Articles | Volume 24, issue 7
https://doi.org/10.5194/hess-24-3493-2020
https://doi.org/10.5194/hess-24-3493-2020
Research article
 | Highlight paper
 | 
13 Jul 2020
Research article | Highlight paper |  | 13 Jul 2020

Why does a conceptual hydrological model fail to correctly predict discharge changes in response to climate change?

Doris Duethmann, Günter Blöschl, and Juraj Parajka

Related authors

Parameter transferability of a distributed hydrological model to droughts
Giulia Bruno, Doris Duethmann, Francesco Avanzi, Lorenzo Alfieri, Andrea Libertino, and Simone Gabellani
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-416,https://doi.org/10.5194/hess-2022-416, 2022
Manuscript not accepted for further review
Short summary
Comparing Bayesian and traditional end-member mixing approaches for hydrograph separation in a glacierized basin
Zhihua He, Katy Unger-Shayesteh, Sergiy Vorogushyn, Stephan M. Weise, Doris Duethmann, Olga Kalashnikova, Abror Gafurov, and Bruno Merz
Hydrol. Earth Syst. Sci., 24, 3289–3309, https://doi.org/10.5194/hess-24-3289-2020,https://doi.org/10.5194/hess-24-3289-2020, 2020
Short summary
Why has catchment evaporation increased in the past 40 years? A data-based study in Austria
Doris Duethmann and Günter Blöschl
Hydrol. Earth Syst. Sci., 22, 5143–5158, https://doi.org/10.5194/hess-22-5143-2018,https://doi.org/10.5194/hess-22-5143-2018, 2018
Short summary
Sustainable management of river oases along the Tarim River (SuMaRiO) in Northwest China under conditions of climate change
C. Rumbaur, N. Thevs, M. Disse, M. Ahlheim, A. Brieden, B. Cyffka, D. Duethmann, T. Feike, O. Frör, P. Gärtner, Ü. Halik, J. Hill, M. Hinnenthal, P. Keilholz, B. Kleinschmit, V. Krysanova, M. Kuba, S. Mader, C. Menz, H. Othmanli, S. Pelz, M. Schroeder, T. F. Siew, V. Stender, K. Stahr, F. M. Thomas, M. Welp, M. Wortmann, X. Zhao, X. Chen, T. Jiang, J. Luo, H. Yimit, R. Yu, X. Zhang, and C. Zhao
Earth Syst. Dynam., 6, 83–107, https://doi.org/10.5194/esd-6-83-2015,https://doi.org/10.5194/esd-6-83-2015, 2015
Snow-cover reconstruction methodology for mountainous regions based on historic in situ observations and recent remote sensing data
A. Gafurov, S. Vorogushyn, D. Farinotti, D. Duethmann, A. Merkushkin, and B. Merz
The Cryosphere, 9, 451–463, https://doi.org/10.5194/tc-9-451-2015,https://doi.org/10.5194/tc-9-451-2015, 2015
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Developing a tile drainage module for the Cold Regions Hydrological Model: lessons from a farm in southern Ontario, Canada
Mazda Kompanizare, Diogo Costa, Merrin L. Macrae, John W. Pomeroy, and Richard M. Petrone
Hydrol. Earth Syst. Sci., 28, 2785–2807, https://doi.org/10.5194/hess-28-2785-2024,https://doi.org/10.5194/hess-28-2785-2024, 2024
Short summary
To bucket or not to bucket? Analyzing the performance and interpretability of hybrid hydrological models with dynamic parameterization
Eduardo Acuña Espinoza, Ralf Loritz, Manuel Álvarez Chaves, Nicole Bäuerle, and Uwe Ehret
Hydrol. Earth Syst. Sci., 28, 2705–2719, https://doi.org/10.5194/hess-28-2705-2024,https://doi.org/10.5194/hess-28-2705-2024, 2024
Short summary
Widespread flooding dynamics under climate change: characterising floods using grid-based hydrological modelling and regional climate projections
Adam Griffin, Alison L. Kay, Paul Sayers, Victoria Bell, Elizabeth Stewart, and Sam Carr
Hydrol. Earth Syst. Sci., 28, 2635–2650, https://doi.org/10.5194/hess-28-2635-2024,https://doi.org/10.5194/hess-28-2635-2024, 2024
Short summary
HESS Opinions: The sword of Damocles of the impossible flood
Alberto Montanari, Bruno Merz, and Günter Blöschl
Hydrol. Earth Syst. Sci., 28, 2603–2615, https://doi.org/10.5194/hess-28-2603-2024,https://doi.org/10.5194/hess-28-2603-2024, 2024
Short summary
Metamorphic testing of machine learning and conceptual hydrologic models
Peter Reichert, Kai Ma, Marvin Höge, Fabrizio Fenicia, Marco Baity-Jesi, Dapeng Feng, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 2505–2529, https://doi.org/10.5194/hess-28-2505-2024,https://doi.org/10.5194/hess-28-2505-2024, 2024
Short summary

Cited articles

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56, FAO, Rome, Italy, 300 pp., 1998. 
ATV-DVWK: Verdunstung in Bezug zu Landnutzung, Bewuchs und Boden, GFA-Ges. zur Förderung d. Abwassertechnik e.V., Hennef, Germany, 144 pp., 2002. 
Bergström, S.: The HBV model, in: Computer models of watershed hydrology, edited by: Singh, V., Water Resources Publications, Highland Ranch, CO, USA, 443–476, 1995. 
Blaschke, A., Merz, R., Parajka, J., Salinas, J., and Blöschl, G.: Climate impacts on surface and subsurface water resources (Auswirkungen des Klimawandels auf das Wasserdargebot von Grund- und Oberflächenwasser), in German, Österreichische Wasser- und Abfallwirtschaft, 63, 31–41, 2011. 
Blöschl, G. and Montanari, A.: Climate change impacts – throwing the dice?, Hydrol. Process., 24, 374–381, https://doi.org/10.1002/hyp.7574, 2010. 
Download
Short summary
We investigate why a conceptual hydrological model failed to correctly predict observed discharge changes in response to increasing precipitation and air temperature in 156 Austrian catchments. Simulations indicate that poor model performance is related to two problems, namely a model structure that neglects changes in vegetation dynamics and inhomogeneities in precipitation data caused by changes in stations density with time. Other hypotheses did not improve simulated discharge changes.