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Abstract. Limited availability of ground measurements in
the vast majority of river basins world-wide increases the
value of alternative data sources such as satellite obser-
vations in hydrological modelling. This study investigates
the potential of using remotely sensed river water levels,
i.e. altimetry observations, from multiple satellite missions
to identify parameter sets for a hydrological model in the
semi-arid Luangwa River basin in Zambia. A distributed
process-based rainfall–runoff model with sub-grid process
heterogeneity was developed and run on a daily timescale
for the time period 2002 to 2016. As a benchmark, feasi-
ble model parameter sets were identified using traditional
model calibration with observed river discharge data. For
the parameter identification using remote sensing, data from
the Gravity Recovery and Climate Experiment (GRACE)
were used in a first step to restrict the feasible parameter
sets based on the seasonal fluctuations in total water stor-
age. Next, three alternative ways of further restricting fea-
sible model parameter sets using satellite altimetry time se-
ries from 18 different locations along the river were com-
pared. In the calibrated benchmark case, daily river flows
were reproduced relatively well with an optimum Nash–
Sutcliffe efficiency ofENS,Q = 0.78 (5/95th percentiles of all
feasible solutions ENS,Q,5/95 = 0.61–0.75). When using only
GRACE observations to restrict the parameter space, assum-
ing no discharge observations are available, an optimum of
ENS,Q =−1.4 (ENS,Q,5/95 =−2.3–0.38) with respect to dis-
charge was obtained. The direct use of altimetry-based river
levels frequently led to overestimated flows and poorly iden-
tified feasible parameter sets (ENS,Q,5/95 =−2.9–0.10). Sim-
ilarly, converting modelled discharge into water levels us-

ing rating curves in the form of power relationships with
two additional free calibration parameters per virtual station
resulted in an overestimation of the discharge and poorly
identified feasible parameter sets (ENS,Q,5/95 =−2.6–0.25).
However, accounting for river geometry proved to be highly
effective. This included using river cross-section and gradi-
ent information extracted from global high-resolution terrain
data available on Google Earth and applying the Strickler–
Manning equation to convert modelled discharge into wa-
ter levels. Many parameter sets identified with this method
reproduced the hydrograph and multiple other signatures of
discharge reasonably well, with an optimum ofENS,Q = 0.60
(ENS,Q,5/95 =−0.31–0.50). It was further shown that more
accurate river cross-section data improved the water-level
simulations, modelled rating curve, and discharge simula-
tions during intermediate and low flows at the basin outlet
where detailed on-site cross-section information was avail-
able. Also, increasing the number of virtual stations used
for parameter selection in the calibration period considerably
improved the model performance in a spatial split-sample
validation. The results provide robust evidence that in the
absence of directly observed discharge data for larger rivers
in data-scarce regions, altimetry data from multiple virtual
stations combined with GRACE observations have the po-
tential to fill this gap when combined with readily available
estimates of river geometry, thereby allowing a step towards
more reliable hydrological modelling in poorly gauged or un-
gauged basins.
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1 Introduction

Reliable models of water movement and distribution in
terrestrial systems require sufficient good-quality hydro-
meteorological data throughout the modelling process. How-
ever, the development of robust models is challenged by the
limited availability of ground measurements in the vast ma-
jority of river basins world-wide (Hrachowitz et al., 2013).
Therefore, modellers increasingly resort to alternative data
sources such as satellite data (Lakshmi, 2004; Winsemius
et al., 2008; Sun et al., 2018; Pechlivanidis and Arheimer,
2015; Demirel et al., 2018; Zink et al., 2018; Rakovec et al.,
2016; Nijzink et al., 2018; Dembélé et al., 2020).

In the absence of directly observed river discharge data,
various types of remotely sensed variables provide valuable
information for the calibration and evaluation of hydrologi-
cal models. These include, for instance, remotely sensed time
series of river width (Sun et al., 2012, 2015), flood extent
(Montanari et al., 2009; Revilla-Romero et al., 2015), or river
and lake water levels from altimetry (Getirana et al., 2009;
Getirana, 2010; Sun et al., 2012; Garambois et al., 2017;
Pereira-Cardenal et al., 2011; Velpuri et al., 2012).

Satellite altimetry observations provide estimates of the
water level relative to a reference ellipsoid. For these ob-
servations, a radar signal is emitted from the satellite in the
nadir direction and reflected back by the Earth’s surface.
The time difference between sending and receiving this sig-
nal is then used to estimate the distance between the satel-
lite and the Earth’s surface. As the position of the satellite
is known at very high accuracy, this distance can then be
used to infer the surface level relative to a reference ellipsoid
(Łyszkowicz and Bernatowicz, 2017; Calmant et al., 2009).
Satellite altimetry is sensed and recorded along the satellite’s
track. Altimetry-based water levels can therefore only be ob-
served where these tracks intersect with open water surfaces.
For rivers, these points are typically referred to as “virtual
stations” (de Oliveira Campos et al., 2001; Birkett, 1998;
Schneider et al., 2017; Jiang et al., 2017; Seyler et al., 2013).
Depending on the satellite mission, the equatorial inter-track
distance can vary between 75 and 315 km, the along-track
distance between 173 and 374 m, and the temporal resolu-
tion between 10 and 35 d (Schwatke et al., 2015; CNES,
2018; ESA, 2018; Łyszkowicz and Bernatowicz, 2017). Due
to this rather coarse resolution, the application of remotely
sensed altimetry data is at this moment limited to large lakes
or rivers of more than approximately 200 m wide (Getirana
et al., 2009; de Oliveira Campos et al., 2001; Biancamaria
et al., 2017). Use of altimetry for hydrological models so far
also remains rather rare due to the relatively low temporal
resolution of the data, with applications typically limited to
monthly or longer modelling time steps (Birkett, 1998).

In some previous studies, altimetry data were used to esti-
mate river discharge at virtual stations in combination with
routing models (Michailovsky and Bauer-Gottwein, 2014;
Michailovsky et al., 2013) or stochastic models (Tourian

et al., 2017). Other studies either directly related river altime-
try to modelled discharge (Getirana et al., 2009; Getirana and
Peters-Lidard, 2013; Leon et al., 2006; Paris et al., 2016) or
they relied on rating curves developed with water-level data
from either in situ measurements (Michailovsky et al., 2012;
Tarpanelli et al., 2013, 2017; Papa et al., 2012) or, alterna-
tively, from altimetry data (Kouraev et al., 2004). In typi-
cal applications, radar altimetry data from one single or only
a few virtual stations were used for model calibration, vali-
dation, or data assimilation. These data were mostly obtained
from a single satellite mission, either TOPEX/Poseidson or
Envisat (Sun et al., 2012; Getirana, 2010; Liu et al., 2015;
Pedinotti et al., 2012; Fleischmann et al., 2018; Michailovsky
et al., 2013; Bauer-Gottwein et al., 2015). In previous stud-
ies, hydrological models have been calibrated or validated
successfully with respect to (satellite-based) river water lev-
els, for example by (1) applying the Spearman rank corre-
lation coefficient (Seibert and Vis, 2016; Jian et al., 2017)
or by converting modelled discharge to stream levels using
(2) rating curves whose parameters are free calibration pa-
rameters in the modelling process (Sun et al., 2012; Sikorska
and Renard, 2017) or (3) the Strickler–Manning equation to
directly estimate water levels over the hydraulic properties of
the river (Liu et al., 2015; Hulsman et al., 2018).

In the Zambezi River basin, altimetry data have been
used in previous studies for hydrological modelling
(Michailovsky and Bauer-Gottwein, 2014; Michailovsky
et al., 2012). These studies used the altimetry data from the
Envisat satellite in an assimilation procedure to update states
in a Muskingum routing scheme. Including the altimetry data
improved the model performance, especially when the model
initially performed poorly due to high model complexity or
input data uncertainties.

Despite these recent advances in using river altimetry in
hydrological studies, exploitation of its potential is still lim-
ited. Various previous studies have argued and provided evi-
dence based on observed discharge data that, in a special case
of multi-criteria calibration, the simultaneous model calibra-
tion to flow in multiple sub-basins of a river basin can be ben-
eficial for a more robust selection of parameter sets and thus
for a more reliable representation of hydrological processes
and their spatial patterns (e.g. Ajami et al., 2004; Clark et al.,
2016; Hrachowitz and Clark, 2017; Hasan and Pradhanang,
2017; Santhi et al., 2008). Hence, there may be considerable
value in simultaneously using altimetry data not only from
one single satellite mission, but also in combining data from
multiple missions, which has not yet been systematically ex-
plored. While promising calibration results using data from
Envisat were found by Getirana (2010) in tropical and Liu
et al. (2015) in snow-dominated regions, altimetry data from
multiple sources have not yet been used to calibrate hydro-
logical models in semi-arid regions.

As altimetry observations only describe water-level dy-
namics, they do not provide direct information on the dis-
charge amount. In an attempt to reduce the uncertainty in
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modelled discharge arising from the missing information
on flow amounts, data from the Gravity Recovery and Cli-
mate Experiment (GRACE), which provides estimates of the
monthly total water storage anomalies, were used to sup-
port model calibration. With GRACE, discharge can be con-
strained through improved simulation of the rainfall parti-
tioning into runoff and evaporation as illustrated in previous
studies (Rakovec et al., 2016; Bai et al., 2018).

Therefore, the overarching objective of this study is to ex-
plore the combined information content (cf. Beven, 2008)
of river altimetry data from multiple satellite missions and
GRACE observations to identify feasible parameter sets for
the calibration of hydrological models of large river systems
in a semi-arid, data-scarce region.

