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S1.1 Gaussian error propagation

In our paper, we calculate all uncertainties in derived quantities using Gaussian error propagation. Gaussian error
propagation has found widespread application in many scientific disciplines, and for good reason: it is relatively
straightforward to apply, its data requirements are modest, and its underlying assumptions are reasonable approximations for
many real-world cases. Consider, for example, a function of several variables z = f(w, x, y, ...). The Gaussian error
propagation formula approximates the standard error in z as a function of the standard errors of each of the inputs, as

follows:

2 2 2

d a a

SE(z) = —fSE(W) + —fSE(x) + —fSE(y) + (S1)
ow dx dy

where each of the terms includes an estimate of the uncertainty in each input (as expressed by its standard error), multiplied

by z's sensitivity to that input, as expressed by the partial derivative of the function f, evaluated at the central estimates for

all of the input variables (Kirchner, 2001).

Gaussian error propagation assumes that the uncertainties in each of the input variables are uncorrelated with one another.
However, and contrary to what is sometimes claimed, it makes no assumption whatsoever concerning how those variables
are distributed (Gauss, 1823); the term "Gaussian" refers to Carl Friedrich Gauss and not to the probability distribution that
also bears his name. Gaussian error propagation also makes no specific assumption about the form of the function f, but of
course the approximations implied by the derivatives will be more exact, the closer f is to a linear function of each of the
input variables. In the special case where f is a linear function of all the input variables (as is the case for the weighted

average in Eq. S4, below), Eq. (S1) will be exact rather than an approximation.

The assumption that the input uncertainties are independent will, particularly in the case of mass balances, often lead to
somewhat conservative (i.e., somewhat too large) uncertainty estimates for the result z. For example, if we are solving for
the mass balance ET = P — @, and our estimates of the input uncertainties are obtained from the variability in water-year
averages of P and Q, Eq. (S1) will overestimate the uncertainty in ET because all else equal, years with higher P will also
tend to have higher @, so part of the uncertainties in P and Q will tend to cancel each other out. Where the uncertainties in
the inputs are correlated, and those correlations can themselves be estimated, a more accurate estimate of the uncertainty in z

can be obtained using first-order, second-moment error propagation,
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2 2 2
of of af
SE(2) = |+ 27, (% SE(W)> (% SE(x)> + 21, (% SE(W)> (ﬁ SE(y)) , (S2)

dy
+ 21y, (% SE(x)> (% SE(y)> 4o

where the correlation coefficients 7, (etc.) express the correlations between the uncertainties in the measurements or

e

estimates of the corresponding variables, which often will differ from the correlations between the variables themselves; see
Kirchner (2001) for details. For the analysis presented here, the more complex approach of Eq. (S2) would provide little
advantage over the simpler approach of Eq. (S1), because the most consequential uncertainties are those in the isotope

measurements, which are not generally correlated with one another.

S1.2 Standard errors of weighted averages

Weighted averages are widely used in isotope hydrology, and in environmental science more broadly. The formula for

calculating the standard error of an unweighted average of n measurements y; is well known:

var =% n
SE(¥) = 82 where var(y) = 20: =) , (S3)
n n—1
where the factor of n/(n — 1) corrects for the underestimation bias in the estimated variance as the degrees of freedom
become small. (If, for example, one had only one measurement, y; would equal y, but the variance in y should be
undefined, rather than zero. The factor of n — 1 guarantees this result.)
But what if we instead have a weighted average of the form
2wy
S ) S4
Ywtd Z w; ( )

where the individual weights w; represent the precipitation or streamflow associated with each measurement y;, or some
other measure of the importance of each y; as a component of the mean? Applying Gaussian error propagation to Eq. (S4),

under the assumption that the uncertainties in the y;'s are independent and identically distributed, directly yields

2wl varww() _ |varwa ()
SE(thd) _\/ (Z Wi)z - \/ Nege ) (SS)
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where var,,q(y) is a weighted estimate of the variance (i.e., the squared uncertainty) in each of the y;, and ng is the
effective sample size,

Ew)?

Nefr = Swi (s6)
l

a formula often attributed to Kish (1995). If all of the weights w; are the same, n.¢ will equal n. The more uneven the
weights are, the smaller n.¢ will be in relation to #; in the limiting case that all of the weight is contained in a single

measurement, g will equal 1.

