Articles | Volume 24, issue 3
https://doi.org/10.5194/hess-24-1159-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-1159-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Recession analysis revisited: impacts of climate on parameter estimation
Department of Biological and Ecologic Engineering, Oregon State
University, Corvallis, OR 97330, USA
David E. Rupp
Oregon Climate Change Research Institute, College of Earth, Oceanic, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97330, USA
Clément Roques
Department of Earth Sciences, ETH Zurich, 8092 Zürich, Switzerland
John S. Selker
Department of Biological and Ecologic Engineering, Oregon State
University, Corvallis, OR 97330, USA
Related authors
Clément Roques, David E. Rupp, Jean-Raynald de Dreuzy, Laurent Longuevergne, Elizabeth R. Jachens, Gordon Grant, Luc Aquilina, and John S. Selker
Hydrol. Earth Syst. Sci., 26, 4391–4405, https://doi.org/10.5194/hess-26-4391-2022, https://doi.org/10.5194/hess-26-4391-2022, 2022
Short summary
Short summary
Streamflow dynamics are directly dependent on contributions from groundwater, with hillslope heterogeneity being a major driver in controlling both spatial and temporal variabilities in recession discharge behaviors. By analysing new model results, this paper identifies the major structural features of aquifers driving streamflow dynamics. It provides important guidance to inform catchment-to-regional-scale models, with key geological knowledge influencing groundwater–surface water interactions.
Etienne Marti, Sarah Leray, and Clément Roques
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-381, https://doi.org/10.5194/hess-2024-381, 2024
Preprint under review for HESS
Short summary
Short summary
We show that the response of groundwater-dependent wetlands to recharge changes can be predicted based on landform properties, providing a practical approach for wetland vulnerability assessment. We reveal that mountain catchments are less sensitive to recharge changes than lowland catchments. It offers insights for evaluating the vulnerability of catchments to climate change impacts and has direct implications for water resource management and conservation planning in diverse landscapes.
Cyprien Louis, Landon J. S. Halloran, and Clément Roques
EGUsphere, https://doi.org/10.5194/egusphere-2024-927, https://doi.org/10.5194/egusphere-2024-927, 2024
Short summary
Short summary
We investigate an undocumented rock glacier (RG) and its role in subsurface hydrological processes in an alpine catchment. We compare aerial photos to calculate the creeping velocity of the RG and measure geochemical parameters of water in springs located below the RG. We also investigate the intensity and time-shift of daily melt and dilution processes in a new way to show how the RG and springs are connected. This study improves our conceptual understanding of RG-groundwater interactions.
Ronan Abhervé, Clément Roques, Alexandre Gauvain, Laurent Longuevergne, Stéphane Louaisil, Luc Aquilina, and Jean-Raynald de Dreuzy
Hydrol. Earth Syst. Sci., 27, 3221–3239, https://doi.org/10.5194/hess-27-3221-2023, https://doi.org/10.5194/hess-27-3221-2023, 2023
Short summary
Short summary
We propose a model calibration method constraining groundwater seepage in the hydrographic network. The method assesses the hydraulic properties of aquifers in regions where perennial streams are directly fed by groundwater. The estimated hydraulic conductivity appear to be highly sensitive to the spatial extent and density of streams. Such an approach improving subsurface characterization from surface information is particularly interesting for ungauged basins.
Clément Roques, David E. Rupp, Jean-Raynald de Dreuzy, Laurent Longuevergne, Elizabeth R. Jachens, Gordon Grant, Luc Aquilina, and John S. Selker
Hydrol. Earth Syst. Sci., 26, 4391–4405, https://doi.org/10.5194/hess-26-4391-2022, https://doi.org/10.5194/hess-26-4391-2022, 2022
Short summary
Short summary
Streamflow dynamics are directly dependent on contributions from groundwater, with hillslope heterogeneity being a major driver in controlling both spatial and temporal variabilities in recession discharge behaviors. By analysing new model results, this paper identifies the major structural features of aquifers driving streamflow dynamics. It provides important guidance to inform catchment-to-regional-scale models, with key geological knowledge influencing groundwater–surface water interactions.
Toby D. Jackson, Sarab Sethi, Ebba Dellwik, Nikolas Angelou, Amanda Bunce, Tim van Emmerik, Marine Duperat, Jean-Claude Ruel, Axel Wellpott, Skip Van Bloem, Alexis Achim, Brian Kane, Dominick M. Ciruzzi, Steven P. Loheide II, Ken James, Daniel Burcham, John Moore, Dirk Schindler, Sven Kolbe, Kilian Wiegmann, Mark Rudnicki, Victor J. Lieffers, John Selker, Andrew V. Gougherty, Tim Newson, Andrew Koeser, Jason Miesbauer, Roger Samelson, Jim Wagner, Anthony R. Ambrose, Andreas Detter, Steffen Rust, David Coomes, and Barry Gardiner
Biogeosciences, 18, 4059–4072, https://doi.org/10.5194/bg-18-4059-2021, https://doi.org/10.5194/bg-18-4059-2021, 2021
Short summary
Short summary
We have all seen trees swaying in the wind, but did you know that this motion can teach us about ecology? We summarized tree motion data from many different studies and looked for similarities between trees. We found that the motion of trees in conifer forests is quite similar to each other, whereas open-grown trees and broadleaf forests show more variation. It has been suggested that additional damping or amplification of tree motion occurs at high wind speeds, but we found no evidence of this.
Alba Zappone, Antonio Pio Rinaldi, Melchior Grab, Quinn C. Wenning, Clément Roques, Claudio Madonna, Anne C. Obermann, Stefano M. Bernasconi, Matthias S. Brennwald, Rolf Kipfer, Florian Soom, Paul Cook, Yves Guglielmi, Christophe Nussbaum, Domenico Giardini, Marco Mazzotti, and Stefan Wiemer
Solid Earth, 12, 319–343, https://doi.org/10.5194/se-12-319-2021, https://doi.org/10.5194/se-12-319-2021, 2021
Short summary
Short summary
The success of the geological storage of carbon dioxide is linked to the availability at depth of a capable reservoir and an impermeable caprock. The sealing capacity of the caprock is a key parameter for long-term CO2 containment. Faults crosscutting the caprock might represent preferential pathways for CO2 to escape. A decameter-scale experiment on injection in a fault, monitored by an integrated network of multiparamerter sensors, sheds light on the mobility of fluids within the fault.
Laura E. Queen, Philip W. Mote, David E. Rupp, Oriana Chegwidden, and Bart Nijssen
Hydrol. Earth Syst. Sci., 25, 257–272, https://doi.org/10.5194/hess-25-257-2021, https://doi.org/10.5194/hess-25-257-2021, 2021
Short summary
Short summary
Using a large ensemble of simulated flows throughout the northwestern USA, we compare daily flood statistics in the past (1950–1999) and future (2050–1999) periods and find that nearly all locations will experience an increase in flood magnitudes. The flood season expands significantly in many currently snow-dominant rivers, moving from only spring to both winter and spring. These results, properly extended, may help inform flood risk management and negotiations of the Columbia River Treaty.