More specifically, in a step-wise approach we use GRACE
observations together with altimetry data from multiple vir-
tual stations to identify model parameters following three
different strategies, and we compare model performances to
a traditional calibration approach based on in situ observed
river discharge. These three strategies compare altimetry ob-
servations to (1) modelled discharge by applying the Spear-
man rank correlation coefficient and to modelled stream lev-
els by converting modelled discharge using (2) rating curves
whose parameters were treated as free model calibration pa-
rameters and (3) the Strickler–Manning equation to infer
water levels directly from hydraulic properties of the river.
These three strategies are tested on a distributed process-
based rainfall–runoff model with sub-grid process hetero-
geneity for the Luangwa basin. More specifically, we test
the following research hypotheses: (1) the use of altimetry
data combined with GRACE observations allows a meaning-
ful selection of feasible model parameter sets to reproduce
river discharge depending on the applied parameter identifi-
cation strategy, and (2) the combined application of multiple
virtual stations from multiple satellite missions improves the
model’s ability to reproduce observed hydrological dynam-
ics.

2 Site description

The study area is the Luangwa River in Zambia, a tribu-
tary of the Zambezi River (Fig. 1). It has a basin area of
159 000 km2, which is about 10 % of the Zambezi River
basin. The Luangwa basin is poorly gauged, mostly unreg-
ulated, and sparsely populated with about 1.8 million in-
habitants in 2005 (World Bank, 2010). The mean annual
precipitation is around 970 mmyr−1, potential evaporation
is around 1555 mmyr−1, and river runoff reaches about
100 mmyr−1 (World Bank, 2010). The main land cover con-
sists of broadleaf deciduous forest (55 %), shrubland (25 %),
and savanna grassland (16 %) (ESA and UCLouvian, 2010).
The irrigated area in the basin is limited to about 180 km2,
i.e. roughly 0.1 % of the basin area with an annual water
use of about 0.7 mmyr−1, which amounts to < 0.001 % of

the annual basin water balance (World Bank, 2010). The
landscape varies between low-lying flat areas along the river
to large escarpments mostly in the north-west of the basin
and highlands with an elevation difference of up to 1850 m
(see Fig. 1b and Sect. 3.2 for more information on the land-
scape classification). During the dry season, the river mean-
ders between sandy banks, while during the wet season from
November to May it can cover floodplains several kilometres
wide.

The Luangwa drains into the Zambezi downstream of the
Kariba Dam and upstream of the Cahora Bassa Dam. The
operation of both dams is crucial for hydropower production
and flood and drought protection, but is very difficult due to
the lack of information from poorly gauged tributaries such
as the Luangwa (SADC-WD and Zambezi River Authority,
2008; Schleiss and Matos, 2016; World Bank, 2010). As a re-
sult, the local population has suffered from severe floods and
droughts (ZAMCOM et al., 2015; Beilfuss and dos Santos,
2001; Hanlon, 2001; SADC-WD and Zambezi River Author-
ity, 2008; Schumann et al., 2016).

2.1 Data availability

2.1.1 In situ discharge and water-level observations

In the Luangwa basin, historical in situ daily discharge and
water-level observations were available from the Zambian
Water Resources Management Authority (WARMA) at the
Great East Road Bridge gauging station, located at 30◦13′ E
and 14◦58′ S (Fig. 1) about 75 km upstream of the confluence
with the Zambezi. In this study, all complete hydrological
years of discharge data within the time period 2002 to 2016
were used; these are the years 2004, 2006, and 2008.

2.1.2 Gridded data products

Besides the in situ observations, gridded data products were
used in this study for topographic description, model forcing
(precipitation and temperature), and model parameter selec-
tion/calibration (total water storage anomalies), as shown in
Table 1. The temperature data were used to estimate the po-
tential evaporation according to the Hargreaves method (Har-
greaves and Samani, 1985; Hargreaves and Allen, 2003).

Gravity Recovery and Climate Experiment (GRACE) ob-
servations describe monthly total water storage anomalies
which include all terrestrial water stores present in the
groundwater, soil moisture, and surface water. Two identical
satellites observe the variations in the Earth’s gravity field
to detect regional mass changes which are dominated by
variations in the terrestrial water storage once atmospheric
effects have been accounted for (Landerer and Swenson,
2012; Swenson, 2012). In this study, processed GRACE ob-
servations of Release 05 generated by the CSR (Centre for
Space Research), GFZ (GeoForschungsZentrum Potsdam),
and JPL (Jet Propulsion Laboratory) were downloaded from
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Figure 1. (a) Elevation map of the Luangwa River basin in Zambia including the Great East Road Bridges river gauging station and the
locations of the 18 virtual stations (VS 1–VS 18; the red dot is VS 4) with altimetry data used in this study; their colours correspond to those
in Fig. 4. (b) Map of the Luangwa River basin with the main landscape types (see Sect. 3.2).

Table 1. Gridded data products used in this study.

Time period Time resolution Spatial resolution Product name Source

Digital elevation map n/a n/a 0.02◦ GMTED (Danielson and Gesch, 2011)

Precipitation 2002–2016 Daily 0.05◦ CHIRPS (Funk et al., 2014)

Temperature 2002–2016 Monthly 0.5◦ CRU (University of East Anglia Climatic
Research Unit et al., 2017)

Total water storage 2002–2016 Monthly 1◦ GRACE (Swenson, 2012; Swenson and Wahr,
2006; Landerer and Swenson, 2012)

n/a means not applicable.

the GRACE Tellus website (https://grace.jpl.nasa.gov/, last
access: June 2017). The averages of all three sources were
used. The raw data were previously processed by the CSR,
GFZ, and JPL to remove atmospheric mass changes us-
ing ECMWF (European Centre for Medium-Range Weather
Forecasts) atmospheric pressure fields, systematic errors
causing north–south-oriented stripes, and high-frequency
noise using a 300 km wide Gaussian filter via spatial smooth-
ing (Swenson and Wahr, 2006; Landerer and Swenson, 2012;
Wahr et al., 1998). Processed GRACE observations de-
scribe terrestrial water storage anomalies in “equivalent wa-
ter thickness” in centimetres relative to the 2004–2009 time-
mean baseline. In other words, the water storage anomaly is
the water storage minus the long-term mean (Landerer and
Swenson, 2012).

All gridded information was rescaled to the model resolu-
tion of 0.1◦. The temperature and GRACE data were rescaled
by dividing each cell of the satellite product into multiple
cells such that the model resolution is obtained, retaining the
original value. The precipitation was rescaled by taking the
average of all cells located within each model cell.

2.1.3 Altimetry data

The altimetry data used in this study were obtained
from the following sources: the Database for Hydrologi-
cal Time Series of Inland Waters (DAHITI; https://dahiti.
dgfi.tum.de/en/, last access: February 2018) (Schwatke
et al., 2015), HydroSat (http://hydrosat.gis.uni-stuttgart.de/
php/index.php, last access: February 2018) (Tourian et al.,
2013), Laboratoire d’Etudes en Géophysique et Océanogra-
phie Spatiales (LEGOS; http://www.legos.obs-mip.fr/soa/
hydrologie/hydroweb/, last access: March 2018; see supple-
ments for more information), and the Earth and Planetary
Remote Sensing Lab (EAPRS; http://www.cse.dmu.ac.uk/
EAPRS/, last access: February 2018). In total, altimetry data
were obtained for 18 virtual stations in the Luangwa basin
(Fig. 1a) for the time period 2002–2016 from satellite mis-
sions Jason 1–3, Envisat, and Saral (Table 2, Fig. S2).

2.1.4 River geometry information

In the Luangwa basin, very limited detailed in situ informa-
tion was available on the river geometry such as cross sec-
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tion and slope. For that reason, this information was extracted
from global high-resolution terrain data available on Google
Earth (2018) as done successfully in previous studies for
other purposes (Pandya et al., 2017; Zhou and Wang, 2015).
This was done for each virtual station and the basin out-
let. Google Earth only provides river geometry information
above the river water level. As the Luangwa is a perennial
river, parts of the cross section remain submerged through-
out the year and are thus unknown. To limit uncertainties
arising from this issue, the cross-section geometry for each
virtual station was extracted from Google Earth images with
the lowest water levels. The dates of these images in gen-
eral fall in the dry season, with flows at the Great East Road
Bridges gauging station on the respective days ranging from
1 % to 4 % relative to the maximum discharge (see Table S3
in the Supplement for the dates of the satellite images and the
associated flows at the Great East Road Bridges gauging sta-
tion). The database underlying the global terrain images in
Google Earth originate from multiple, merged data sources
with varying spatial resolutions. For the Luangwa basin these
include the Shuttle Radar Topography Mission (SRTM) with
a spatial resolution of 30 m, Landsat 8 with a spatial resolu-
tion of 15 m, and the Satellite Pour l’Observation de la Terre
4/5 (SPOT) with a spatial resolution of 2.5 to 20 m (Smith
and Sandwell, 2003; Irons et al., 2012; Drusch et al., 2012).

In addition to Google Earth data, the submerged part of the
channel cross section was surveyed in the field on 27 April
2018 near the Great East Road Bridges river gauging station
at the coordinates 30◦13′ E and 15◦00′ S (Abas, 2018) with
an Acoustic Doppler Current Profiler (ADCP).