The remaining issue is how to estimate the weighted variance. Intuition suggests that it must be a weighted average of the

squared deviations of the individual y; from Y4,

(v: — 7 2
vara(y) = 2T (s7)

and that is nearly correct. However, as the weights w; become more and more uneven, y,,:q Will come closer and closer to
the points that carry most of the weight, leading to a downward bias in var,,q(y); in the limiting case that all of the weight
is contained in a single measurement, y,.q Will exactly equal that measurement and Eq. (S7) will return a weighted variance
of zero. One can eliminate this bias using a degree-of-freedom correction similar to Eq. (S3), but with n.g instead of n (see

Galassi et al., 2016):

Ywi Vi — Fwea)®  Nefr _ Iw; Vi = Pwra)? Ewy)?

varyq(y) = (S8)
e Swi  ner—1 Sw,  @Ew)i-zw}
Combining Egs. (S8) and (S5) yields the standard error of the weighted average Vq:
g y g g
2 Wi (Vi = Ywea)® _ Mesr — .
SE(y d) — Z Wi neff - 1 — Z Wi (yl - thd)Z Z Wi (Sg)
we Nefr X w; Ew)2-% Wiz

We have used Eq. (S9) to estimate the uncertainties in the weighted-average isotopic compositions of the end-members and
mixtures, because Monte Carlo benchmark tests have shown that it accurately estimates the root-mean-square error in

weighted averages across widely varying conditions (Kirchner, 2006).

Readers should be aware, however, that many statistical software packages will calculate a different weighted standard error,
which is based on different assumptions and yields very different behavior. Specifically, the weighted standard error that is
calculated by many software packages assumes that the weights w; are equal to the inverse of the variances of the individual

measurements y;, and thus that the points with greater weight are more precisely known than the ones with less weight. (A



75

80

85

90

95

slightly different starting point, namely that each of the y; is itself an average of w; individual measurements with equal
variance, leads to the same assumption). Under those assumptions (which usually do not apply to the typical weighted
averages used in hydrology, and in environmental science more generally), using inverse-variance weights w; in Eq. (S4)

yields a maximum likelihood estimate of ¥,,q, With a standard error of

var’ w; Vi = Vwra)® 1
SEGwa) = [ where var ) = S B (510)
L

Readers will notice that Eq. (S10) has the same form as Eq. (S9), but with n in place of nyg. This difference is crucial. As

the weights w; become more uneven, uncertainty estimates derived from Eq. (S9) will increase, as they should, because with
fewer points exerting significant influence on the average, the uncertainty in the average must grow. But under exactly the
same conditions, uncertainty estimates derived from Eq. (S10) will become smaller, not larger. In the limiting case of a
single y; that carries all the weight in the data set, with the other points having no weight at all, Eq. (S10) will return a

standard error of zero, whereas Eq. (S9) will return a standard error of infinity.

Weighted averages that are commonly encountered in environmental science (such as volume-weighted means in
precipitation or streamflow) are consistent with the assumptions underlying Eq. (S9) but not Eq. (S10). Monte Carlo
benchmark tests show that uncertainties in these averages will be underestimated by Eq. (S10), potentially by large factors,
but will be correctly estimated by Eq. (S9) (Kirchner, 2006). Thus it is important for environmental scientists to determine —

using benchmark tests if necessary — which standard error calculations their software is actually performing.

S2.1 Uncertainty in end-member mixing fractions

Applying Gaussian error propagation to the end-member mixing formula (Eq. 11) yields

2 2 2
SE(fosep,) = ];Q(;“PS SE(6q,) | + 9 QS“"S X SE(6p,) | + o QS“"S LSRG, ) | (s11)

PS w

and writing out the partial derivatives gives (see also Genereux, 1998)
(5,) ; 5, — 6 2

SE(dq ) 8o dp, — 8

SE(fo.cp.) = |[[=—==) + —_— + S— SE(6 . (812)
)= (5 S50) |-Gy ) )

One can also re-cast Eq. (S12) in a slightly simpler form by dividing both sides by fq_p,, yielding



= 2
st‘_Ps 5Qs - 6Pw 5Pw 6Ps P 5Qs - 6Pw ’
where fo.cp,, = 1 — fo,cp,- Error propagation equations of the form of (S13) have the advantage that one can readily
assess whether each of the contributing uncertainties is large or small. For example, the uncertainty in ng is "large" (in the

100  sense that it leads to a large percentage uncertainty in fo_p,) if it is large compared to ng - gpw. Appropriate substitution

of variables will yield analogous error propagation formulas for the other end-member mixing fractions (fo —p,,> fq,,<Ps>

fawepy» faepg and focp,,).

