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S1.1 Gaussian error propagation 

In our paper, we calculate all uncertainties in derived quantities using Gaussian error propagation.  Gaussian error 

propagation has found widespread application in many scientific disciplines, and for good reason: it is relatively 

straightforward to apply, its data requirements are modest, and its underlying assumptions are reasonable approximations for 

many real-world cases.  Consider, for example, a function of several variables 𝑧 ൌ 𝑓ሺ𝑤, 𝑥,𝑦, … ሻ.  The Gaussian error 5 

propagation formula approximates the standard error in 𝑧 as a function of the standard errors of each of the inputs, as 

follows:  
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where each of the terms includes an estimate of the uncertainty in each input (as expressed by its standard error), multiplied 

by 𝑧's sensitivity to that input, as expressed by the partial derivative of the function 𝑓, evaluated at the central estimates for 10 

all of the input variables (Kirchner, 2001). 

 

Gaussian error propagation assumes that the uncertainties in each of the input variables are uncorrelated with one another.  

However, and contrary to what is sometimes claimed, it makes no assumption whatsoever concerning how those variables 

are distributed (Gauss, 1823); the term "Gaussian" refers to Carl Friedrich Gauss and not to the probability distribution that 15 

also bears his name.  Gaussian error propagation also makes no specific assumption about the form of the function 𝑓, but of 

course the approximations implied by the derivatives will be more exact, the closer 𝑓 is to a linear function of each of the 

input variables.  In the special case where 𝑓 is a linear function of all the input variables (as is the case for the weighted 

average in Eq. S4, below), Eq. (S1) will be exact rather than an approximation.   

 20 

The assumption that the input uncertainties are independent will, particularly in the case of mass balances, often lead to 

somewhat conservative (i.e., somewhat too large) uncertainty estimates for the result z.  For example, if we are solving for 

the mass balance 𝐸𝑇 ൌ 𝑃 െ 𝑄, and our estimates of the input uncertainties are obtained from the variability in water-year 

averages of 𝑃 and 𝑄, Eq. (S1) will overestimate the uncertainty in ET because all else equal, years with higher 𝑃 will also 

tend to have higher 𝑄, so part of the uncertainties in 𝑃 and 𝑄 will tend to cancel each other out.  Where the uncertainties in 25 

the inputs are correlated, and those correlations can themselves be estimated, a more accurate estimate of the uncertainty in z 

can be obtained using first-order, second-moment error propagation, 
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where the correlation coefficients 𝑟௫௬ (etc.) express the correlations between the uncertainties in the measurements or 

estimates of the corresponding variables, which often will differ from the correlations between the variables themselves; see 30 

Kirchner (2001) for details.  For the analysis presented here, the more complex approach of Eq. (S2) would provide little 

advantage over the simpler approach of Eq. (S1), because the most consequential uncertainties are those in the isotope 

measurements, which are not generally correlated with one another. 

S1.2 Standard errors of weighted averages 

Weighted averages are widely used in isotope hydrology, and in environmental science more broadly.  The formula for 35 

calculating the standard error of an unweighted average of 𝑛 measurements 𝑦௜ is well known: 
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where the factor of 𝑛/ሺ𝑛 െ 1ሻ corrects for the underestimation bias in the estimated variance as the degrees of freedom 

become small.  (If, for example, one had only one measurement, 𝑦௜ would equal 𝑦ത, but the variance in 𝑦 should be 

undefined, rather than zero.  The factor of 𝑛 െ 1 guarantees this result.) 40 

 

But what if we instead have a weighted average of the form  

𝑦ത୵୲ୢ ൌ
∑𝑤௜ 𝑦௜
∑𝑤௜

     , ሺS4ሻ 

where the individual weights 𝑤௜ represent the precipitation or streamflow associated with each measurement 𝑦௜, or some 

other measure of the importance of each 𝑦௜ as a component of the mean?  Applying Gaussian error propagation to Eq. (S4), 45 

under the assumption that the uncertainties in the 𝑦௜ 's are independent and identically distributed, directly yields 
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where var୵୲ୢሺ𝑦ሻ is a weighted estimate of the variance (i.e., the squared uncertainty) in each of the 𝑦௜, and 𝑛ୣ୤୤ is the 

effective sample size,  
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a formula often attributed to Kish (1995).  If all of the weights 𝑤௜ are the same, 𝑛ୣ୤୤ will equal n.  The more uneven the 

weights are, the smaller 𝑛ୣ୤୤ will be in relation to n; in the limiting case that all of the weight is contained in a single 

measurement, 𝑛ୣ୤୤ will equal 1.   