Justus G. V. van Ramshorst, Miriam Coenders-Gerrits, Bart Schilperoort, Bas J. H. van de Wiel, Jonathan G. Izett, John S. Selker, Chad W. Higgins, Hubert H. G. Savenije, and Nick C. van de Giesen
Atmos. Meas. Tech., 13, 5423–5439, https://doi.org/10.5194/amt-13-5423-2020, https://doi.org/10.5194/amt-13-5423-2020, 2020
Short summary
Short summary
In this work we present experimental results of a novel actively heated fiber-optic (AHFO) observational wind-probing technique. We utilized a controlled wind-tunnel setup to assess both the accuracy and precision of AHFO under a range of operational conditions (wind speed, angles of attack and temperature differences). AHFO has the potential to provide high-resolution distributed observations of wind speeds, allowing for better spatial characterization of fine-scale processes.
Karl Lapo, Anita Freundorfer, Lena Pfister, Johann Schneider, John Selker, and Christoph Thomas
Atmos. Meas. Tech., 13, 1563–1573, https://doi.org/10.5194/amt-13-1563-2020, https://doi.org/10.5194/amt-13-1563-2020, 2020
Short summary
Short summary
Most observations of the atmosphere are
point observations, which only measure a small area around the sensor. This limitation creates problems for a number of disciplines, especially those that focus on how the surface and atmosphere exchange heat, mass, and momentum. We used distributed temperature sensing with fiber optics to demonstrate a key breakthrough in observing wind direction in a distributed way, i.e., not at a point, using small structures attached to the fiber-optic cables.
Sihan Li, David E. Rupp, Linnia Hawkins, Philip W. Mote, Doug McNeall, Sarah N. Sparrow, David C. H. Wallom, Richard A. Betts, and Justin J. Wettstein
Geosci. Model Dev., 12, 3017–3043, https://doi.org/10.5194/gmd-12-3017-2019, https://doi.org/10.5194/gmd-12-3017-2019, 2019
Short summary
Short summary
Understanding the unfolding challenges of climate change relies on climate models, many of which have regional biases larger than the expected climate signal over the next half-century. This work shows the potential for improving climate model simulations through a multiphased parameter refinement approach. Regional warm biases are substantially reduced, suggesting this iterative approach is one path to improving climate models and simulations of present and future climate.
Stephen A. Drake, John S. Selker, and Chad W. Higgins
The Cryosphere, 11, 2075–2087, https://doi.org/10.5194/tc-11-2075-2017, https://doi.org/10.5194/tc-11-2075-2017, 2017
Short summary
Short summary
Reaction rates of radiatively and chemically active trace species are influenced by the mobility of air contained within the snowpack. By measuring wind speed and the evolution of a tracer gas with in situ sensors over a 1 m horizontal grid, we found that inhomogeneities in a single snow layer enhanced air movement unevenly as wind speed increased. This result suggests small-scale variability in reaction rates that increases with wind speed and variability in snow permeability.
Stephen A. Drake, John S. Selker, and Chad W. Higgins
Geosci. Instrum. Method. Data Syst., 6, 199–207, https://doi.org/10.5194/gi-6-199-2017, https://doi.org/10.5194/gi-6-199-2017, 2017
Short summary
Short summary
Intrinsic permeability of snow is an important parameter that regulates snow–atmosphere exchange. Current permeability measurements require specialized equipment for acquisition in the field and have increased variability with increasing snow heterogeneity. To facilitate a field-based, volume-averaged measure of permeability, we designed and assembled an acoustic permeameter. When using reticulated foam samples of known permeability, the mean relative error from known values was less than 20 %.
Koen Hilgersom, Tim van Emmerik, Anna Solcerova, Wouter Berghuijs, John Selker, and Nick van de Giesen
Geosci. Instrum. Method. Data Syst., 5, 151–162, https://doi.org/10.5194/gi-5-151-2016, https://doi.org/10.5194/gi-5-151-2016, 2016
Short summary
Short summary
Fibre optic distributed temperature sensing allows one to measure temperature patterns along a fibre optic cable with resolutions down to 25 cm. In geosciences, we sometimes wrap the cable to a coil to measure temperature at even smaller scales. We show that coils with narrow bends affect the measured temperatures. This also holds for the object to which the coil is attached, when heated by solar radiation. We therefore recommend the necessity to carefully design such distributed temperature probes.
T. Read, V. F. Bense, R. Hochreutener, O. Bour, T. Le Borgne, N. Lavenant, and J. S. Selker
Geosci. Instrum. Method. Data Syst., 4, 197–202, https://doi.org/10.5194/gi-4-197-2015, https://doi.org/10.5194/gi-4-197-2015, 2015
Short summary
Short summary
The monitoring and measurement of water flow in groundwater wells allows us to understand how aquifers transmit water. In this paper we develop a simple method, which we call T-POT, that allows flows to be estimated by tracking the movement of a small parcel of warmed water. The parcel is tracked using fibre optic temperature sensing - a technology that allows detailed measurements of temperature, and therefore flow using the T-POT method, to be made in the well.
R. D. Stewart, Z. Liu, D. E. Rupp, C. W. Higgins, and J. S. Selker
Geosci. Instrum. Method. Data Syst., 4, 57–64, https://doi.org/10.5194/gi-4-57-2015, https://doi.org/10.5194/gi-4-57-2015, 2015
Short summary
Short summary
We present a new instrument for measuring surface runoff rates ranging from very low (~0.05L min-1) to high (300L min-1, with much higher rates possible depending on the device configuration). The device is economical, simple, rugged, accurate and requires little maintenance (the system is self-emptying and contains no moving parts). We have successfully used this instrument in long-term monitoring studies and expect that it will appeal to other scientists studying runoff processes.
T. O'Donnell Meininger and J. S. Selker
Geosci. Instrum. Method. Data Syst., 4, 19–22, https://doi.org/10.5194/gi-4-19-2015, https://doi.org/10.5194/gi-4-19-2015, 2015
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Theory development
Characterizing nonlinear, nonstationary, and heterogeneous hydrologic behavior using ensemble rainfall–runoff analysis (ERRA): proof of concept
Ratio limits of water storage and outflow in a rainfall–runoff process
Technical Note: The divide and measure nonconformity – how metrics can mislead when we evaluate on different data partitions
Bimodal hydrographs in a semi-humid forested watershed: characteristics and occurrence conditions
Flood drivers and trends: a case study of the Geul River catchment (the Netherlands) over the past half century
Power law between the apparent drainage density and the pruning area
Stream water sourcing from high-elevation snowpack inferred from stable isotopes of water: a novel application of d-excess values
Elasticity curves describe streamflow sensitivity to precipitation across the entire flow distribution
Seasonal and interannual dissolved organic carbon transport process dynamics in a subarctic headwater catchment revealed by high-resolution measurements
Links between seasonal suprapermafrost groundwater, the hydrothermal change of the active layer, and river runoff in alpine permafrost watersheds
System dynamics perspective: lack of long-term endogenous feedback accounts for failure of bucket models to replicate slow hydrological behaviors
Technical note: Isotopic fractionation of evaporating waters: effect of sub-daily atmospheric variations and eventual depletion of heavy isotopes
Increased nonstationarity of stormflow threshold behaviors in a forested watershed due to abrupt earthquake disturbance
HESS Opinions: Are soils overrated in hydrology?