S2.2 Uncertainty in end-member splitting proportions

One can estimate the uncertainty in the fraction of summer precipitation becoming summer streamflow, np__,q,, by applying

105  Gaussian error propagation to Eq. (22):

2 2 2

anl:’s—>Qs 'S anl:’s—>Qs < anps—’Qs
25y, SE(Sq,) | + 95n, SE(Sp,) | + 25, —=—=SE(bp,,)

2 2
+ (a""S*QS SE(QS)> (G”PS*QS SEC, ))

SE(np,-q.) = (s14)

90, aP,

=

Writing out the partial derivatives and simplifying terms, in particular by substituting 7p__,q, itself for & 5 SQS—E , gives the
s OPg—OPy

result

2 2 2

Mps-Q = Qs fQ Py
SE(§, + | =——=—-SE(6 + —==w gE(§

v ; , v . (S15)
rlps_’QS rlps_’QS
I () (o)

110 Dividing both sides by 7p__,q yields the error propagation formula in an even simpler ratio form,

SE(nPS_’Qs) =

l( SE(8q,) >2 + ( SE(6,) )2 + (st‘—Pw SE(Se,,) )2

SE(nPS_’QS) _ I gpw - gps st‘_PS gPS — gpw
|

SEQ:)\* | [ SE(®)\’
V)

8o. — 6,
Qs Pw (816)
nPs—’Qs




If one has already evaluated the uncertainty in f, p,, the uncertainty in the end-member splitting proportion 7p__,q can be

even more straightforwardly expressed as

SE(1ps-q,) _ J(SE(steps)>2+<SE(Qs)>2 +<_%>2 . (817)

r’Ps_’Qs fQS<—PS QS PS

115 Appropriate substitution of variables will yield analogous error propagation formulas for the other end-member splitting
Proportions (Mp q,,» Mps—Q> MPy—-Qs» NPy -Quw> a0d Mp,q). Because np gt = 1 — 1p__q, the uncertainty in 1p__gr will

equal the uncertainty in 1p__,q; likewise the uncertainty in 7p gt will equal the uncertainty in 7p_, _.q.

S2.3 Uncertainty in seasonal origins of evapotranspiration

One can estimate the uncertainty in the fraction of ET originating from summer precipitation, fgrcp,, by applying Gaussian

120  error propagation to Eq. 18:

2 2 2
O0fgre - Ofere - Ofere -
Ferors su(6p,) |+ [ ZLEPesn(s,) | + | ZEPesn(sy)
96p, s 96p,, w 064
SE(fercp,) = . , - (s18)
0ferep, 0fprery, Oferep,
\ +< aP, SE(R) | + WSE(PW) + 20 SE(Q)
Writing out the partial derivatives gives the result
8g — 6 - ) _ SE(6,
200t ) | S5, |+ ()
ET (5Ps - 5Pw) ET (51:’5 - 5Pw) ET é‘Ps - 6Pw
2 2
SE(fercs,) = 1 5= _K=QJeer, : (519)
+ 5T £72 SE(R) | + FT2 SE(P,)
2
foep, | B —Q foep,
\ +<<_ ET ' ET? SE(Q)

where ET = Ps + P, — Q and fo p, = (EQ - Spw) / (gps - 5pw). Equation (S19) can be simplified somewhat to yield



ET  8p, —dp,,

125

SE(fETePS) =

ET

\

where fQ(_pw =1- fQ<_pS = (gQ - gps)/(gpw - gps) and fET(—PW =1

will yield a similar error propagation formula for fgrcp,,.

(Q foep, SE(8p,) )2 .\ (Q foepy, SE(8p,) >2 . (iﬂy

ET  &p,, — bp,

ferep,, :
+< T SE(PS)> +<—

2
+ ( fET<—PS - fQ<—PS SE(Q))

ET bp — Sp,,

(S20)

2
ferep,

— ferep,- Appropriate substitution of variables

S2.4 Uncertainty in inferred isotopic composition of evapotranspiration

One can estimate the uncertainty in the isotopic composition of ET, §gr, by applying Gaussian error propagation to Eq. 21:

2
_ a4,
= SE(G,) | +| 5 S:T

130 SE(SET) = w

Writing out the partial derivatives and simplifying terms gives the result

SE(Sp,,) | +

2 2

%SE(SQ)
¢ (s21)

— 2 - 2 = 2
0%Er 06gT 0%ET
() (B (S

SE(6gr) = _ _ 2 _
(87) b =dor | (5
= S

ET ET

(é’_T SE(5p5)>2 + (g—“; SE(SPW)>

-4
Zw__EToppp,) | +

2

2
+ (g SE(SQ)>
2 _ _ 2, (S22)
SET - 6Q
—Er SE(Q)
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