3 Hydrological model development

3.1 General approach

The potential of river altimetry for model calibration was
tested with a process-based hydrological model for the Lu-
angwa River basin. This model relied on distributed forcing
allowing for spatially explicit distributed water storage cal-
culations. The model was run on a daily timescale for the
time period 2002 to 2016. To reach the objective of this study,
the following distinct parameter identification strategies were
compared in a step-wise approach: (1) traditional model cal-
ibration to observed river flow as a benchmark; (2) iden-
tification of parameter sets reproducing the seasonal water
storage anomalies based on GRACE data only; (3a) Altime-
try Strategy 1: identification of parameter sets directly based
on remotely sensed water levels combined with GRACE
data; (3b) Altimetry Strategy 2: identification of parameter
sets based on remotely sensed water levels by converting
modelled discharges into water levels using calibrated rating
curves combined with GRACE data; (3c) Altimetry Strat-
egy 3: identification of parameter sets based on remotely
sensed water levels by converting modelled discharges into

water levels using the Strickler–Manning equation and in-
cluding river geometry information (cross section and gra-
dient) extracted from Google Earth combined with GRACE
data; (4a) Water level Strategy 1: identification of parameter
sets based on daily river water level at the catchment out-
let only using the Strickler–Manning equation and includ-
ing river geometry information extracted from Google Earth
combined with GRACE data; and (4b) Water level Strat-
egy 2: identification of parameter sets based on daily river
water level at the catchment outlet only using the Strickler–
Manning equation and including river geometry information
obtained from a detailed field survey with an ADCP com-
bined with GRACE data. Note that (1) is completely inde-
pendent of (2) to (4), where no discharge data were used for
the identification of parameter sets.

3.2 Hydrological model structure

In this study, a process-based rainfall–runoff model with dis-
tributed water accounting and sub-grid process heterogeneity
was developed (Ajami et al., 2004; Euser et al., 2015). The
river basin was discretized into a grid with a spatial resolu-
tion of 10× 10 km2. Each model grid cell was characterized
by the same model structure and parameter sets but forced
by spatially distributed, gridded input data (Table 1). Runoff
was then calculated in parallel for each cell separately. Sub-
sequently, a routing scheme was applied to estimate the ag-
gregated flow in each grid cell at each time step.

Adopting the FLEX-Topo modelling concept (Savenije,
2010) and extending it to a gridded implementation, each
grid cell was further discretized into functionally distinct hy-
drological response units (HRUs) as demonstrated by Ni-
jzink et al. (2016). Each point within a grid cell was as-
signed to a response class based on its position in the land-
scape as defined by its local slope and “Height-above-the-
nearest-drainage” (HAND; Rennó et al., 2008; Gharari et al.,
2011). Similarly to previous studies (e.g. Gao et al., 2016;
Nijzink et al., 2016), the response units plateau, hillslope, ter-
race, and wetland were distinguished. Reflecting earlier work
(e.g. Gharari et al., 2011), all locations with a slope of > 4 %
were assumed to be hillslope. Locations with lower slopes
were then either defined as wetland (HAND < 11 m), ter-
race (11 m≤HAND < 275 m), or plateau (HAND≥ 275 m);
see Fig. 2. Following this classification, wetlands make
up pHRU = 8 %, terraces pHRU = 41 %, hillslopes pHRU =

28 %, and plateaus pHRU = 23 % of the total Luangwa River
basin area as mapped in Fig. 1b.

Each response class consisted of a series of storage com-
ponents that were linked by fluxes. The flow generated from
each grid cell at any given time step was then computed as
the area-weighted flow from the individual response units
plus a contribution from the common groundwater compo-
nent which connects the response units (Fig. 2). Finally, the
outflow from each modelling cell was routed to downstream
cells to obtain the accumulated flow in each grid cell at any
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Figure 2. Sketch of the hydrological response units including the thresholds used in this analysis for the slope and HAND (height above
nearest drainage) and including their corresponding model structures. This spatial sub-grid discretization was applied to each grid cell.
Symbol explanation: precipitation (P ), effective precipitation (Pe), interception evaporation (Ei), plant transpiration (Et), infiltration into the
unsaturated root zone (Ru), drainage to the fast runoff component (Rf), delayed fast runoff (Rfl), lag time (Tlag), groundwater recharge (Rr),
upwelling groundwater flux (RGW), fast runoff (Qf), groundwater/slow runoff (Qs).

given time step. For this purpose, the mean flow length of
each model grid cell to the outlet was derived based on the
flow direction extracted from the digital elevation model. The
flow velocity, which was assumed to be constant in space
and time, was calibrated. With this information on the flow
path length and velocity, the accumulated flow in each grid
cell was calculated at the end of each time step. The relevant
model equations are given in Table 3. This concept was pre-
viously successfully applied in a wide range of environments
(Gao et al., 2014; Gharari et al., 2014; Fovet et al., 2015;
Nijzink et al., 2016; Prenner et al., 2018).

3.3 Parameter selection procedures

To evaluate the information content and thus the utility of
altimetry data for the selection of feasible model parame-
ter sets, a step-wise procedure as specified in detail below
was applied (Table 5). Note that given data scarcity and the
related issues of epistemic uncertainties (Beven and Wester-
berg, 2011; McMillan and Westerberg, 2015) and equifinal-
ity (Beven, 2006; Savenije, 2001) we did not aim to iden-
tify the “optimal” parameter set in what is frequently con-
sidered a traditional calibration approach. In most hydrolog-
ical applications the available data have limited strength for
rigorous model tests (Clark et al., 2015; Gupta et al., 2008;

Jakeman and Hornberger, 1993). Thus, to reduce the risk of
rejecting good parameters when they should have been ac-
cepted (Beven, 2010; Hrachowitz and Clark, 2017), we rather
attempted to identify and discard the most implausible pa-
rameter sets (Freer et al., 1996) that violate our theoretical
understanding of the system or that are inconsistent with the
available data (Knutti, 2008). This allowed us to iteratively
constrain the feasible parameter space and thus the uncer-
tainty around the modelled hydrograph (Hrachowitz et al.,
2014). To do so, a Monte Carlo sampling strategy with uni-
form prior parameter distributions was applied to generate
5× 104 model realizations. This random set of solutions was
in the following steps used as a baseline and iteratively con-
strained by identifying parameter sets that do not satisfy pre-
specified criteria (see below), depending on the data type and
source used.

3.3.1 Benchmark: parameter selection based on
observed discharge data

As a benchmark, and following a traditional calibration pro-
cedure, the model was calibrated with observed daily dis-
charge based on the Nash–Sutcliffe efficiency (ENS,Q, Eq. 1)
in Table 4 using all complete hydrological years within the
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Table 3. Equations applied in the hydrological model. Fluxes (mmd−1): precipitation (P ), effective precipitation (Pe), potential evaporation
(Ep), interception evaporation (Ei), plant transpiration (Et), infiltration into the unsaturated zone (Ru), drainage to fast runoff component
(Rf), delayed fast runoff (Rfl), groundwater recharge (Rr for each relevant HRU and Rr,tot combining all relevant HRUs), upwelling ground-
water (RGW for each relevant HRU and RGW,tot combining all relevant HRUs), fast runoff (Qf for each HRU and Qf,tot combining all
HRUs), groundwater/slow runoff (Qs), total runoff (Qm). Storages (mm): storage in interception reservoir (Si), storage in unsaturated root
zone (Su), storage in groundwater/slow reservoir (Ss), storage in fast reservoir (Sf). Parameters: interception capacity (Imax) (mm), maxi-
mum upwelling groundwater (Cmax) (mmd−1), maximum root zone storage capacity (Sumax) (mm), splitter (W ) (–), shape parameter (β)
(–), transpiration coefficient (Ce) (–), time lag (Tlag) (d), reservoir timescales (d) of fast (Kf) and slow (Ks) reservoirs, areal weights (pHRU)
(–), time step (1t) (d). Model parameters are shown in bold letters in the table below. The equations were applied to each hydrological
response unit (HRU) unless indicated differently.

Reservoir system Water balance equation Process functions

Interception 1Si
1t = P −Pe−Ei ≈ 0 Ei =min

(
Ep,min

(
P,

Imax
1t

))
Pe = P −Ei

Unsaturated zone Plateau/terrace:
1Su
1t = Pe−Et−Rf

Hillslope:
1Su
1t = Ru−Et

Wetland:
1Su
1t = Pe−Et−Rf+RGW

Et =min(
(
Ep−Ei

)
min

(
Su
1t ,

(
Ep−Ei

)
·

Su
Su,max

·
1
Ce

)
)

RGW =min
((

1− Su
Su,max

)
· Cmax,

Ss
1t
pHRU

)
if Su+RGW ·1t > Su,max : RGW =

Su,max−Su
1t

Hillslope:
Ru = (1−C) ·Pe

C = 1−
(

1− Su
Su,max

)β
Fast runoff 1Sf

1t = Rfl−Qf Qf =
Sf
Kf

Plateau/terrace/wetland:
Rf =

max(0, Su−Sumax)
1t

Rfl = Rf
Hillslope:
Rf = (1−W) ·C ·Pe
Rfl = Rf∗f (Tlag)

Groundwater 1Ss
1t = Rrtot −RGWtot −Qs Rr =W ·C ·Pe

Rrtot =
∑

HRU
pHRU ·Rr

RGWtot =
∑

HRU
pHRU ·RGW

Qs =
Ss
Ks

Total runoff Qm =Qs+Qftot Qftot =
∑

HRU
pHRU ·Qf

Supporting literature Gharari et al. (2014); Gao et al. (2014); Euser et al. (2015)

time period 2002 to 2016 (Nash and Sutcliffe, 1970). These
are the years starting in the fall of 2004, 2006, and 2008.

To limit the solutions to relatively robust representations
of the system while allowing for data and model uncertainty
(e.g. Beven, 2006; Beven and Westerberg, 2011), only pa-
rameter sets that resulted in ENS,Q ≥ 0.6 were retained as
feasible. The hydrological model consisted of 18 free calibra-
tion parameters (Table 5, Fig. S1 in the Supplement) whose
uniform prior distributions are given in Table S1 in the Sup-
plement with associated parameter constraints as summa-
rized in Table S2.

