual Dissolved Organic Carbon transport process dynamics in a subarctic headwater catchment revealed by high-resolution measurements
Danny Croghan, Pertti Ala-Aho, Jeffrey Welker, Kaisa-Riikka Mustonen, Kieran Khamis, David M. Hannah, Jussi Vuorenmaa, Bjørn Kløve, and Hannu Marttila
EGUsphere, https://doi.org/10.5194/egusphere-2023-1986,https://doi.org/10.5194/egusphere-2023-1986, 2023
Short summary
Increased nonstationarity of stormflow threshold behaviors in a forested watershed due to abrupt earthquake disturbance
Guotao Zhang, Peng Cui, Carlo Gualtieri, Nazir Ahmed Bazai, Xueqin Zhang, and Zhengtao Zhang
Hydrol. Earth Syst. Sci., 27, 3005–3020, https://doi.org/10.5194/hess-27-3005-2023,https://doi.org/10.5194/hess-27-3005-2023, 2023
Short summary
HESS Opinions: Are soils overrated in hydrology?
Hongkai Gao, Fabrizio Fenicia, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 2607–2620, https://doi.org/10.5194/hess-27-2607-2023,https://doi.org/10.5194/hess-27-2607-2023, 2023
Short summary
Links between seasonal suprapermafrost groundwater, the hydrothermal change of the active layer, and river runoff in alpine permafrost watersheds
Jia Qin, Yongjian Ding, Tianding Han, Faxiang Shi, Qiudong Zhao, Yaping Chang, and Junhao Cui
EGUsphere, https://doi.org/10.5194/egusphere-2023-1394,https://doi.org/10.5194/egusphere-2023-1394, 2023
Short summary

Cited articles

Abongwa, P. T. and Atekwana, E. A.: A laboratory study investigating the effects of dilution by precipitation on dissolved inorganic carbon and stable isotope evolution in surface waters, Environ. Sci. Pollut. R., 25, 19941–19952, https://doi.org/10.1007/s11356-018-2085-0, 2018. 
Boucher, J. L. and Carey, S. K.: Exploring runoff processes using chemical, isotopic and hydrometric data in a discontinuous permafrost catchment, Hydrol. Res., 41, 508–519, https://doi.org/10.2166/nh.2010.146, 2010. 
Chang, J., Wang, G., and Mao, T.: Simulation and prediction of suprapermafrost groundwater level variation in response to climate change using a neural network model, J. Hydrol., 529, 1211–1220, https://doi.org/10.1016/j.jhydrol.2015.09.038, 2015. 
Fan, Y., Chen, Y., Li, X., Li, W., and Li, Q.: Characteristics of water isotopes and ice-snowmelt quantification in the Tizinafu River, north Kunlun Mountains, Central Asia, Quatern. Int., 380, 116–122, https://doi.org/10.1016/j.quaint.2014.05.020, 2015. 
Halder, J., Terzer, S., Wassenaar, L. I., Araguás-Araguás, L. J., and Aggarwal, P. K.: The Global Network of Isotopes in Rivers (GNIR): integration of water isotopes in watershed observation and riverine research, Hydrol. Earth Syst. Sci., 19, 3419–3431, https://doi.org/10.5194/hess-19-3419-2015, 2015. 
Download
Short summary
This study mainly explores the hydraulic relations, recharge–drainage relations and their transformation paths, and the processes of each water body. It determines the composition of runoff, quantifies the contribution of each runoff component to different types of tributaries, and analyzes the hydrological effects of the temporal and spatial variation in runoff components. More importantly, we discuss the hydrological significance of permafrost and hydrological processes.