 

The remaining issue is how to estimate the weighted variance.  Intuition suggests that it must be a weighted average of the 55 

squared deviations of the individual 𝑦௜ from 𝑦ത୵୲ୢ,  
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and that is nearly correct.  However, as the weights 𝑤௜ become more and more uneven, 𝑦ത୵୲ୢ will come closer and closer to 

the points that carry most of the weight, leading to a downward bias in var୵୲ୢሺ𝑦ሻ; in the limiting case that all of the weight 

is contained in a single measurement, 𝑦ത୵୲ୢ will exactly equal that measurement and Eq. (S7) will return a weighted variance 60 

of zero.  One can eliminate this bias using a degree-of-freedom correction similar to Eq. (S3), but with 𝑛ୣ୤୤ instead of n (see 

Galassi et al., 2016): 

var୵୲ୢሺ𝑦ሻ ൌ
∑𝑤௜ ሺ𝑦௜ െ 𝑦ത୵୲ୢሻଶ

∑𝑤௜
 
𝑛ୣ୤୤

𝑛ୣ୤୤ െ 1
ൌ  
∑𝑤௜ ሺ𝑦௜ െ 𝑦ത୵୲ୢሻଶ

∑𝑤௜
 

ሺ∑𝑤௜ሻଶ

ሺ∑𝑤௜ሻଶ െ ∑𝑤௜
ଶ    . ሺS8ሻ 

Combining Eqs. (S8) and (S5) yields the standard error of the weighted average 𝑦ത୵୲ୢ: 
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 65 

We have used Eq. (S9) to estimate the uncertainties in the weighted-average isotopic compositions of the end-members and 

mixtures, because Monte Carlo benchmark tests have shown that it accurately estimates the root-mean-square error in 

weighted averages across widely varying conditions (Kirchner, 2006).  

 

Readers should be aware, however, that many statistical software packages will calculate a different weighted standard error, 70 

which is based on different assumptions and yields very different behavior.  Specifically, the weighted standard error that is 

calculated by many software packages assumes that the weights 𝑤௜ are equal to the inverse of the variances of the individual 

measurements 𝑦௜, and thus that the points with greater weight are more precisely known than the ones with less weight.  (A 
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slightly different starting point, namely that each of the 𝑦௜ is itself an average of 𝑤௜ individual measurements with equal 

variance, leads to the same assumption).  Under those assumptions (which usually do not apply to the typical weighted 75 

averages used in hydrology, and in environmental science more generally), using inverse-variance weights 𝑤௜ in Eq. (S4) 

yields a maximum likelihood estimate of  𝑦ത୵୲ୢ, with a standard error of  
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Readers will notice that Eq. (S10) has the same form as Eq. (S9), but with 𝑛 in place of 𝑛ୣ୤୤.  This difference is crucial.  As 

the weights 𝑤௜ become more uneven, uncertainty estimates derived from Eq. (S9) will increase, as they should, because with 80 

fewer points exerting significant influence on the average, the uncertainty in the average must grow.  But under exactly the 

same conditions, uncertainty estimates derived from Eq. (S10) will become smaller, not larger.  In the limiting case of a 

single 𝑦௜ that carries all the weight in the data set, with the other points having no weight at all, Eq. (S10) will return a 

standard error of zero, whereas Eq. (S9) will return a standard error of infinity. 

