Articles | Volume 24, issue 6
Hydrol. Earth Syst. Sci., 24, 3331–3359, 2020
Hydrol. Earth Syst. Sci., 24, 3331–3359, 2020

Research article 30 Jun 2020

Research article | 30 Jun 2020

Using altimetry observations combined with GRACE to select parameter sets of a hydrological model in a data-scarce region

Petra Hulsman et al.

Related authors

Learning from satellite observations: increased understanding of catchment processes through stepwise model improvement
Petra Hulsman, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 25, 957–982,,, 2021
Short summary
Rainfall-runoff modelling using river-stage time series in the absence of reliable discharge information: a case study in the semi-arid Mara River basin
Petra Hulsman, Thom A. Bogaard, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 22, 5081–5095,,, 2018
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Technical note: RAT – a robustness assessment test for calibrated and uncalibrated hydrological models
Pierre Nicolle, Vazken Andréassian, Paul Royer-Gaspard, Charles Perrin, Guillaume Thirel, Laurent Coron, and Léonard Santos
Hydrol. Earth Syst. Sci., 25, 5013–5027,,, 2021
Short summary
Reduction of vegetation-accessible water storage capacity after deforestation affects catchment travel time distributions and increases young water fractions in a headwater catchment
Markus Hrachowitz, Michael Stockinger, Miriam Coenders-Gerrits, Ruud van der Ent, Heye Bogena, Andreas Lücke, and Christine Stumpp
Hydrol. Earth Syst. Sci., 25, 4887–4915,,, 2021
Short summary
Combining split-sample testing and hidden Markov modelling to assess the robustness of hydrological models
Etienne Guilpart, Vahid Espanmanesh, Amaury Tilmant, and François Anctil
Hydrol. Earth Syst. Sci., 25, 4611–4629,,, 2021
Short summary
Hydrologically informed machine learning for rainfall–runoff modelling: towards distributed modelling
Herath Mudiyanselage Viraj Vidura Herath, Jayashree Chadalawada, and Vladan Babovic
Hydrol. Earth Syst. Sci., 25, 4373–4401,,, 2021
Short summary
Development and evaluation of 0.05° terrestrial water storage estimates using Community Atmosphere Biosphere Land Exchange (CABLE) land surface model and assimilation of GRACE data
Natthachet Tangdamrongsub, Michael F. Jasinski, and Peter J. Shellito
Hydrol. Earth Syst. Sci., 25, 4185–4208,,, 2021
Short summary

Cited articles

Abas, I.: Remote river rating in Zambia: A case study in the Luangwa river basin, Master of Science, Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands, 2018. 
Ajami, N. K., Gupta, H., Wagener, T., and Sorooshian, S.: Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system, J. Hydrol., 298, 112–135,, 2004. 
Bai, P., Liu, X., and Liu, C.: Improving hydrological simulations by incorporating GRACE data for model calibration, J. Hydrol., 557, 291–304,, 2018. 
Bauer-Gottwein, P., Jensen, I. H., Guzinski, R., Bredtoft, G. K. T., Hansen, S., and Michailovsky, C. I.: Operational river discharge forecasting in poorly gauged basins: the Kavango River basin case study, Hydrol. Earth Syst. Sci., 19, 1469–1485,, 2015. 
Beilfuss, R. and dos Santos, D.: Patterns of Hydrological Change in the Zambezi Delta, Mozambique, in: Working Paper #2 Program for the Sustainable Management of Cahora Bassa Dam and the Lower Zambezi Valley, International Crane Foundation, Sofala, Mozambique, 2001. 
Short summary
In the absence of discharge data in ungauged basins, remotely sensed river water level data, i.e. altimetry, may provide valuable information to calibrate hydrological models. This study illustrated that for large rivers in data-scarce regions, river altimetry data from multiple locations combined with GRACE data have the potential to fill this gap when combined with estimates of the river geometry, thereby allowing a step towards more reliable hydrological modelling in data-scarce regions.