Articles | Volume 24, issue 1
https://doi.org/10.5194/hess-24-17-2020
https://doi.org/10.5194/hess-24-17-2020
Research article
 | Highlight paper
 | 
06 Jan 2020
Research article | Highlight paper |  | 06 Jan 2020

Seasonal partitioning of precipitation between streamflow and evapotranspiration, inferred from end-member splitting analysis

James W. Kirchner and Scott T. Allen

Related authors

Quantifying controls on rapid and delayed runoff response in double-peak hydrographs using Ensemble Rainfall-Runoff Analysis (ERRA)
Huibin Gao, Laurent Pfister, and James W. Kirchner
EGUsphere, https://doi.org/10.5194/egusphere-2025-613,https://doi.org/10.5194/egusphere-2025-613, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Climatic, topographic, and groundwater controls on runoff response to precipitation: evidence from a large-sample data set
Zahra Eslami, Hansjörg Seybold, and James W. Kirchner
EGUsphere, https://doi.org/10.5194/egusphere-2025-35,https://doi.org/10.5194/egusphere-2025-35, 2025
Short summary
Catchment hydrological response and transport are affected differently by precipitation intensity and antecedent wetness
Julia L. A. Knapp, Wouter R. Berghuijs, Marius G. Floriancic, and James W. Kirchner
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-371,https://doi.org/10.5194/hess-2024-371, 2024
Revised manuscript under review for HESS
Short summary
Characterizing nonlinear, nonstationary, and heterogeneous hydrologic behavior using ensemble rainfall–runoff analysis (ERRA): proof of concept
James W. Kirchner
Hydrol. Earth Syst. Sci., 28, 4427–4454, https://doi.org/10.5194/hess-28-4427-2024,https://doi.org/10.5194/hess-28-4427-2024, 2024
Short summary
Young and new water fractions in soil and hillslope waters
Marius G. Floriancic, Scott T. Allen, and James W. Kirchner
Hydrol. Earth Syst. Sci., 28, 4295–4308, https://doi.org/10.5194/hess-28-4295-2024,https://doi.org/10.5194/hess-28-4295-2024, 2024
Short summary

Related subject area

Subject: Ecohydrology | Techniques and Approaches: Theory development
Drought research priorities, trends, and geographic patterns
Roland Baatz, Gohar Ghazaryan, Michael Hagenlocher, Claas Nendel, Andrea Toreti, and Ehsan Eyshi Rezaei
Hydrol. Earth Syst. Sci., 29, 1379–1393, https://doi.org/10.5194/hess-29-1379-2025,https://doi.org/10.5194/hess-29-1379-2025, 2025
Short summary
Canopy structure modulates the sensitivity of subalpine forest stands to interannual snowpack and precipitation variability
Max Berkelhammer, Gerald F. M. Page, Frank Zurek, Christopher Still, Mariah S. Carbone, William Talavera, Laura Hildebrand, James Byron, Kyle Inthabandith, Angellica Kucinski, Melissa Carlson, Kelsey Foss, Wendy Brown, Rosemary W. H. Carroll, Austin Simonpietri, Marshall Worsham, Ian Breckheimer, Anna Ryken, Reed Maxwell, David Gochis, Mark S. Raleigh, Eric Small, and Kenneth H. Williams
Hydrol. Earth Syst. Sci., 29, 701–718, https://doi.org/10.5194/hess-29-701-2025,https://doi.org/10.5194/hess-29-701-2025, 2025
Short summary
Assessing recovery time of ecosystems in China: insights into flash drought impacts on gross primary productivity
Mengge Lu, Huaiwei Sun, Yong Yang, Jie Xue, Hongbo Ling, Hong Zhang, and Wenxin Zhang
Hydrol. Earth Syst. Sci., 29, 613–625, https://doi.org/10.5194/hess-29-613-2025,https://doi.org/10.5194/hess-29-613-2025, 2025
Short summary
Combined impacts of climate change and human activities on blue and green water resources in a high-intensity development watershed
Xuejin Tan, Bingjun Liu, Xuezhi Tan, Zeqin Huang, and Jianyu Fu
Hydrol. Earth Syst. Sci., 29, 427–445, https://doi.org/10.5194/hess-29-427-2025,https://doi.org/10.5194/hess-29-427-2025, 2025
Short summary
Future response of ecosystem water use efficiency to CO2 effects in the Yellow River Basin, China
Siwei Chen, Yuxue Guo, Yue-Ping Xu, and Lu Wang
Hydrol. Earth Syst. Sci., 28, 4989–5009, https://doi.org/10.5194/hess-28-4989-2024,https://doi.org/10.5194/hess-28-4989-2024, 2024
Short summary

Cited articles

Ali, G., Tetzlaff, D., Mcdonnell, J. J., Soulsby, C., Carey, S., Laudon, H., McGuire, K., Buttle, J., Seibert, J., and Shanley, J.: Comparison of threshold hydrologic response across northern catchments, Hydrol. Process., 29, 3575–3591, https://doi.org/10.1002/hyp.10527, 2015. 
Allen, S. T., Keim, R. F., Barnard, H. R., McDonnell, J. J., and Brooks, J. R.: The role of stable isotopes in understanding rainfall interception processes: A review, WIREs Water, 4, 1–17, https://doi.org/10.1002/wat2.1187, 2017. 
Allen, S. T., Kirchner, J. W., Braun, S., Siegwolf, R. T. W., and Goldsmith, G. R.: Seasonal origins of soil water used by trees, Hydrol. Earth Syst. Sci., 23, 1199–1210, https://doi.org/10.5194/hess-23-1199-2019, 2019a. 
Allen, S. T., von Freyberg, J., Weiler, M., Goldsmith, G. R., and Kirchner, J. W.: The seasonal origins of streamwater in Switzerland, Geophys. Res. Lett., 46, 10425–10434, https://doi.org/10.1029/2019GL084552, 2019b. 
Bailey, A. S., Hornbeck, J. W., Campbell, J. L., and Eagar, C.: Hydrometerological database for Hubbard Brook Experimental Forest, 1955–2000, U.S. Forest Service General Technical Report NE-305, Newtown Square, PA, 2003. 
Download
Short summary
Perhaps the oldest question in hydrology is Where does water go when it rains?. Here we present a new way to measure how the terrestrial water cycle partitions precipitation into its two ultimate fates: green water that is evaporated or transpired back to the atmosphere and blue water that is discharged to stream channels. Our analysis may help in gauging the vulnerability of both water resources and terrestrial ecosystems to changes in rainfall patterns.
Share