3.3.2 Parameter selection based on the seasonal water
storage (GRACE)

In a next step we assumed that discharge records in the Lu-
angwa basin were absent. The starting assumption thus had to
be that all model realizations, i.e. all sampled parameter sets,
were equally likely to allow feasible representations of the
hydrological system. In a step-wise approach, confronting
these realizations with different types of data, we sequen-
tially identified and discarded solutions that were least likely
to provide meaningful system representations, thereby grad-
ually narrowing down the feasible parameter space.

We first identified and discarded solutions that were least
likely to preserve observed seasonal water storage (Stot) fluc-
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Table 4. Equations used to calculate the model performance.

Name Objective function Symbol explanation Equation no.

Nash–Sutcliffe ENS,θ = 1−

∑
t
(θmod (t)− θobs (t))

2

∑
t

(
θobs (t)− ¯θobs

)2 θ : variable (1)

Spearman rank cor-
relation
coefficient

ER,WL =
cov(rQ,mod, rWL,obs)

σ
(
rQ,mod

)
· σ(rWL,obs)

rQ,mod: ranks of the modelled
discharge
rWL,obs: ranks of the observed
water levels

(2)

Relative error ER,θ = 1−
|θmod− θobs|

θobs
θ : variable (3)

Euclidian distance
over multiple
virtual stations

DE,β,γ = 1−

√√√√(∑
i

wi ·
(
1−Eβ,γ

)2)
wi : relative weight of virtual
station i
β: model performance metric
γ : parameter selection method

(4)

Euclidian distance
over multiple
signatures

DE = 1−

√√√√ 1
(N +M)

(∑
n

(
1−ENS,θn

)2
+

∑
m

(
1−ER,θm

)2)
θ : signature
n: signatures evaluated with
Eq. (1) with maximum N

m: signatures evaluated with
Eq. (3) with maximum M

(5)

tuations. To do so, the monthly modelled total water stor-
age (Stot,mod = Si+ Su+ Sf+ Ss) relative to the 2004–2009
time-mean baseline in each grid cell was compared to water
storage anomalies observed with GRACE where this same
time-mean baseline was used (Tang et al., 2017; Fang et al.,
2016; Forootan et al., 2019; Khaki and Awange, 2019).

The model’s skill at reproducing the seasonal water stor-
age, i.e. Stot, was assessed using the Nash–Sutcliffe effi-
ciency ENS,Stot (Eq. 1). Note that ENS,Stot,j was computed
at first from the time series of Stot in each grid cell j which
were then averaged to obtain ENS,Stot . If no additional data
were available, a hypothetic modeller relying on ENS,Stot to
calibrate a model may choose only the solution with the high-
est ENS,Stot or allow for some uncertainty. To mimic this tra-
ditional approach and balance it with a sufficient number of
feasible solutions to be kept for the subsequent steps, we here
identified and discarded the poorest performing 75 % of all
solutions in terms ofENS,Stot as unfeasible for the subsequent
modelling steps.

3.3.3 Parameter selection based on satellite altimetry
data

Next, the remaining feasible parameter sets were used to
evaluate their potential to reproduce time series of observed
altimetry applying three distinct parameter selection strate-
gies. Assuming again the situation of an ungauged basin (i.e.

no time series of river flow available), we kept for each strat-
egy as feasible the respective 1 % best performing parameter
sets according to the specific performance metric associated
with that strategy.

Altimetry Strategy 1: direct comparison of altimetry
data to modelled discharge

In the simplest approach, we directly used altimetry data
to correlate observed water levels with modelled discharge
based on the Spearman rank correlation coefficient (ER,WL;
Spearman, 1904) using Eq. (2) (Table 4). This strategy, here-
after referred to with subscript WL, i.e. water level, re-
quires the assumption that the relationship between water
level and discharge is monotonic. The Spearman rank cor-
relation was applied successfully in previous studies to cali-
brate a rainfall–runoff model to water-level time series (Seib-
ert and Vis, 2016). As there were multiple virtual stations
with water-level data available in this study, the ER,WL was
computed at each location simultaneously. The individual
values ER,WL were weighted based on the record length of
the corresponding virtual stations and then combined into the
Euclidean distance as aggregate metricDE,R,WL with Eq. (4).
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Altimetry Strategy 2: rating curves

In the second strategy, as successfully applied in previous
studies (Getirana and Peters-Lidard, 2013; Jian et al., 2017),
model parameters were selected based on the models’ abil-
ity to reproduce water levels by converting the modelled
discharge to water levels, assuming these two are related
through a rating curve in the form of a power function (Rantz,
1982):

Q= a · (h−h0)
b, (6)

where h is the water level, h0 is a reference water level, and
a and b are two additional free calibration parameters deter-
mining the shape of the function and lumping combined in-
fluences of different river cross-section characteristics such
as geometry or roughness. Note that here for each virtual sta-
tion h0 is the elevation that corresponds to the water level of
the Google Earth image with the lowest flow available, cor-
responding to the assumption of no-flow at that time. This
strategy is hereafter referred to with subscript RC, i.e. rat-
ing curve. As river cross sections vary in space, each of the
18 virtual stations would require an individual set of these
parameters a and b. To limit the number of additional cali-
bration parameters, we here classified the river cross sections
of the 18 virtual stations into four groups (Figs. 1a and 3). For
cross sections within each class, i.e. geometrically similar,
the same values for a and b were used, resulting in four sets
of a and b and thus a total of eight additional calibration pa-
rameters. The river cross sections were extracted from global
high-resolution terrain data available on Google Earth (see
Sect. 2.1.4). The modelled river water levels were evalu-
ated against the observed water levels at each virtual sta-
tion using the Nash–Sutcliffe efficiency ENS,RC (equivalent
to Eq. 1 in Table 4), weighted based on the record length of
the corresponding virtual stations and then combined into the
Euclidean distance DE,NS,RC as an aggregated performance
metric (Eq. 4).

Altimetry Strategy 3: Strickler–Manning equation

As a third strategy, we converted the modelled discharge
to river water levels using the Strickler–Manning equation
(Manning, 1891):

Q= k · i
1
2 ·A ·R

2
3 , (7)

where k is a roughness parameter here treated as a free cal-
ibration parameter and assumed constant for all virtual sta-
tions, i is the mean channel slope extracted here over a dis-
tance of 10 km, and A and R are the river cross-section area
and hydraulic radius. Assuming trapezoidal cross sections
(see Fig. 4 as an illustrative example), A and R were cal-
culated for each cross section according to

A= B · d +
1
2
· d2
· (i1+ i2) , (8)

R =
A

B + d ·

((
1+ i21

) 1
2 +

(
1+ i22

) 1
2

) , (9)

d = h−h0, (10)

where B is the assumed river bed width, i1 and i2 are the
river bank slopes, d is the water depth, h is the water level,
and h0 is the reference water level, here assumed to be the
lowest observed river water level to limit the number of cal-
ibration parameters. In contrast to previous studies that use
a similar approach but relied on locally observed river cross
sections (Michailovsky et al., 2012; Hulsman et al., 2018;
Liu et al., 2015), here both the river bed geometries (Fig. 3)
at and the channel slopes upstream of the 18 virtual stations
were computed using high-resolution terrain data retrieved
from Google Earth (see Sect. 2.1.4). Similar data sources
were already used in previous studies to extract the river ge-
ometry (e.g. Michailovsky et al., 2012; Pramanik et al., 2010;
Gichamo et al., 2012). The reader is referred to Table S3 for
the values of the variables for each virtual station. This strat-
egy is hereafter referred to with subscript SM, i.e. Strickler–
Manning.

Equivalent to above, the modelled river water levels were
then evaluated against the observed water levels at each
virtual station using the Nash–Sutcliffe efficiency ENS,SM
(equivalent to Eq. 1), weighted based on the record length of
the corresponding virtual stations and then combined into the
Euclidean distance DE,NS,SM as an aggregated performance
metric (Eq. 4).

3.3.4 Parameter selection based on daily river water
level at the basin outlet

For the previous parameter identification strategy (Altimetry
Strategy 3), river geometry information was extracted from
high-resolution terrain data retrieved from Google Earth,
which have a low accuracy. Unfortunately, more accurate
cross-section information from in situ surveys was only
available at the Great East Road Bridge gauging station, i.e.
the basin outlet, where, in turn, no altimetry observations
were available. That is why water-level time series were used
to illustrate the influence of the cross-section accuracy.

As shown in Fig. 5, the Google Earth based above-water
cross section at the basin outlet corresponded in general well
to the field survey considering that satellite images have lim-
ited spatial resolution. However, the in situ measurement also
illustrated the relevance of the submerged part of the channel
cross section at that location on the day the image was taken
(2 June 2008).
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Figure 3. River profiles at 18 virtual stations (VS) divided into four groups. The reference level is equal to the lowest water level in the river
profile for each location separately.

Figure 4. Example of approximating a trapezoidal cross section
(black) into the Google Earth based cross-section data (red) for vir-
tual station “VS 4” (see also Fig. 1a and Fig. 3). The reference level
is equal to the lowest water level in the river profile.

Water level Strategy 1: river geometry information
extracted from Google Earth

First, cross-section information was extracted from global
high-resolution terrain data available on Google Earth (sub-
script GE) and used with the Strickler–Manning equation
(Eq. 7) to convert the modelled discharge to water levels.
This was combined with GRACE observations to restrict the
parameter space in an equivalent way to Sect. 3.3.3. The

Figure 5. River cross section at Luangwa Bridge obtained from
Google Earth and detailed field survey including the river water
level on 2 June 2008. Field measurements were done with an Acous-
tic Doppler Current Profiler (ADCP) on 27 April 2018 at the coordi-
nates 30◦13′ E and 15◦00′ S; the satellite image was taken on 2 June
2008. The reference level is equal to the lowest elevation level mea-
sured with the ADCP.
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model performance with respect to river water levels was cal-
culated with the Nash–Sutcliffe efficiencyENS,SM,GE (Eq. 1).