 85 

Weighted averages that are commonly encountered in environmental science (such as volume-weighted means in 

precipitation or streamflow) are consistent with the assumptions underlying Eq. (S9) but not Eq. (S10).  Monte Carlo 

benchmark tests show that uncertainties in these averages will be underestimated by Eq. (S10), potentially by large factors, 

but will be correctly estimated by Eq. (S9) (Kirchner, 2006).  Thus it is important for environmental scientists to determine – 

using benchmark tests if necessary – which standard error calculations their software is actually performing. 90 

S2.1  Uncertainty in end-member mixing fractions 

Applying Gaussian error propagation to the end-member mixing formula (Eq. 11) yields 
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and writing out the partial derivatives gives (see also Genereux, 1998) 
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One can also re-cast Eq. (S12) in a slightly simpler form by dividing both sides by 𝑓 ౩←୔౩, yielding 
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where 𝑓 ౩←୔౭ ൌ 1 െ 𝑓 ౩←୔౩.  Error propagation equations of the form of (S13) have the advantage that one can readily 

assess whether each of the contributing uncertainties is large or small.  For example, the uncertainty in 𝛿̅୕ ౩ is "large" (in the 

sense that it leads to a large percentage uncertainty in 𝑓 ౩←୔౩) if it is large compared to 𝛿̅୕ ౩ െ 𝛿୔̅౭.  Appropriate substitution 100 

of variables will yield analogous error propagation formulas for the other end-member mixing fractions (𝑓 ౩←୔౭, 𝑓 ౭←୔౩, 

𝑓 ౭←୔౭, 𝑓 ←୔౩, and 𝑓 ←୔౭).   

S2.2  Uncertainty in end-member splitting proportions 

One can estimate the uncertainty in the fraction of summer precipitation becoming summer streamflow, 𝜂୔౩→୕౩, by applying 

Gaussian error propagation to Eq. (22): 105 
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Writing out the partial derivatives and simplifying terms, in particular by substituting 𝜂୔౩→୕౩ itself for 
ொ౩
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Dividing both sides by 𝜂୔౩→୕౩ yields the error propagation formula in an even simpler ratio form,  110 
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If one has already evaluated the uncertainty in 𝑓 ౩←୔౩, the uncertainty in the end-member splitting proportion 𝜂୔౩→୕౩ can be 

even more straightforwardly expressed as 

SE൫𝜂୔౩→୕౩൯

𝜂୔౩→୕౩
ൌ ඨቆ

SE൫𝑓 ౩←୔౩൯

𝑓 ౩←୔౩
ቇ
ଶ

൅ ቆ
SEሺ𝑄ୱሻ

𝑄ୱ
ቇ
ଶ

൅ ቆെ
SEሺ𝑃ୱሻ

𝑃ୱ
ቇ
ଶ

   . ሺS17ሻ 

Appropriate substitution of variables will yield analogous error propagation formulas for the other end-member splitting 115 

proportions (𝜂୔౩→୕౭, 𝜂୔౩→୕, 𝜂୔౭→୕౩, 𝜂୔౭→୕౭, and 𝜂୔౭→୕).  Because 𝜂୔౩→୉୘ ൌ 1 െ 𝜂୔౩→୕, the uncertainty in  𝜂୔౩→୉୘ will 

equal the uncertainty in 𝜂୔౩→୕; likewise the uncertainty in  𝜂୔౭→୉୘ will equal the uncertainty in 𝜂୔౭→୕.  

S2.3  Uncertainty in seasonal origins of evapotranspiration 

One can estimate the uncertainty in the fraction of ET originating from summer precipitation, 𝑓୉୘←୔౩, by applying Gaussian 

error propagation to Eq. 18: 120 
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Writing out the partial derivatives gives the result 
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൫𝛿୔̅౩ െ 𝛿୔̅౭൯

ଶ SE൫𝛿୔̅౭൯ቍ

ଶ

൅ ቆ
𝑄
𝐸𝑇

SE൫𝛿̅୕ ൯

𝛿୔̅౩ െ 𝛿୔̅౭
ቇ
ଶ

൅൭ቆ
1
𝐸𝑇

െ
𝑃ୱ െ 𝑄 𝑓 ←୔౩

𝐸𝑇ଶ
ቇ SEሺ𝑃ୱሻ൱

ଶ

൅ ൭െ
𝑃ୱ െ 𝑄 𝑓 ←୔౩

𝐸𝑇ଶ
SEሺ𝑃୵ሻ൱

ଶ

൅൭ቆെ
 𝑓 ←୔౩

𝐸𝑇
൅
𝑃ୱ െ 𝑄 𝑓 ←୔౩

𝐸𝑇ଶ
ቇ SEሺ𝑄ሻ൱

ଶ

 , ሺS19ሻ 

where 𝐸𝑇 ൌ 𝑃ୱ ൅ 𝑃୵ െ  𝑄 and  𝑓 ←୔౩ ൌ ൫𝛿̅୕ െ 𝛿୔̅౭൯/൫𝛿୔̅౩ െ 𝛿୔̅౭൯.  Equation (S19) can be simplified somewhat to yield 
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SE൫𝑓୉୘←୔౩൯ ൌ