Hydrologic implications of projected changes in rain-on-snow melt for Great Lakes Basin watersheds
A hydrological framework for persistent pools along non-perennial rivers
Evidence-based requirements for perceptualising intercatchment groundwater flow in hydrological models
Droughts can reduce the nitrogen retention capacity of catchments
Explaining changes in rainfall–runoff relationships during and after Australia's Millennium Drought: a community perspective
Three hypotheses on changing river flood hazards
A multivariate-driven approach for disentangling the reduction in near-natural Iberian water resources post-1980
Hydrology and riparian forests drive carbon and nitrogen supply and DOC : NO3− stoichiometry along a headwater Mediterranean stream
Event controls on intermittent streamflow in a temperate climate
Inclusion of flood diversion canal operation in the H08 hydrological model with a case study from the Chao Phraya River basin: model development and validation
Flood generation: process patterns from the raindrop to the ocean
Use of streamflow indices to identify the catchment drivers of hydrographs
Theoretical and empirical evidence against the Budyko catchment trajectory conjecture
Spatial distribution of groundwater recharge, based on regionalised soil moisture models in Wadi Natuf karst aquifers, Palestine
Barriers to mainstream adoption of catchment-wide natural flood management: a transdisciplinary problem-framing study of delivery practice
Low hydrological connectivity after summer drought inhibits DOC export in a forested headwater catchment
Rainbow color map distorts and misleads research in hydrology – guidance for better visualizations and science communication
Attribution of growing season evapotranspiration variability considering snowmelt and vegetation changes in the arid alpine basins
Event and seasonal hydrologic connectivity patterns in an agricultural headwater catchment
Exploring the role of hydrological pathways in modulating multi-annual climate teleconnection periodicities from UK rainfall to streamflow
Technical note: “Bit by bit”: a practical and general approach for evaluating model computational complexity vs. model performance
Hillslope and groundwater contributions to streamflow in a Rocky Mountain watershed underlain by glacial till and fractured sedimentary bedrock
A framework for seasonal variations of hydrological model parameters: impact on model results and response to dynamic catchment characteristics
Hydrology and beyond: the scientific work of August Colding revisited
The influence of a prolonged meteorological drought on catchment water storage capacity: a hydrological-model perspective
Hydrological and runoff formation processes based on isotope tracing during ablation period in the source regions of Yangtze River
Importance of snowmelt contribution to seasonal runoff and summer low flows in Czechia
Concentration–discharge relationships vary among hydrological events, reflecting differences in event characteristics
Understanding the effects of climate warming on streamflow and active groundwater storage in an alpine catchment: the upper Lhasa River
Technical note: An improved discharge sensitivity metric for young water fractions
Hydrological signatures describing the translation of climate seasonality into streamflow seasonality
Spatial and temporal variation in river corridor exchange across a 5th-order mountain stream network
Historic hydrological droughts 1891–2015: systematic characterisation for a diverse set of catchments across the UK
A topographic index explaining hydrological similarity by accounting for the joint controls of runoff formation
Trajectories of nitrate input and output in three nested catchments along a land use gradient
Contrasting rainfall-runoff characteristics of floods in desert and Mediterranean basins
James W. Kirchner
Hydrol. Earth Syst. Sci., 28, 4427–4454, https://doi.org/10.5194/hess-28-4427-2024, https://doi.org/10.5194/hess-28-4427-2024, 2024
Short summary
Short summary
Here, I present a new way to quantify how streamflow responds to rainfall across a range of timescales. This approach can estimate how different rainfall intensities affect streamflow. It can also quantify how runoff response to rainfall varies, depending on how wet the landscape already is before the rain falls. This may help us to understand processes and landscape properties that regulate streamflow and to assess the susceptibility of different landscapes to flooding.
Yulong Zhu, Yang Zhou, Xiaorong Xu, Changqing Meng, and Yuankun Wang
Hydrol. Earth Syst. Sci., 28, 4251–4261, https://doi.org/10.5194/hess-28-4251-2024, https://doi.org/10.5194/hess-28-4251-2024, 2024
Short summary
Short summary
A timely local flood forecast is an effective way to reduce casualties and economic losses. The current theoretical or numerical models play an important role in local flood forecasting. However, they still cannot bridge the contradiction between high calculation accuracy, high calculation efficiency, and simple operability. Therefore, this paper expects to propose a new flood forecasting model with higher computational efficiency and simpler operation.
Daniel Klotz, Martin Gauch, Frederik Kratzert, Grey Nearing, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 28, 3665–3673, https://doi.org/10.5194/hess-28-3665-2024, https://doi.org/10.5194/hess-28-3665-2024, 2024
Short summary
Short summary
The evaluation of model performance is essential for hydrological modeling. Using performance criteria requires a deep understanding of their properties. We focus on a counterintuitive aspect of the Nash–Sutcliffe efficiency (NSE) and show that if we divide the data into multiple parts, the overall performance can be higher than all the evaluations of the subsets. Although this follows from the definition of the NSE, the resulting behavior can have unintended consequences in practice.
Zhen Cui, Fuqiang Tian, Zilong Zhao, Zitong Xu, Yongjie Duan, Jie Wen, and Mohd Yawar Ali Khan
Hydrol. Earth Syst. Sci., 28, 3613–3632, https://doi.org/10.5194/hess-28-3613-2024, https://doi.org/10.5194/hess-28-3613-2024, 2024
Short summary
Short summary
We investigated the response characteristics and occurrence conditions of bimodal hydrographs using 10 years of hydrometric and isotope data in a semi-humid forested watershed in north China. Our findings indicate that bimodal hydrographs occur when the combined total of the event rainfall and antecedent soil moisture index exceeds 200 mm. Additionally, we determined that delayed stormflow is primarily contributed to by shallow groundwater.
Athanasios Tsiokanos, Martine Rutten, Ruud J. van der Ent, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 28, 3327–3345, https://doi.org/10.5194/hess-28-3327-2024, https://doi.org/10.5194/hess-28-3327-2024, 2024
Short summary
Short summary
We focus on past high-flow events to find flood drivers in the Geul. We also explore flood drivers’ trends across various timescales and develop a new method to detect the main direction of a trend. Our results show that extreme 24 h precipitation alone is typically insufficient to cause floods. The combination of extreme rainfall and wet initial conditions determines the chance of flooding. Precipitation that leads to floods increases in winter, whereas no consistent trends are found in summer.
Soohyun Yang, Kwanghun Choi, and Kyungrock Paik
Hydrol. Earth Syst. Sci., 28, 3119–3132, https://doi.org/10.5194/hess-28-3119-2024, https://doi.org/10.5194/hess-28-3119-2024, 2024
Short summary
Short summary
In extracting a river network from a digital elevation model, an arbitrary pruning area should be specified. As this value grows, the apparent drainage density is reduced following a power function. This reflects the fractal topographic nature. We prove this relationship related to the known power law in the exceedance probability distribution of drainage area. The power-law exponent is expressed with fractal dimensions. Our findings are supported by analysis of 14 real river networks.