Water level Strategy 2: river geometry information
obtained from a detailed field survey

Second, cross-section information obtained from a detailed
field survey with an ADCP (subscript ADCP) was used with
the Strickler–Manning equation (Eq. 7) to convert the mod-
elled discharge to water levels. This was combined with
GRACE observations to restrict the parameter space in an
equivalent way to Sect. 3.3.3. The model performance with
respect to river water levels was calculated with the Nash–
Sutcliffe efficiency ENS,SM,ADCP (Eq. 1).

3.4 Model evaluation

For each calibration strategy, the performance of all model
realizations was evaluated post-calibration with respect to
discharge using seven additional hydrological signatures
(e.g. Sawicz et al., 2011; Euser et al., 2013) to assess the skill
of the model at reproducing the overall response of the sys-
tem and thus the robustness of the selected parameters (Hra-
chowitz et al., 2014). The signatures included the logarithm
of the daily flow time series (hereafter referred to with the
subscript logQ), the flow duration curve (FDC), its logarithm
(logFDC), the mean seasonal runoff coefficient during dry
periods (April–September; RCdry), the mean seasonal runoff
coefficient during the wet periods (October–March; RCwet),
the autocorrelation function of daily flow (AC) and the ris-
ing limb density of the hydrograph (RLD). An overview
of these signatures can be found in Table 6, and more de-
tailed explanations in Euser et al. (2013) and references
therein. As performance measures for the model to repro-
duce the individual observed signatures, the Nash–Sutcliffe
efficiency (ENS,logQ, ENS,FDC, ENS,logFDC, ENS,AC; equiva-
lent to Eq. (1) in Table 4) and a metric based on the relative
error (ER,RCdry, ER,RCwet, ER,RLD; equivalent to Eq. 3) were
used (Euser et al., 2013). The signatures were combined,
with equal weights, into one objective function, which was
formulated based on the Euclidian distance DE (Eq. 5) so
that a value of 1 indicates a “perfect” model (Schoups et al.,
2005).

4 Results and discussion

4.1 Parameter selection and model performance

The complete set of all model realizations unsurprisingly re-
sulted in a wide range of model solutions (Fig. 6a), with
ENS,Q ranging from−6.4 to 0.78 and with the combined per-
formance metric of all signatures DE ranging from −334 to
0.79 (Fig. 7). With respect to the individual flow signatures,
the model performance varied such that the largest range was
found in ENS,Q and the smallest in ENS,AC, as visualized in

Fig. 7 and tabulated in Table S4. Although containing rela-
tively good solutions, this full set of all realizations clearly
also contained many parameter sets that considerably over-
estimated and/or underestimated flows.

4.1.1 Benchmark: parameter selection based on
observed discharge data

For the benchmark case, applying the traditional model cali-
bration approach using discharge data, this parameter selec-
tion and calibration strategy resulted in a reasonable model
performance, in which the seasonal but also the daily flow
dynamics and magnitudes were in general well captured
as shown in Fig. 6b. For some years, a number of solu-
tions overestimated flows in the wet season and underesti-
mated flows during the dry season, when the river becomes
a small meandering stream with almost annual morphologi-
cal changes, which is difficult to meaningfully observe. The
best performing solution had a calibration objective function
of ENS,Q,opt = 0.78 (5/95th percentiles of all feasible solu-
tions ENS,Q,5/95 = 0.61–0.75; Fig. 7 and Table 7). For the
post-calibration evaluation of all retained solutions, it was
observed that most signatures were well reproduced by the
majority of solutions, except for the dry season runoff co-
efficient (RCdry; Fig. 7 and Table S4). This resulted in ag-
gregated model performances, combining all signatures, of
DE,5/95 = 0.55–0.76, with the above-identified best perform-
ing solution (i.e. ENS,Q,opt) reaching a value of DE,opt =

0.60.

4.1.2 Parameter selection based on the seasonal water
storage (GRACE)

Starting from the set of all model realizations (Figs. 6a
and 7), and assuming no discharge observations are avail-
able, we identified and discarded parameter sets as unfea-
sible when they did not meet the previously defined crite-
ria to reproduce the seasonal water storage (ENS,Stot ; see
Sect. 3.3.2). The range of random model realizations with
respect to the total water storage is visualized in Fig. 9. The
sub-set of solutions retained as feasible resulted in a sig-
nificant reduction in the uncertainty around the modelled
variables, which is illustrated by the narrower 5/95th per-
centiles of the solutions compared to the set of all realiza-
tions, as shown in Fig. 6c. The feasible solutions with re-
spect to GRACE reached ENS,Stot,opt = 0.56 (ENS,Stot,5/95 =

0.45–0.52) (Fig. 7, Table 7). These parameter sets were then
used to evaluate the model for the years 2004, 2006, and
2008 used in the benchmark case. While the flow dynam-
ics were captured relatively well, many of the retained so-
lutions considerably overestimated flows across all seasons
(Fig. 6c), resulting in a decreased performance with respect
to the individual flow signatures; only the dry runoff co-
efficient (ER,RCdry ) improved significantly compared to the
benchmark as shown in Table S4 and Fig. 7. The parame-
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Table 6. Overview of flow signatures used in this study.

Flowsignature Explanation Function Model performance equation

Q Daily flow time series – ENS,Q = 1−

∑
t

(
Qmod,t−Qobs,t

)2
∑
t

(
Qobs,t− ¯Qobs

)2

logQ Logarithm of daily flow
time series

– ENS,logQ = 1−

∑
t

(
Qlog,mod,t−Qlog,obs,t

)2
∑
t

(
Qlog,obs,t− ¯Qlog,obs

)2

FDC Flow duration curve – ENS,FDC = 1−

∑
t

(
Qsort,mod,t−Qsort,obs,t

)2
∑
t

(
Qsort,obs,t− ¯Qsort,obs

)2

logFDC Logarithm of flow
duration curve

– ENS,logFDC = 1−

∑
t

(
Qlog,sort,mod,t−Qlog,sort,obs,t

)2
∑
t

(
Qlog,sort,obs,t− ¯Qlog,sort,obs

)2
RCdry Runoff coefficient

during dry periods
RCdry =

Qdry

Pdry
ER,RCdry = 1−

∣∣RCdry,mod−RCdry,obs
∣∣

RCdry,obs

RCwet Runoff coefficient
during wet periods

RCwet =
Qwet
Pwet

ER,RCwet = 1−

∣∣RCwet,mod−RCwet,obs
∣∣

RCwet,obs

AC Autocorrelation
function

ACt =

∑
i

(Qi− Q̄) · (Qi+t− Q̄)∑(
Qi− Q̄

)2 ENS,AC = 1−

∑
t

(
ACmod,t−ACobs,t

)2
∑
t

(
ACobs,t− ¯ACobs

)2
RLD Rising limb density RLD=

Npeaks

Tr
ER,RLD = 1−

|RLDmod−RLDobs|

RLDobs

Table 7. Summary of the model results: elimination of unfeasible parameter sets and detection of optimal parameter set according to each
parameter identification strategy including the corresponding model performance range (ENS,Q, DE) indicating the model’s skill at repro-
ducing the discharge during the benchmark time period. For each strategy, the model efficiency for the optimal parameter set is summarized
together with the corresponding performance metrics with respect to discharge (ENS,Q,opt, DE,opt). For all parameter sets retained as feasi-
ble, the maximum (ENS,Q,max,DE,max) and 5/95th percentiles (ENS,Q,5/95, DE,5/95) of all performance metrics with respect to discharge
are summarized. Data sources used for the parameter set selection: (1) all parameter sets (no data), (2) discharge, (3) GRACE, (4) altimetry
combined with GRACE (Altimetry Strategy 1), (5) altimetry data using rating curves combined with GRACE (Altimetry Strategy 2), (6) al-
timetry data using the Strickler–Manning equation combined with GRACE (Altimetry Strategy 3), and (7) daily river water level combined
with GRACE using the Strickler–Manning equation and cross-section information retrieved from Google Earth (Water level Strategy 1) or
(8) obtained from a detailed field survey with an ADCP (Water level Strategy 2).

Optimal parameter set Feasible parameter sets
Model efficiency ENS,Q,opt (DE,opt) ENS,Q,max (ENS,Q,5/95) DE,max (DE,5/95)

(1) All parameters sets – – 0.78 (−3.8–0.68) 0.79 (−1.4–0.71)
(2) Discharge ENS,Q,opt = 0.78 0.78 (0.60) 0.78 (0.61–0.75) 0.79 (0.55–0.76)
(3) Seasonal water storage (GRACE) ENS,Stot,opt = 0.56 −1.4 (−0.18) 0.78 (−2.3–0.38) 0.77 (−0.58–0.62)
(4) Altimetry Strategy 1: compare altimetry to discharge DE,R,WL,opt = 0.76 0.65 (0.63) 0.65 (−2.9–0.10) 0.66 (−0.83–0.50)
(5) Altimetry Strategy 2: Rating curves DE,NS,RC,opt =−0.50 −0.31 (0.27) 0.51 (−2.6–0.25) 0.66 (−0.72–0.56)
(6) Altimetry Strategy 3: Strickler–Manning equation DE,NS,SM,opt =−1.4 0.60 (0.71) 0.63 (−0.31–0.50) 0.75 (0.36–0.67)
(7) Water level Strategy 1: satellite-based cross section ENS,SM,GE,opt =−1.8 0.65 (0.77) 0.77 (−0.48–0.60) 0.77 (0.28–0.70)
(8) Water level Strategy 2: in situ cross section ENS,SM,ADCP,opt = 0.79 0.14 (0.55) 0.77 (−1.1–0.50) 0.77 (0.03–0.67)
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Figure 6. Range of model solutions. The left subplots show the hydrograph and the right subplots the flow duration curve of the recorded
(black) and modelled discharge: the line indicates the solution with the highest calibration objective function (ENS orDE) and the shaded area
the envelope of the solutions retained as feasible. (a) All model solutions included solutions retained as feasible based on (b) discharge (i.e.
“traditional calibration”; ENS,Q), (c) GRACE (ENS,Stot ), and (d) Altimetry Strategy 1 only (DE,R,WL). The grey bars in the left subplot (d)
indicate the number of altimetry observations available for each day.