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓

ለ⃓

ቆ
𝑄 𝑓 ←୔౩

𝐸𝑇

SE൫𝛿୔̅౩൯

𝛿୔̅౩ െ 𝛿୔̅౭
ቇ
ଶ

൅ ቆ
𝑄 𝑓 ←୔౭

𝐸𝑇
SE൫𝛿୔̅౭൯

𝛿୔̅౭ െ 𝛿୔̅౩
ቇ
ଶ

൅ ቆ
𝑄
𝐸𝑇

SE൫𝛿̅୕ ൯

𝛿୔̅౩ െ 𝛿୔̅౭
ቇ
ଶ

൅൭
 𝑓୉୘←୔౭
𝐸𝑇

SEሺ𝑃ୱሻ൱

ଶ

൅ ൭െ
 𝑓୉୘←୔౩
𝐸𝑇

SEሺ𝑃୵ሻ൱

ଶ

൅൭
 𝑓୉୘←୔౩ െ  𝑓 ←୔౩

𝐸𝑇
SEሺ𝑄ሻ൱

ଶ

   , ሺS20ሻ 125 

where  𝑓 ←୔౭ ൌ 1 െ  𝑓 ←୔౩ ൌ ൫𝛿̅୕ െ 𝛿୔̅౩൯/൫𝛿୔̅౭ െ 𝛿୔̅౩൯ and  𝑓୉୘←୔౭ ൌ 1 െ  𝑓୉୘←୔౩.  Appropriate substitution of variables 

will yield a similar error propagation formula for  𝑓୉୘←୔౭.   

S2.4  Uncertainty in inferred isotopic composition of evapotranspiration 

One can estimate the uncertainty in the isotopic composition of ET, 𝛿୉̅୘, by applying Gaussian error propagation to Eq. 21: 

SE൫𝛿୉̅୘൯ ൌ

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
ለ

ቌ
𝜕𝛿୉̅୘
𝜕𝛿୔̅౩

SE൫𝛿୔̅౩൯ቍ

ଶ

൅ ቌ
𝜕𝛿୉̅୘
𝜕𝛿୔̅౭

SE൫𝛿୔̅౭൯ቍ

ଶ

൅ ቌ
𝜕𝛿୉̅୘
𝜕𝛿̅୕

SE൫𝛿̅୕ ൯ቍ

ଶ

൅൭
𝜕𝛿୉̅୘
𝜕𝑃ୱ

SEሺ𝑃ୱሻ൱

ଶ

൅ ൭
𝜕𝛿୉̅୘
𝜕𝑃୵

SEሺ𝑃୵ሻ൱

ଶ

൅ ൭
𝜕𝛿୉̅୘
𝜕𝑄

SEሺ𝑄ሻ൱

ଶ
   . ሺS21ሻ 130 

Writing out the partial derivatives and simplifying terms gives the result 

SE൫𝛿୉̅୘൯ ൌ

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓

ለ⃓
ቆ
𝑃ୱ
𝐸𝑇

SE൫𝛿୔̅౩൯ቇ
ଶ

൅ ቆ
𝑃୵
𝐸𝑇

SE൫𝛿୔̅౭൯ቇ
ଶ

൅ ቆ
െ𝑄
𝐸𝑇

SE൫𝛿̅୕ ൯ቇ
ଶ

൅ቌ
𝛿୔̅౩ െ 𝛿୉̅୘

𝐸𝑇
SEሺ𝑃ୱሻቍ

ଶ

൅ ቌ
𝛿୔̅౭ െ 𝛿୉̅୘

𝐸𝑇
SEሺ𝑃୵ሻቍ

ଶ

൅ ቌ
𝛿୉̅୘ െ 𝛿̅୕

𝐸𝑇
SEሺ𝑄ሻቍ

ଶ   . ሺS22ሻ 
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