Matthias Sprenger, Rosemary W. H. Carroll, David Marchetti, Carleton Bern, Harsh Beria, Wendy Brown, Alexander Newman, Curtis Beutler, and Kenneth H. Williams
Hydrol. Earth Syst. Sci., 28, 1711–1723, https://doi.org/10.5194/hess-28-1711-2024, https://doi.org/10.5194/hess-28-1711-2024, 2024
Short summary
Short summary
Stable isotopes of water (described as d-excess) in mountain snowpack can be used to infer proportions of high-elevation snowmelt in stream water. In a Colorado River headwater catchment, nearly half of the water during peak streamflow is derived from melted snow at elevations greater than 3200 m. High-elevation snowpack contributions were higher for years with lower snowpack and warmer spring temperatures. Thus, we suggest that d-excess could serve to assess high-elevation snowpack changes.
Bailey J. Anderson, Manuela I. Brunner, Louise J. Slater, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 28, 1567–1583, https://doi.org/10.5194/hess-28-1567-2024, https://doi.org/10.5194/hess-28-1567-2024, 2024
Short summary
Short summary
Elasticityrefers to how much the amount of water in a river changes with precipitation. We usually calculate this using average streamflow values; however, the amount of water within rivers is also dependent on stored water sources. Here, we look at how elasticity varies across the streamflow distribution and show that not only do low and high streamflows respond differently to precipitation change, but also these differences vary with water storage availability.
Danny Croghan, Pertti Ala-Aho, Jeffrey Welker, Kaisa-Riikka Mustonen, Kieran Khamis, David M. Hannah, Jussi Vuorenmaa, Bjørn Kløve, and Hannu Marttila
Hydrol. Earth Syst. Sci., 28, 1055–1070, https://doi.org/10.5194/hess-28-1055-2024, https://doi.org/10.5194/hess-28-1055-2024, 2024
Short summary
Short summary
The transport of dissolved organic carbon (DOC) from land into streams is changing due to climate change. We used a multi-year dataset of DOC and predictors of DOC in a subarctic stream to find out how transport of DOC varied between seasons and between years. We found that the way DOC is transported varied strongly seasonally, but year-to-year differences were less apparent. We conclude that the mechanisms of transport show a higher degree of interannual consistency than previously thought.
Jia Qin, Yongjian Ding, Faxiang Shi, Junhao Cui, Yaping Chang, Tianding Han, and Qiudong Zhao
Hydrol. Earth Syst. Sci., 28, 973–987, https://doi.org/10.5194/hess-28-973-2024, https://doi.org/10.5194/hess-28-973-2024, 2024
Short summary
Short summary
The linkage between the seasonal hydrothermal change of active layer, suprapermafrost groundwater, and surface runoff, which has been regarded as a “black box” in hydrological analyses and simulations, is a bottleneck problem in permafrost hydrological studies. Based on field observations, this study identifies seasonal variations and causes of suprapermafrost groundwater. The linkages and framework of watershed hydrology responding to the freeze–thaw of the active layer also are explored.
Xinyao Zhou, Zhuping Sheng, Kiril Manevski, Yanmin Yang, Shumin Han, Mathias Neumann Andersen, Qingzhou Zhang, Jinghong Liu, Huilong Li, and Yonghui Yang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-7, https://doi.org/10.5194/hess-2024-7, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Conventional bucket-type hydrological models have struggled to accurately replicate slow dynamics, making model modification a key concern in hydrological science. The system dynamics approach excels at explaining long-term behavioral pattern through the system's endogenous feedback structure. It was employed in a case study and successfully captured the slow hydrological behaviors. This highlights that the time-scale mismatch can be attributed to the failure of conventional hydrological models.
Francesc Gallart, Sebastián González-Fuentes, and Pilar Llorens
Hydrol. Earth Syst. Sci., 28, 229–239, https://doi.org/10.5194/hess-28-229-2024, https://doi.org/10.5194/hess-28-229-2024, 2024
Short summary
Short summary
Normally, lighter oxygen and hydrogen isotopes are preferably evaporated from a water body, which becomes enriched in heavy isotopes. However, we observed that, in a water body subject to prolonged evaporation, some periods of heavy isotope depletion instead of enrichment happened. Furthermore, the usual models that describe the isotopy of evaporating waters may be in error if the atmospheric conditions of temperature and relative humidity are time-averaged instead of evaporation flux-weighted.
Guotao Zhang, Peng Cui, Carlo Gualtieri, Nazir Ahmed Bazai, Xueqin Zhang, and Zhengtao Zhang
Hydrol. Earth Syst. Sci., 27, 3005–3020, https://doi.org/10.5194/hess-27-3005-2023, https://doi.org/10.5194/hess-27-3005-2023, 2023
Short summary
Short summary
This study used identified stormflow thresholds as a diagnostic tool to characterize abrupt variations in catchment emergent patterns pre- and post-earthquake. Earthquake-induced landslides with spatial heterogeneity and temporally undulating recovery increase the hydrologic nonstationary; thus, large post-earthquake floods are more likely to occur. This study contributes to mitigation and adaptive strategies for unpredictable hydrologic regimes triggered by abrupt natural disturbances.
Hongkai Gao, Fabrizio Fenicia, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 2607–2620, https://doi.org/10.5194/hess-27-2607-2023, https://doi.org/10.5194/hess-27-2607-2023, 2023
Short summary
Short summary
It is a deeply rooted perception that soil is key in hydrology. In this paper, we argue that it is the ecosystem, not the soil, that is in control of hydrology. Firstly, in nature, the dominant flow mechanism is preferential, which is not particularly related to soil properties. Secondly, the ecosystem, not the soil, determines the land–surface water balance and hydrological processes. Moving from a soil- to ecosystem-centred perspective allows more realistic and simpler hydrological models.
Daniel T. Myers, Darren L. Ficklin, and Scott M. Robeson
Hydrol. Earth Syst. Sci., 27, 1755–1770, https://doi.org/10.5194/hess-27-1755-2023, https://doi.org/10.5194/hess-27-1755-2023, 2023
Short summary
Short summary
We projected climate change impacts to rain-on-snow (ROS) melt events in the Great Lakes Basin. Decreases in snowpack limit future ROS melt. Areas with mean winter/spring air temperatures near freezing are most sensitive to ROS changes. The projected proportion of total monthly snowmelt from ROS decreases. The timing for ROS melt is projected to be 2 weeks earlier by the mid-21st century and affects spring streamflow. This could affect freshwater resources management.
Sarah A. Bourke, Margaret Shanafield, Paul Hedley, Sarah Chapman, and Shawan Dogramaci
Hydrol. Earth Syst. Sci., 27, 809–836, https://doi.org/10.5194/hess-27-809-2023, https://doi.org/10.5194/hess-27-809-2023, 2023
Short summary
Short summary
Here we present a hydrological framework for understanding the mechanisms supporting the persistence of water in pools along non-perennial rivers. Pools may collect water after rainfall events, be supported by water stored within the river channel sediments, or receive inflows from regional groundwater. These hydraulic mechanisms can be identified using a range of diagnostic tools (critiqued herein). We then apply this framework in north-west Australia to demonstrate its value.
Louisa D. Oldham, Jim Freer, Gemma Coxon, Nicholas Howden, John P. Bloomfield, and Christopher Jackson
Hydrol. Earth Syst. Sci., 27, 761–781, https://doi.org/10.5194/hess-27-761-2023, https://doi.org/10.5194/hess-27-761-2023, 2023
Short summary
Short summary
Water can move between river catchments via the subsurface, termed intercatchment groundwater flow (IGF). We show how a perceptual model of IGF can be developed with relatively simple geological interpretation and data requirements. We find that IGF dynamics vary in space, correlated to the dominant underlying geology. We recommend that IGF
loss functionsmay be used in conceptual rainfall–runoff models but should be supported by perceptualisation of IGF processes and connectivities.