ter set associated with the best performing model with re-
spect to GRACE (ENS,Stot,opt) resulted for the benchmark
period in ENS,Q =−1.4 (ENS,Q,5/95 =−2.3–0.38) and the
corresponding DE,opt =−0.18 (DE,5/95 =−0.58–0.62) with
respect to discharge (Fig. 7, Table 7). As illustrated in Figs. 7
and 6c, many parameter sets that resulted in implausible rep-
resentations of the seasonal signals were eliminated. How-
ever, as also indicated by the rather modest values of ENS,Q
and DE with respect to discharge, the data source used here
obviously contained only limited information to avoid the

overpredictions of flow during all wet seasons. The sequence
of applying first GRACE and then altimetry, or the reverse,
did not affect the identification of feasible parameter sets
when using altimetry data as shown in Fig. S8. However, it
did affect the selection of the “best” parameter set.
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Figure 7. Comparison of different data sources to identify feasible parameter sets. Data sources applied: (1) all random parameters (no
data), (2) discharge, (3) GRACE, (4) altimetry data combined with GRACE (Altimetry Strategy 1), (5) altimetry data using the rating
curves combined with GRACE (Altimetry Strategy 2), and (6) altimetry data using the Strickler–Manning equation combined with GRACE
(Altimetry Strategy 3), and (7) daily river water level combined with GRACE using the Strickler–Manning equation and cross-section
information retrieved from Google Earth (Water level Strategy 1) or (8) obtained from a detailed field survey with an ADCP (Water level
Strategy 2). The boxplots visualize the spread in the overall model performance DE with respect to discharge and the following individual
signatures: (a) daily discharge (ENS,Q), (b) its logarithm (ENS,logQ), (c) flow duration curve (ENS,FDC), (d) its logarithm (ENS,logFDC),
(e) average runoff coefficient during the dry season (ER,RCdry ), (f) average seasonal runoff coefficient during the wet season (ER,RCwet ),
(g) autocorrelation function (ENS,AC), and (h) rising limb density (ER,RLD). The dots visualize the model performance when selecting the
parameter set with the highest model efficiency according to each parameter identification strategy.
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4.1.3 Parameter selection based on satellite altimetry
data

Altimetry Strategy 1: directly compare altimetry data to
modelled discharge

The first approach, Altimetry Strategy 1, resulted in an over-
estimation of in particular intermediate and low flows as
shown in Fig. 6d. The feasible solutions reached an opti-
mum of DE,R,WL,opt = 0.76 (DE,R,WL,5/95 = 0.74–0.75) with
respect to altimetry observations. Focusing on the model’s
skill at reproducing the observed discharge using these fea-
sible parameter sets for the benchmark period, the param-
eter set associated with the best performing model with
respect to altimetry (DE,R,WL,opt) resulted in a ENS,Q =

0.65 (ENS,Q,5/95 =−2.9–0.10) and DE = 0.63 (DE,5/95 =

−0.83–0.50) with respect to discharge (Fig. 7, Table 7).
Hence, the parameter set with the highest model performance
with respect to altimetry did not perform best with respect to
discharge as shown in Table 7 and Fig. S7. While the opti-
mum model performance with respect to discharge was sim-
ilar to the benchmark, the very wide range in the 5/95th per-
centiles of the solutions indicated that this strategy has only
limited potential to identify implausible parameter sets. This
was also the case with respect to the individual flow signa-
tures as shown in Fig. 7 and Table S4.

Altimetry Strategy 2: rating curves

The second approach, Altimetry Strategy 2, also resulted
in an overestimation of the flows (Fig. 8e). The feasi-
ble solutions reached an optimum of DE,NS,RC,opt =−0.50
(DE,NS,RC,5/95 =−1.0 to−0.77) with respect to altimetry ob-
servations. As an example, Fig. S6A in the Supplement visu-
alizes the simulated and observed river water levels at Vir-
tual Station 4 (Fig. 1), where the model significantly under-
estimated the stream levels. Focusing on the model’s skill at
reproducing the discharge using these parameter sets for the
benchmark period, the parameter set associated with the best
performing model with respect to altimetry (DE,NS,RC,opt)
resulted in ENS,Q =−0.31 (ENS,Q,5/95 =−2.6–0.25) and
DE = 0.27 (DE,5/95 =−0.72–0.56) with respect to discharge
(Fig. 7, Table 7). Hence, similarly to Altimetry Strategy 1,
the best parameter set with respect to altimetry did not per-
form best with respect to discharge (see Table 7 and Fig. S7).
The optimum model performance with respect to discharge
was worse compared to the benchmark, and the wide range
in the 5/95th percentiles of the solutions indicated this strat-
egy poorly identified the feasible parameter sets. This was
also the case with respect to the individual flow signatures
as shown in Fig. 7 and Table S4. Only the dry runoff co-
efficient (ER,RCdry ) improved significantly compared to the
benchmark.

Altimetry Strategy 3: Strickler–Manning equation

The third approach, Altimetry Strategy 3, resulted in im-
proved flow predictions compared to the other two strate-
gies using altimetry data (Fig. 8f). Even though the fea-
sible solutions exhibited a very poor ability to reproduce
the altimetry data, with an optimum of DE,NS,SM,opt =−1.4
(DE,NS,SM,5/95 =−3.8 to −1.8), the model’s skill at repro-
ducing the discharge for the benchmark period using these
parameter sets significantly increased compared to the two
alternative strategies. As an example, Fig. S6b visualizes
the simulated and observed river water levels at Virtual Sta-
tion 4 (Fig. 1), where the model simulated the stream levels
relatively well. The parameter set associated with the best
performing model with respect to altimetry (DE,NS,SM,opt)
resulted in ENS,Q = 0.60 (ENS,Q,5/95 =−0.31–0.50) and
DE = 0.71 (DE,5/95 = 0.36–0.67) with respect to discharge
(Fig. 7, Table 7). While the optimum model performance
with respect to discharge was worse compared to the bench-
mark, the 5/95th percentiles of the solutions were signifi-
cantly constrained by the removal of many implausible pa-
rameter sets. This was valid for the performance with respect
to the individual flow signatures (ENS,θ and ER,θ ) and over-
all flow response (DE) as shown in Fig. 7 and Table S4. This
indicated that, although the model performance with respect
to altimetry observations was low, this strategy contained
valuable information to considerably constrain the feasible
solution space.

4.1.4 Parameter selection based on daily river water
level at the basin outlet

Water level Strategy 1: river geometry information
extracted from Google Earth

The parameter identification strategy “Water level Strat-
egy 1”, using cross-section information extracted from
Google Earth resulted in a poor simulation of the river wa-
ter level (Fig. 10a), with an optimal objective function value
with respect to river water levels of ENS,SM,GE,opt =−1.8
(ENS,SM,GE,5/95 =−6.8 to −3.1). Focusing on the model’s
skill at reproducing the discharge using these feasible pa-
rameter sets for the benchmark period, the parameter set
associated with the best performing model with respect to
river water levels (ENS,SM,GE,opt) resulted in ENS,Q = 0.65
(ENS,Q,5/95 =−0.48–0.60) andDE = 0.77 (DE,5/95 = 0.28–
0.70) with respect to discharge (Fig. 7, Table 7). The model
performances with respect to the remaining signatures as vi-
sualized in Fig. 7 are tabulated in Table S4. As shown in
Fig. 8g, the discharge was overestimated in particular during
intermediate and low flows.
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Figure 8. Range of model solutions. The left subplots show the hydrograph and the right subplots the flow duration curve of the recorded
(black) and modelled discharge: the line indicates the solution with the highest calibration objective function (ENS orDE) and the shaded area
the envelope of the solutions retained as feasible. Solutions retained as feasible based on (e) Altimetry Strategy 2 using rating curves for the
discharge–water-level conversion (DE,NS,RC), (f) Altimetry Strategy 3 using the Strickler–Manning equation for the discharge–water-level
conversion (DE,NS,SM), and (g) daily in situ water level using the Strickler–Manning equation for the discharge–water-level conversion with
cross-section information retrieved from Google Earth (Water level Strategy 1; ENS,SM,GE) or (h) obtained from a detailed field survey with
an ADCP (Water level Strategy 2; ENS,SM,ADCP). The grey bars in the left subplots (e and f) indicate the number of altimetry observations
available for each day.

Water level Strategy 2: river geometry information
obtained from a detailed field survey

The parameter identification strategy “Water level Strat-
egy 2”, using cross-section information obtained from a de-
tailed field survey, resulted in improved river water-level
simulations (compare Fig. 10a and b) with an optimal ob-

jective function value with respect to river water levels of
ENS,SM,ADCP,opt = 0.79 (ENS,SM,ADCP,5/95 = 0.60–0.74). The
parameter set associated with the best performing model
with respect to river water levels (ENS,SM,ADCP,opt) resulted
in ENS,Q = 0.14 (ENS,Q,5/95 =−1.1–0.50) and inDE = 0.55
(DE,5/95 = 0.03–0.67) with respect to discharge (Fig. 7, Ta-
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Figure 9. Range of random model realizations with respect to the total water storage (grey) including the observation according to GRACE
(black).

Figure 10. Range of model solutions. The left subplots show the hydrograph and the right subplots the flow duration curve of the recorded
(black) and modelled discharge: the line indicates the solution with the highest calibration objective function (ENS) and the shaded area the
envelope of the solutions retained as feasible. Solutions were retained as feasible based on daily water-level time series at the basin outlet
using the Strickler–Manning equation for the discharge–water-level conversion; the cross section was (a) extracted from Google Earth (Water
level Strategy 1) or (b) obtained from a detailed field survey with an ADCP (Water level Strategy 2).

ble 7). The model performances with respect to the remaining
signatures as visualized in Fig. 7 are tabulated in Table S4.

Compared to using river geometry information extracted
from Google Earth (Water level Strategy 1), the overall
model performance with respect to discharge did not in-
crease since the parameter space was already restricted us-
ing GRACE data. However, the modelled flow duration curve
during intermediate and low flows (compare Fig. 8g with h)
and rating curve (Fig. 11) improved significantly when us-
ing more accurate geometry information obtained from a de-
tailed field survey covering the cross section that is sub-
merged most of the year, which is thus unlikely to be cap-
tured by satellite-based observations. Note that the in situ
cross-section information was limited to the submerged part
during the time of measurement. The remaining part (water

levels > 5 m) was extrapolated, which is likely to explain the
larger discrepancies during high flows visible in the flow du-
ration curve (Fig. 8h).

4.2 Number of virtual stations used for model
calibration and evaluation

In this study, altimetry data were available at 18 virtual
stations. However, would the model performance change if
more or less virtual stations were used? To answer this ques-
tion, n random stations were selected for model calibration,
while the remaining stations were used for cross-validation
(Klemeš, 1986; Gharari et al., 2013; Garavaglia et al., 2017).
This was repeated to cover all combinations of n stations and
for n= 1,2. . .17. When applying Altimetry Strategy 3 us-
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Figure 11. Discharge–water-level graphs for the recorded (black)
and modelled discharge and stream levels with the optimal model
performance (ENS) using the Strickler–Manning equation for the
discharge–stream-level conversion with cross-section information
(a) extracted from Google Earth (Water level Strategy 1) or (b) ob-
tained from a detailed field survey with an ADCP (Water level Strat-
egy 2).

ing altimetry data with the Strickler–Manning equation, this
analysis revealed that when increasing the number of cali-
bration stations, the model calibration performanceDE,NS,SM
gradually decreased, but the ability to meaningfully repro-
duce the remaining observations which were not used for
calibration increased significantly (Fig. 12). Similar results
were obtained for Strategies 1 and 2 (compare Fig. 12 with
Supplementary Figs. S3 and S4). Also, the model perfor-
mance with respect to discharge increased when using more
virtual stations with an optimum at 7–15 stations depending
on the calibration strategy (Fig. S5). This provides evidence
that in spite of reduced calibration performance, the simulta-
neous use of multiple virtual stations can contribute towards
more plausible selections of model parameter sets and thus
increase the model realism.

4.3 Uncertainties and limitations

In the absence of discharge data for hydrological model
calibration, as is commonly the case in poorly gauged or
ungauged regions, freely and globally available remotely
sensed streamwater levels could provide the opportunity to
fill this gap, as illustrated in this study as well as in previ-
ous studies (e.g. Michailovsky and Bauer-Gottwein, 2014;
Pereira-Cardenal et al., 2011; Sun et al., 2012). However,
there are several limitations to the approach proposed in this
study using altimetry for model calibration.

First, river altimetry data are prone to large uncertain-
ties which increase for smaller river widths as a result of
backscatter effects of the surrounding topography (Sulis-
tioadi et al., 2015; Biancamaria et al., 2017; Domeneghetti
et al., 2015). Too small rivers could even be missed alto-
gether. In this study, the Luangwa River becomes a small
meandering stream in the dry season, resulting in larger al-
timetry uncertainties. Unfortunately, this uncertainty could
not be estimated for the virtual stations used in this study due

to data limitations. However, in previous studies in the Zam-
bezi basin, the RMSE relative to in situ stream levels ranged
between 0.32 and 0.72 m using Envisat (Michailovsky et al.,
2012). Improving altimetry observations such that the uncer-
tainties decrease would improve the identification of feasi-
ble parameter sets and simulation of stream levels and flow.
However, comparison results between the three altimetry-
based calibration strategies are not expected to change since
the same altimetry data were used. In other words, Altimetry
Strategy 3 is still expected to perform best when decreasing
the uncertainties in the altimetry observations.

Second, large uncertainties in the forcing data (precipita-
tion and temperature) with respect to the spatial–temporal
variations should not be ignored. This could compromise
comparison results between modelled river water levels and
altimetry within the basin since it has a low temporal resolu-
tion (10 or 35 d). Bias in the precipitation data affects storage
calculations and hence the identification of feasible parame-
ter sets based on GRACE (Le Coz and van de Giesen, 2020).
This could explain why the flows were frequently overesti-
mated when using GRACE only. In addition, precipitation
bias could be compensated through calibration parameters
introduced for the discharge–water-level conversion. There-
fore, such parameters should be constrained as much as pos-
sible. There are also data uncertainties in the cross sections
and river gradients extracted from high-resolution terrain
data available on Google Earth due to its limited spatial reso-
lution, but more importantly since no information is available
below the water surface.

Further, GRACE observations are prone to uncertainties
as a result of data (post-)processing, including for exam-
ple data smoothing (Landerer and Swenson, 2012; Blazquez
et al., 2018; Riegger et al., 2012) causing leakage between
neighbouring cells of 1◦ (≈ 111 km), which are thus not com-
pletely independent of each other. Additionally, GRACE ob-
servations are more accurate for large areas. Depending on
the applied processing scheme, the error is about 2 cm for
basins with an area of around 63 000 km2 (Landerer and
Swenson, 2012; Vishwakarma et al., 2018). Also note that
due to the coarse temporal resolution, monthly averaged
GRACE observations are dominated by slowly changing pro-
cesses such as the groundwater, soil moisture system, and
seasonal variations reflected in all storage components. In
addition, open water bodies or wetlands could affect GRACE
observations if they are located in or near the basin, for exam-
ple within a radius of about 300 km, which is the distance of-
ten used for data smoothing. In this study, several open water
bodies or wetlands were located ≤ 300 km of the Luangwa
basin, such as Lake Malawi, Kafue Flats, Cahora Bassa reser-
voir, Kariba reservoir, Bangweulu, and Tanganyika. These
open water bodies and wetlands had a limited impact on the
GRACE observations due to limited fluctuations or differ-
ent temporal variation as illustrated in Fig. 13 for the Cahora
Bassa reservoir. These uncertainties in the GRACE observa-
tions could influence the identification of plausible parame-
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Figure 12. Influence of the number of virtual stations used for (a) model calibration and (b) evaluation on the model performanceDE,NS,SM
applying Altimetry Strategy 3.

Figure 13. Temporal correlation of the GRACE observations for the
cell in which the virtual station for Cahora Bassa is located (hor-
izontal axis) and for (a) all cells within an area surrounding the
virtual station with a radius of 3◦ (GRACE area of influence, ver-
tical axis, black) and (b) the altimetry observation at Cahora Bassa
(vertical axis, blue). The 1 : 1 line is visualized in red. The rela-
tively strong temporal correlation between the GRACE cells could
be a result of the strong seasonality in this area.

ter sets. For example, feasible parameter sets could be dis-
carded incorrectly, which could distort results obtained by
calibrating with respect to altimetry and GRACE simultane-
ously. However, the comparison between the three altimetry-
based calibration strategies is not expected to change since
the same GRACE data were used. In other words, Altimetry
Strategy 3 is still expected to perform best when considering
these uncertainties.

Uncertainties were not only introduced by the data, but
also as a result of assumptions and simplifications. First, the
reference level h0 was assumed to be equal to the lowest river
water level observed to limit the number of calibration pa-
rameters (Altimetry Strategies 2 and 3, Water level Strate-
gies 1 and 2). However, uncertainties in the altimetry obser-
vations as explained previously influence h0 estimates, which
results in a bias between the observed and simulated stream
levels in Altimetry Strategies 2 and 3. Second, the roughness
was assumed to be constant in time, over the entire cross sec-
tion, and for all virtual stations throughout the basin (Altime-
try Strategy 3). However, this roughness can vary between 15
and 50 m1/3 s−1 for natural rivers (Vatanchi and Maghrebi,
2019; Chow, 1959), changing the simulated stream levels be-

tween 42 % and 75 % in the Luangwa basin, with the low
flows being the most sensitive. Third, all 18 virtual stations
were grouped based on their cross-section similarity to limit
the number of calibration parameters (Altimetry Strategy 2),
but differences within each group remain such that the cal-
ibration parameters related to the rating curve vary slightly
for each virtual station within a group. Fourth, the assump-
tion of a constant flow velocity in space and time affects the
timing of the simulated flow and stream levels, influencing
the comparison between model results and altimetry obser-
vations (all strategies).

Another limitation is the missing information on absolute
flow amounts when directly using (satellite-based) river wa-
ter levels for model calibration using the Spearman rank cor-
relations as a model performance metric (Altimetry Strat-
egy 1; Seibert and Vis, 2016). This resulted here in an over-
estimation of intermediate and low flows due to the non-
linear relation between stream levels and flows. In contrast,
when converting the discharge to streamwater levels, infor-
mation on absolute flow amounts was included at the cost
of introducing additional calibration parameters (Altimetry
Strategies 2 and 3), thereby increasing the degrees of free-
dom and thus the potential for parameter equifinality in the
model (Beven, 2006; Sikorska and Renard, 2017; Sun et al.,
2012).