Carolin Winter, Tam V. Nguyen, Andreas Musolff, Stefanie R. Lutz, Michael Rode, Rohini Kumar, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 27, 303–318, https://doi.org/10.5194/hess-27-303-2023, https://doi.org/10.5194/hess-27-303-2023, 2023
Short summary
Short summary
The increasing frequency of severe and prolonged droughts threatens our freshwater resources. While we understand drought impacts on water quantity, its effects on water quality remain largely unknown. Here, we studied the impact of the unprecedented 2018–2019 drought in Central Europe on nitrate export in a heterogeneous mesoscale catchment in Germany. We show that severe drought can reduce a catchment's capacity to retain nitrogen, intensifying the internal pollution and export of nitrate.
Keirnan Fowler, Murray Peel, Margarita Saft, Tim J. Peterson, Andrew Western, Lawrence Band, Cuan Petheram, Sandra Dharmadi, Kim Seong Tan, Lu Zhang, Patrick Lane, Anthony Kiem, Lucy Marshall, Anne Griebel, Belinda E. Medlyn, Dongryeol Ryu, Giancarlo Bonotto, Conrad Wasko, Anna Ukkola, Clare Stephens, Andrew Frost, Hansini Gardiya Weligamage, Patricia Saco, Hongxing Zheng, Francis Chiew, Edoardo Daly, Glen Walker, R. Willem Vervoort, Justin Hughes, Luca Trotter, Brad Neal, Ian Cartwright, and Rory Nathan
Hydrol. Earth Syst. Sci., 26, 6073–6120, https://doi.org/10.5194/hess-26-6073-2022, https://doi.org/10.5194/hess-26-6073-2022, 2022
Short summary
Short summary
Recently, we have seen multi-year droughts tending to cause shifts in the relationship between rainfall and streamflow. In shifted catchments that have not recovered, an average rainfall year produces less streamflow today than it did pre-drought. We take a multi-disciplinary approach to understand why these shifts occur, focusing on Australia's over-10-year Millennium Drought. We evaluate multiple hypotheses against evidence, with particular focus on the key role of groundwater processes.
Günter Blöschl
Hydrol. Earth Syst. Sci., 26, 5015–5033, https://doi.org/10.5194/hess-26-5015-2022, https://doi.org/10.5194/hess-26-5015-2022, 2022
Short summary
Short summary
There is serious concern that river floods are increasing. Starting from explanations discussed in public, the article addresses three hypotheses: land-use change, hydraulic structures, and climate change increase floods. This review finds that all three changes have the potential to not only increase floods, but also to reduce them. It is crucial to consider all three factors of change in flood risk management and communicate them to the general public in a nuanced way.
Amar Halifa-Marín, Miguel A. Torres-Vázquez, Enrique Pravia-Sarabia, Marc Lemus-Canovas, Pedro Jiménez-Guerrero, and Juan Pedro Montávez
Hydrol. Earth Syst. Sci., 26, 4251–4263, https://doi.org/10.5194/hess-26-4251-2022, https://doi.org/10.5194/hess-26-4251-2022, 2022
Short summary
Short summary
Near-natural Iberian water resources have suddenly decreased since the 1980s. These declines have been promoted by the weakening (enhancement) of wintertime precipitation (the NAOi) in the most humid areas, whereas afforestation and drought intensification have played a crucial role in semi-arid areas. Future water management would benefit from greater knowledge of North Atlantic climate variability and reforestation/afforestation processes in semi-arid catchments.
José L. J. Ledesma, Anna Lupon, Eugènia Martí, and Susana Bernal
Hydrol. Earth Syst. Sci., 26, 4209–4232, https://doi.org/10.5194/hess-26-4209-2022, https://doi.org/10.5194/hess-26-4209-2022, 2022
Short summary
Short summary
We studied a small stream located in a Mediterranean forest. Our goal was to understand how stream flow and the presence of riparian forests, which grow in flat banks near the stream, influence the availability of food for aquatic microorganisms. High flows were associated with higher amounts of food because rainfall episodes transfer it from the surrounding sources, particularly riparian forests, to the stream. Understanding how ecosystems work is essential to better manage natural resources.
Nils Hinrich Kaplan, Theresa Blume, and Markus Weiler
Hydrol. Earth Syst. Sci., 26, 2671–2696, https://doi.org/10.5194/hess-26-2671-2022, https://doi.org/10.5194/hess-26-2671-2022, 2022
Short summary
Short summary
This study is analyses how characteristics of precipitation events and soil moisture and temperature dynamics during these events can be used to model the associated streamflow responses in intermittent streams. The models are used to identify differences between the dominant controls of streamflow intermittency in three distinct geologies of the Attert catchment, Luxembourg. Overall, soil moisture was found to be the most important control of intermittent streamflow in all geologies.
Saritha Padiyedath Gopalan, Adisorn Champathong, Thada Sukhapunnaphan, Shinichiro Nakamura, and Naota Hanasaki
Hydrol. Earth Syst. Sci., 26, 2541–2560, https://doi.org/10.5194/hess-26-2541-2022, https://doi.org/10.5194/hess-26-2541-2022, 2022
Short summary
Short summary
The modelling of diversion canals using hydrological models is important because they play crucial roles in water management. Therefore, we developed a simplified canal diversion scheme and implemented it into the H08 global hydrological model. The developed diversion scheme was validated in the Chao Phraya River basin, Thailand. Region-specific validation results revealed that the H08 model with the diversion scheme could effectively simulate the observed flood diversion pattern in the basin.
Günter Blöschl
Hydrol. Earth Syst. Sci., 26, 2469–2480, https://doi.org/10.5194/hess-26-2469-2022, https://doi.org/10.5194/hess-26-2469-2022, 2022
Short summary
Short summary
Sound understanding of how floods come about allows for the development of more reliable flood management tools that assist in mitigating their negative impacts. This article reviews river flood generation processes and flow paths across space scales, starting from water movement in the soil pores and moving up to hillslopes, catchments, regions and entire continents. To assist model development, there is a need to learn from observed patterns of flood generation processes at all spatial scales.
Jeenu Mathai and Pradeep P. Mujumdar
Hydrol. Earth Syst. Sci., 26, 2019–2033, https://doi.org/10.5194/hess-26-2019-2022, https://doi.org/10.5194/hess-26-2019-2022, 2022
Short summary
Short summary
With availability of large samples of data in catchments, it is necessary to develop indices that describe the streamflow processes. This paper describes new indices applicable for the rising and falling limbs of streamflow hydrographs. The indices provide insights into the drivers of the hydrographs. The novelty of the work is on differentiating hydrographs by their time irreversibility property and offering an alternative way to recognize primary drivers of streamflow hydrographs.
Nathan G. F. Reaver, David A. Kaplan, Harald Klammler, and James W. Jawitz
Hydrol. Earth Syst. Sci., 26, 1507–1525, https://doi.org/10.5194/hess-26-1507-2022, https://doi.org/10.5194/hess-26-1507-2022, 2022
Short summary
Short summary
The Budyko curve emerges globally from the behavior of multiple catchments. Single-parameter Budyko equations extrapolate the curve concept to individual catchments, interpreting curves and parameters as representing climatic and biophysical impacts on water availability, respectively. We tested these two key components theoretically and empirically, finding that catchments are not required to follow Budyko curves and usually do not, implying the parametric framework lacks predictive ability.
Clemens Messerschmid and Amjad Aliewi
Hydrol. Earth Syst. Sci., 26, 1043–1061, https://doi.org/10.5194/hess-26-1043-2022, https://doi.org/10.5194/hess-26-1043-2022, 2022
Short summary
Short summary
Temporal distribution of groundwater recharge has been widely studied; yet, much less attention has been paid to its spatial distribution. Based on a previous study of field-measured and modelled formation-specific recharge in the Mediterranean, this paper differentiates annual recharge coefficients in a novel approach and basin classification framework for physical features such as lithology, soil and LU/LC characteristics, applicable also in other previously ungauged basins around the world.
Thea Wingfield, Neil Macdonald, Kimberley Peters, and Jack Spees
Hydrol. Earth Syst. Sci., 25, 6239–6259, https://doi.org/10.5194/hess-25-6239-2021, https://doi.org/10.5194/hess-25-6239-2021, 2021
Short summary
Short summary
Human activities are causing greater and more frequent floods. Natural flood management (NFM) uses processes of the water cycle to slow the flow of rainwater, bringing together land and water management. Despite NFM's environmental and social benefits, it is yet to be widely adopted. Two environmental practitioner groups collaborated to produce a picture of the barriers to delivery, showing that there is a perceived lack of support from government and the public for NFM.
Katharina Blaurock, Burkhard Beudert, Benjamin S. Gilfedder, Jan H. Fleckenstein, Stefan Peiffer, and Luisa Hopp
Hydrol. Earth Syst. Sci., 25, 5133–5151, https://doi.org/10.5194/hess-25-5133-2021, https://doi.org/10.5194/hess-25-5133-2021, 2021
Short summary
Short summary
Dissolved organic carbon (DOC) is an important part of the global carbon cycle with regards to carbon storage, greenhouse gas emissions and drinking water treatment. In this study, we compared DOC export of a small, forested catchment during precipitation events after dry and wet preconditions. We found that the DOC export from areas that are usually important for DOC export was inhibited after long drought periods.
Michael Stoelzle and Lina Stein
Hydrol. Earth Syst. Sci., 25, 4549–4565, https://doi.org/10.5194/hess-25-4549-2021, https://doi.org/10.5194/hess-25-4549-2021, 2021
Short summary
Short summary
We found with a scientific paper survey (~ 1000 papers) that 45 % of the papers used rainbow color maps or red–green visualizations. Those rainbow visualizations, although attracting the media's attention, will not be accessible for up to 10 % of people due to color vision deficiency. The rainbow color map distorts and misleads scientific communication. The study gives guidance on how to avoid, improve and trust color and how the flaws of the rainbow color map should be communicated in science.
Tingting Ning, Zhi Li, Qi Feng, Zongxing Li, and Yanyan Qin
Hydrol. Earth Syst. Sci., 25, 3455–3469, https://doi.org/10.5194/hess-25-3455-2021, https://doi.org/10.5194/hess-25-3455-2021, 2021
Short summary
Short summary
Previous studies decomposed ET variance in precipitation, potential ET, and total water storage changes based on Budyko equations. However, the effects of snowmelt and vegetation changes have not been incorporated in snow-dependent basins. We thus extended this method in arid alpine basins of northwest China and found that ET variance is primarily controlled by rainfall, followed by coupled rainfall and vegetation. The out-of-phase seasonality between rainfall and snowmelt weaken ET variance.
Lovrenc Pavlin, Borbála Széles, Peter Strauss, Alfred Paul Blaschke, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 2327–2352, https://doi.org/10.5194/hess-25-2327-2021, https://doi.org/10.5194/hess-25-2327-2021, 2021
Short summary
Short summary
We compared the dynamics of streamflow, groundwater and soil moisture to investigate how different parts of an agricultural catchment in Lower Austria are connected. Groundwater is best connected around the stream and worse uphill, where groundwater is deeper. Soil moisture connectivity increases with increasing catchment wetness but is not influenced by spatial position in the catchment. Groundwater is more connected to the stream on the seasonal scale compared to the event scale.
William Rust, Mark Cuthbert, John Bloomfield, Ron Corstanje, Nicholas Howden, and Ian Holman
Hydrol. Earth Syst. Sci., 25, 2223–2237, https://doi.org/10.5194/hess-25-2223-2021, https://doi.org/10.5194/hess-25-2223-2021, 2021
Short summary
Short summary
In this paper, we find evidence for the cyclical behaviour (on a 7-year basis) in UK streamflow records that match the main cycle of the North Atlantic Oscillation. Furthermore, we find that the strength of these 7-year cycles in streamflow is dependent on proportional contributions from groundwater and the response times of the underlying groundwater systems. This may allow for improvements to water management practices through better understanding of long-term streamflow behaviour.
Elnaz Azmi, Uwe Ehret, Steven V. Weijs, Benjamin L. Ruddell, and Rui A. P. Perdigão
Hydrol. Earth Syst. Sci., 25, 1103–1115, https://doi.org/10.5194/hess-25-1103-2021, https://doi.org/10.5194/hess-25-1103-2021, 2021
Short summary
Short summary
Computer models should be as simple as possible but not simpler. Simplicity refers to the length of the model and the effort it takes the model to generate its output. Here we present a practical technique for measuring the latter by the number of memory visits during model execution by
Strace, a troubleshooting and monitoring program. The advantage of this approach is that it can be applied to any computer-based model, which facilitates model intercomparison.
Sheena A. Spencer, Axel E. Anderson, Uldis Silins, and Adrian L. Collins
Hydrol. Earth Syst. Sci., 25, 237–255, https://doi.org/10.5194/hess-25-237-2021, https://doi.org/10.5194/hess-25-237-2021, 2021
Short summary
Short summary
We used unique chemical signatures of precipitation, hillslope soil water, and groundwater sources of streamflow to explore seasonal variation in runoff generation in a snow-dominated mountain watershed underlain by glacial till and permeable bedrock. Reacted hillslope water reached the stream first at the onset of snowmelt, followed by a dilution effect by snowmelt from May to June. Groundwater and riparian water were important sources later in the summer. Till created complex subsurface flow.
Tian Lan, Kairong Lin, Chong-Yu Xu, Zhiyong Liu, and Huayang Cai
Hydrol. Earth Syst. Sci., 24, 5859–5874, https://doi.org/10.5194/hess-24-5859-2020, https://doi.org/10.5194/hess-24-5859-2020, 2020
Dan Rosbjerg
Hydrol. Earth Syst. Sci., 24, 4575–4585, https://doi.org/10.5194/hess-24-4575-2020, https://doi.org/10.5194/hess-24-4575-2020, 2020
Short summary
Short summary
August Colding contributed the first law of thermodynamics, evaporation from water and grass, steady free surfaces in conduits, the cross-sectional velocity distribution in conduits, a complete theory for the Gulf Stream, air speed in cyclones, the piezometric surface in confined aquifers, the unconfined elliptic water table in soil between drain pipes, and the wind-induced set-up in the sea during storms.