Furthermore, it was assumed that the Nash–Sutcliffe effi-
ciency contained sufficient valuable information to describe
the model performance with respect to river water level
and total water storage when identifying feasible parame-
ter sets. This performance measure is sensitive to the sample
size, outliers, bias, and time offset (McCuen Richard et al.,
2006). Unfortunately, simulated discharge and stream levels
are prone to bias uncertainties as a result of spatio-temporal
bias in the rainfall (Le Coz and van de Giesen, 2020). In ad-
dition, altimetry observations have a limited sample size for
several virtual stations (see Table 2) and are prone to bias
due to uncertainties in the reference level h0 as mentioned
before. Moreover, a time offset in the simulated flow can oc-
cur as a result of rainfall uncertainties. As a comparison, the
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model performance with respect to altimetry only reached
up to DE,NS,SM =−1.3 for Altimetry Strategy 3, while it
reached up to ENS,SM,GE = 0.61 with respect to daily in situ
stream levels for Water level Strategy 1. Therefore, additional
study is recommended to confirm this assumption and to as-
sess which performance metric(s) would be most suitable.
The model performance with respect to discharge was evalu-
ated with respect to multiple hydrological signatures simulta-
neously (see Table 6) to assess the model’s skill at reproduc-
ing the internal dynamics of the system. Even though a few
of these signatures have some overlapping information con-
tent (McMillan et al., 2017), each signature also contains at
least some additional information not included in the other
signatures. In general, the ambition is to represent a hydro-
logical system as well as possible in a model, which critically
required that the model exhibit sufficient ability to simultane-
ously reproduce multiple flow signatures (Gupta et al., 2008;
Euser et al., 2013; Hrachowitz et al., 2014).

4.4 Comparison with previous studies

Previous studies have successfully used river altimetry data
to calibrate and evaluate rainfall–runoff models using a few
virtual stations (Sun et al., 2012; Getirana, 2010; Getirana
et al., 2010; Liu et al., 2015). In these studies, the modelled
discharge was converted to stream levels by means of a hy-
draulic model or empirical relations. Our results support sev-
eral previous findings and added a number of new ones.

Similar to previous studies, the rainfall–runoff model re-
produced river flow relatively well when calibrating on re-
motely sensed streamwater levels, preferably at several vir-
tual stations simultaneously, but discharge-based calibration
results performed significantly better (Getirana, 2010). Thus,
while river altimetry data cannot fully substitute discharge
observations, they at least provide an alternative data source
that holds information value where no reliable discharge data
are available. In addition, our results suggest that in spite of
the typically limited temporal resolution of altimetry obser-
vations, these data, when using multiple virtual stations si-
multaneously, provide enough information to select mean-
ingful model parameter sets (Seibert and Beven, 2009; Geti-
rana, 2010).

Strikingly, only limited studies combined altimetry with
GRACE observations in the calibration procedure (Kittel
et al., 2018). As altimetry observations only describe water-
level variations with no information on the flow amounts,
GRACE provides additional valuable information to con-
strain the river discharge by improving the rainfall–runoff
partitioning as demonstrated in previous studies (Rakovec
et al., 2016; Bai et al., 2018; Dembélé et al., 2020). Com-
bining both data sources in the calibration procedure allowed
for a more accurate identification of feasible parameter sets.
The model performance range with respect to discharge im-
proved fromDE,5/95 =−8.4–0.77 when using only altimetry

toDE,5/95 = 0.19–0.75 when combining GRACE and altime-
try for Altimetry Strategy 3 (see Fig. S8).

In contrast to previous studies, altimetry data originated
from five different satellite missions rather than a single one.
As a result, altimetry data were available at 18 locations
for the time period 2002 to 2016. This gave the opportu-
nity to analyse the effect of combining different numbers
of stations for calibration and evaluation. This study illus-
trated that better predictions can be achieved when using
more virtual stations for calibration. Furthermore, this study
demonstrated that in particular the combination of altimetry
with information on river geometry (cross section, gradient)
proved beneficial for the selection of feasible parameter sets
within relatively narrow bounds, comparable to the bench-
mark using discharge. Using more accurate cross-section in-
formation obtained from a detailed field survey rather than
Google Earth based estimates improved the water-level sim-
ulations, modelled rating curve, and discharge simulations
during intermediate and low flows significantly for which on-
site cross-section data were available. That is why it is rec-
ommended to acquire accurate cross-section information on
locations concurring with altimetry overpasses (not done in
this study).

4.5 Opportunities for future studies

For future studies, it will be interesting to improve Altime-
try Strategy 3 using additional data sources. For instance, the
combination of altimetry observations with river width es-
timates derived from Landsat or Sentinel-1/2 (Pekel et al.,
2016; Hou et al., 2018) may bear some potential as the
combination of the two different hydraulic variables com-
plements each other and increases the temporal sampling
(Huang et al., 2018; Tarpanelli et al., 2017; Sichangi et al.,
2016). During high flows for example, river width esti-
mates can be more accurate than altimetry observations, es-
pecially when floodplains are inundated and small water-
level changes cause large river width changes. Alternatively,
the altimetry observations used here could be combined with
river surface water-level slope estimates based on CryoSat
observations which provide water-level information at lower
temporal resolution (every 369 d) but higher spatial resolu-
tion (equatorial inter-track distance of 7.5 km) (Schneider
et al., 2017; Jiang et al., 2017). This allows for the estima-
tion of the energy gradient based on stream levels as required
in the Strickler–Manning equation, instead of the bed slope
based on topography, which proved to be a good first estimate
in the absence of more reliable data. In addition, CryoSat ob-
servations are available annually such that there can be more
overlap with altimetry observations in contrast to topogra-
phy data. With the upcoming SWOT (Surface Water Ocean
Topography) mission, more accurate altimetry observations
should be available as well as river slope observations and
width. The repeat cycle will be 21 d and across-track resolu-
tion between 10 and 60 m, increasing the number of obser-
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vation points available within a specific area (Biancamaria
et al., 2016; Langhorst et al., 2019; Oubanas et al., 2018).
As a result, hydrological models can be calibrated with re-
spect to river altimetry and width simultaneously at multiple
locations even for small river basins, improving the identifi-
cation of plausible parameter sets and hence the model re-
alism as illustrated in Sect. 4.2. It will also be very valu-
able to improve cross-section estimates with respect to the
submerged part of the cross section as already explored in
previous studies (Domeneghetti, 2016) or to use drone ob-
servations to obtain more accurate cross-section information
and estimates of the river slope and roughness (Entwistle and
Heritage, 2019). By improving the river profile description,
the simulated stream levels become more accurate, which
is crucial when using this time series for model calibration.
As illustrated with Water level Strategies 1 and 2, improv-
ing the cross section resulted in a more accurate rating curve
(Fig. 11), stream-level simulation (see Fig. 10), and discharge
simulation (Fig. 8). Clearly, it will be interesting to analyse
and disentangle different individual sources of uncertainty
related to the discharge–water-level conversion from the hy-
drological model in a more data-rich region (Renard et al.,
2010). Unfortunately, this was not possible in this study due
to the scarcely available in situ observations in Luangwa.
As concluded by Renard et al. (2010), reliable estimates of
the data uncertainty are required to disaggregate multiple
sources of uncertainty in rainfall–runoff modelling success-
fully.

5 Summary and conclusion

This study investigated the potential value of river altime-
try observations from multiple satellite missions to identify
feasible parameters for a hydrological model of the semi-
arid and poorly gauged Luangwa River basin. A distributed
process-based rainfall–runoff model with sub-grid process
heterogeneity was developed on a daily timescale for the time
period 2002 to 2016. Various parameter identification strate-
gies were implemented step-wise to assess the potential of
satellite altimetry data for model calibration. As a bench-
mark, when identifying parameter sets with the traditional
model calibration strategy using discharge data, the model
was able to simulate the flows relatively well (ENS,Q = 0.78,
ENS,Q,5/95 = 0.61–0.75). When assuming no discharge ob-
servations are available, the feasible parameter sets were re-
stricted with GRACE data only resulting in an optimum of
ENS,Q =−1.4 (ENS,Q,5/95 =−2.3–0.38) with respect to dis-
charge. Combining GRACE with altimetry data only from
18 virtual stations focusing on the water-level dynamics re-
sulted in frequently overestimated flows and poorly identified
feasible parameter sets (Altimetry Strategy 1, ENS,Q,5/95 =

−2.9–0.10). This was also the case when converting mod-
elled discharge to water levels using rating curves (Altimetry
Strategy 2, ENS,Q,5/95 =−2.6–0.25). The identification of

the feasible parameter sets improved when including river
geometry information, more specifically cross section and
river gradient extracted from Google Earth, in the discharge-
water-level conversion using the Strickler–Manning equation
(Altimetry Strategy 3, ENS,Q = 0.60, ENS,Q,5/95 =−0.31–
0.50). Moreover, it was shown that more accurate cross-
section data improved the water-level simulations, modelled
rating curve and discharge simulations during intermedi-
ate and low flows for which on-site cross-section informa-
tion was available. The Nash–Sutcliffe efficiency with re-
spect to river water levels increased from ENS,SM,GE =−1.8
(ENS,SM,GE,5/95 =−6.8 to −3.1) using river geometry infor-
mation extracted from Google Earth (Water level Strategy 1)
to ENS,SM,ADCP = 0.79 (ENS,SM,ADCP,5/95 = 0.60–0.74) us-
ing river geometry information obtained from a detailed field
survey (Water level Strategy 2). The model performance also
improved when increasing the number of virtual stations
used for parameter selection. Therefore, in the absence of re-
liable discharge data as commonly the case in poorly or un-
gauged basins, altimetry data from multiple virtual stations
combined with GRACE observations have the potential to
fill this gap if combined with river geometry estimates.
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