Zhengke Pan, Pan Liu, Chong-Yu Xu, Lei Cheng, Jing Tian, Shujie Cheng, and Kang Xie
Hydrol. Earth Syst. Sci., 24, 4369–4387, https://doi.org/10.5194/hess-24-4369-2020, https://doi.org/10.5194/hess-24-4369-2020, 2020
Short summary
Short summary
This study aims to identify the response of catchment water storage capacity (CWSC) to meteorological drought by examining the changes of hydrological-model parameters after drought events. This study improves our understanding of possible changes in the CWSC induced by a prolonged meteorological drought, which will help improve our ability to simulate the hydrological system under climate change.
Zong-Jie Li, Zong-Xing Li, Ling-Ling Song, Juan Gui, Jian Xue, Bai Juan Zhang, and Wen De Gao
Hydrol. Earth Syst. Sci., 24, 4169–4187, https://doi.org/10.5194/hess-24-4169-2020, https://doi.org/10.5194/hess-24-4169-2020, 2020
Short summary
Short summary
This study mainly explores the hydraulic relations, recharge–drainage relations and their transformation paths, and the processes of each water body. It determines the composition of runoff, quantifies the contribution of each runoff component to different types of tributaries, and analyzes the hydrological effects of the temporal and spatial variation in runoff components. More importantly, we discuss the hydrological significance of permafrost and hydrological processes.
Michal Jenicek and Ondrej Ledvinka
Hydrol. Earth Syst. Sci., 24, 3475–3491, https://doi.org/10.5194/hess-24-3475-2020, https://doi.org/10.5194/hess-24-3475-2020, 2020
Short summary
Short summary
Changes in snow affect the runoff seasonality, including summer low flows. Here we analyse this effect in 59 mountain catchments in Czechia. We show that snow is more effective in generating runoff compared to rain. Snow-poor years generated lower groundwater recharge than snow-rich years, which resulted in higher deficit volumes in summer. The lower recharge and runoff in the case of a snowfall-to-rain transition due to air temperature increase might be critical for water supply in the future.
Julia L. A. Knapp, Jana von Freyberg, Bjørn Studer, Leonie Kiewiet, and James W. Kirchner
Hydrol. Earth Syst. Sci., 24, 2561–2576, https://doi.org/10.5194/hess-24-2561-2020, https://doi.org/10.5194/hess-24-2561-2020, 2020
Short summary
Short summary
Changes of stream water chemistry in response to discharge changes provide important insights into the storage and release of water from the catchment. Here we investigate the variability in concentration–discharge relationships among different solutes and hydrologic events and relate it to catchment conditions and dominant water sources.
Lu Lin, Man Gao, Jintao Liu, Jiarong Wang, Shuhong Wang, Xi Chen, and Hu Liu
Hydrol. Earth Syst. Sci., 24, 1145–1157, https://doi.org/10.5194/hess-24-1145-2020, https://doi.org/10.5194/hess-24-1145-2020, 2020
Short summary
Short summary
In this paper, recession flow analysis – assuming nonlinearized outflow from aquifers into streams – was used to quantify active groundwater storage in a headwater catchment with high glacierization and large-scale frozen ground on the Tibetan Plateau. Hence, this work provides a perspective to clarify the impact of glacial retreat and frozen ground degradation due to climate change on hydrological processes.
Francesc Gallart, Jana von Freyberg, María Valiente, James W. Kirchner, Pilar Llorens, and Jérôme Latron
Hydrol. Earth Syst. Sci., 24, 1101–1107, https://doi.org/10.5194/hess-24-1101-2020, https://doi.org/10.5194/hess-24-1101-2020, 2020
Short summary
Short summary
How catchments store and release rain or melting water is still not well known. Now, it is broadly accepted that most of the water in streams is older than several months, and a relevant part may be many years old. But the age of water depends on the stream regime, being usually younger during high flows. This paper tries to provide tools for better analysing how the age of waters varies with flow in a catchment and for comparing the behaviour of catchments diverging in climate, size and regime.
Sebastian J. Gnann, Nicholas J. K. Howden, and Ross A. Woods
Hydrol. Earth Syst. Sci., 24, 561–580, https://doi.org/10.5194/hess-24-561-2020, https://doi.org/10.5194/hess-24-561-2020, 2020
Short summary
Short summary
In many places, seasonal variability in precipitation and evapotranspiration (climate) leads to seasonal variability in river flow (streamflow). In this work, we explore how climate seasonality is transformed into streamflow seasonality and what controls this transformation (e.g. climate aridity and geology). The results might be used in grouping catchments, predicting the seasonal streamflow regime in ungauged catchments, and building hydrological simulation models.
Adam S. Ward, Steven M. Wondzell, Noah M. Schmadel, Skuyler Herzog, Jay P. Zarnetske, Viktor Baranov, Phillip J. Blaen, Nicolai Brekenfeld, Rosalie Chu, Romain Derelle, Jennifer Drummond, Jan H. Fleckenstein, Vanessa Garayburu-Caruso, Emily Graham, David Hannah, Ciaran J. Harman, Jase Hixson, Julia L. A. Knapp, Stefan Krause, Marie J. Kurz, Jörg Lewandowski, Angang Li, Eugènia Martí, Melinda Miller, Alexander M. Milner, Kerry Neil, Luisa Orsini, Aaron I. Packman, Stephen Plont, Lupita Renteria, Kevin Roche, Todd Royer, Catalina Segura, James Stegen, Jason Toyoda, Jacqueline Hager, and Nathan I. Wisnoski
Hydrol. Earth Syst. Sci., 23, 5199–5225, https://doi.org/10.5194/hess-23-5199-2019, https://doi.org/10.5194/hess-23-5199-2019, 2019
Short summary
Short summary
The movement of water and solutes between streams and their shallow, connected subsurface is important to many ecosystem functions. These exchanges are widely expected to vary with stream flow across space and time, but these assumptions are seldom tested across basin scales. We completed more than 60 experiments across a 5th-order river basin to document these changes, finding patterns in space but not time. We conclude space-for-time and time-for-space substitutions are not good assumptions.
Lucy J. Barker, Jamie Hannaford, Simon Parry, Katie A. Smith, Maliko Tanguy, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 23, 4583–4602, https://doi.org/10.5194/hess-23-4583-2019, https://doi.org/10.5194/hess-23-4583-2019, 2019
Short summary
Short summary
It is important to understand historic droughts in order to plan and prepare for possible future events. In this study we use the standardised streamflow index for 1891–2015 to systematically identify, characterise and rank hydrological drought events for 108 near-natural UK catchments. Results show when and where the most severe events occurred and describe events of the early 20th century, providing catchment-scale detail important for both science and planning applications of the future.
Ralf Loritz, Axel Kleidon, Conrad Jackisch, Martijn Westhoff, Uwe Ehret, Hoshin Gupta, and Erwin Zehe
Hydrol. Earth Syst. Sci., 23, 3807–3821, https://doi.org/10.5194/hess-23-3807-2019, https://doi.org/10.5194/hess-23-3807-2019, 2019
Short summary
Short summary
In this study, we develop a topographic index explaining hydrological similarity within a energy-centered framework, with the observation that the majority of potential energy is dissipated when rainfall becomes runoff.
Sophie Ehrhardt, Rohini Kumar, Jan H. Fleckenstein, Sabine Attinger, and Andreas Musolff
Hydrol. Earth Syst. Sci., 23, 3503–3524, https://doi.org/10.5194/hess-23-3503-2019, https://doi.org/10.5194/hess-23-3503-2019, 2019
Short summary
Short summary
This study shows quantitative and temporal offsets between nitrogen input and riverine output, using time series of three nested catchments in central Germany. The riverine concentrations show lagged reactions to the input, but at the same time exhibit strong inter-annual changes in the relationship between riverine discharge and concentration. The study found a strong retention of nitrogen that is dominantly assigned to a hydrological N legacy, which will affect future stream concentrations.
Davide Zoccatelli, Francesco Marra, Moshe Armon, Yair Rinat, James A. Smith, and Efrat Morin
Hydrol. Earth Syst. Sci., 23, 2665–2678, https://doi.org/10.5194/hess-23-2665-2019, https://doi.org/10.5194/hess-23-2665-2019, 2019
Short summary
Short summary
This study presents a comparison of flood properties over multiple Mediterranean and desert catchments. While in Mediterranean areas floods are related to rainfall amount, in deserts we observed a strong connection with the characteristics of the more intense part of storms. Because of the different mechanisms involved, despite having significantly shorter and more localized storms, deserts are able to produce floods with a magnitude comparable to Mediterranean areas.
Cited articles
Bart, R. and Hope, A.: Inter-seasonal variability in baseflow recession
rates: The role of aquifer antecedent storage in central California
watersheds, J. Hydrol., 519, 205–213,
https://doi.org/10.1016/j.jhydrol.2014.07.020, 2014.
Basso, S., Schirmer, M., and Botter, G.: On the emergence of heavy-tailed
streamflow distributions, Adv. Water Resour., 82, 98–105,
https://doi.org/10.1016/j.advwatres.2015.04.013, 2015.
Begueria, S., Vicente-Serrano, S. M., Lopez-Moreno, J. I., and Garcia-Ruiz,
J. M.: Annual and seasonal mapping of peak intensity, magnitude and duration
of extreme precipitation events across a climatic gradient, northeast Spain,
Int. J. Climatol., 29, 1759–1779, https://doi.org/10.1002/joc.1808, 2009.
Berghuijs, W. R., Sivapalan, M., Woods, R. A., and Savenije, H. H. G.: Patterns of similarity of seasonal water balances: A window into streamflow variability over a range of time scales, Water Resour. Res., 50, 5638–5661, https://doi.org/10.1002/2014WR015692, 2014.
Berghuijs, W. R., Hartmann, A., and Woods, R. A.: Streamflow sensitivity to
water storage changes across Europe, Geophys. Res. Lett., 43, 1980–1987,
https://doi.org/10.1002/2016GL067927, 2016.
Biswal, B. and Marani, M.: Geomorphological origin of recession curves,
Geophys. Res. Lett., 37, 1–5, https://doi.org/10.1029/2010GL045415, 2010.
Brooks, P., Chorover, J., Fan, Y., Godsey, S. E., Maxwell, R. M., McNamara,
J., and Tague, C.: Hydrological partitioning in the critical zone: Recent
advances and opportunities for developing transferable understanding of
water cycle dynamics, Water Resour. Res., 51, 6973–6987,
https://doi.org/10.1002/2015WR017039, 2015.
Brutsaert, W.: Long-term groundwater storage trends estimated from
streamflow records: Climatic perspective, Water Resour. Res., 44, 1–7,
https://doi.org/10.1029/2007WR006518, 2008.
Brutsaert, W. and Nieber, J. L.: Regionalized drought flow hydrographs from
a mature glaciated plateau, Water Resour. Res., 13, 637–643,
https://doi.org/10.1029/WR013i003p00637, 1977.
Buttle, J. M.: Mediating stream baseflow response to climate change: The
role of basin storage, Hydrol. Process., 32, 363–378,
https://doi.org/10.1002/hyp.11418, 2018.
Chen, B. and Krajewski, W.: Analysing individual recession events:
sensitivity of parameter determination to the calculation procedure, Hydrolog.
Sci. J., 61, 2887–2901, https://doi.org/10.1080/02626667.2016.1170940, 2016.
Chen, X., Kumar, M., Basso, S., and Marani, M.: On the effectiveness of recession analysis methods for capturing the characteristic storage-discharge relation: An intercomparison study, Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-65, 2018.
Clark, M. P., Rupp, D. E., Woods, R. A., Tromp-van Meerveld, H. J., Peters,
N. E., and Freer, J. E.: Consistency between hydrological models and field
observations: Linking processes at the hillslope scale to hydrological
responses at the watershed scale, Hydrol. Process., 23, 311–319, https://doi.org/10.1002/hyp.7154,
2009.
Dewandel, B., Lachassagne, P., Bakalowicz, M., Weng, P., and Al-Malki, A.:
Evaluation of aquifer thickness by analysing recession hydrographs.
Application to the Oman ophiolite hard-rock aquifer, J. Hydrol., 274,
248–269, https://doi.org/10.1016/S0022-1694(02)00418-3, 2003.
Dooge, J. C. I.: Linear Theory Of Hydrologic Systems – Technical Bulletin No. 1468, Agric. Res. Serv. United States Deparment Agric., Washington, D.C., 1973.
Dralle, D., Karst, N., and Thompson, S. E.: A, b careful: The challenge of
scale invariance for comparative analyses in power law models of the
streamflow recession, Geophys. Res. Lett., 42, 9285–9293, https://doi.org/10.1002/2015GL066007,
2015.
Dralle, D. N., Karst, N. J., Charalampous, K., Veenstra, A., and Thompson, S. E.: Event-scale power law recession analysis: quantifying methodological uncertainty, Hydrol. Earth Syst. Sci., 21, 65–81, https://doi.org/10.5194/hess-21-65-2017, 2017.
Drogue, C.: Analyse statistique des hydrogrammes de decrues des sources
karstiques statistical analysis of hydrographs of karstic springs, J.
Hydrol., 15, 49–68, 1972.
Fan, Y., Clark, M., Lawrence, D., Swenson, S., Band, L. E., Brantley, S.,
Brooks, P., Dietrich, W., Flores, A., Grant, G., Kirchner, J., Mackay, D.,
McDonnell, J., Milly, P., Sullivan, P., Tague, C., Ajami, H., Chaney, N.,
Hartmann, A., Hazenberg, P., McNamara, J., Pellet, J., Volk, J., and
Yamazaki, D.: Hillslope Hydrology in Global Change Research and Earth System
Modeling, Water Resour. Res., 55,
1737–1772, https://doi.org/10.1029/2018WR023903, 2019.
Gao, M., Chen, X., Liu, J., Zhang, Z., and Cheng, Q.-B.: Using Two Parallel
Linear Reservoirs to Express Multiple Relations of Power-Law Recession
Curves, J. Hydrol. Eng., 22, 1–12,
https://doi.org/10.1061/(asce)he.1943-5584.0001518, 2017.
Harman, C. J., Sivapalan, M., and Kumar, P.: Power law catchment-scale
recessions arising from heterogeneous linear small-scale dynamics, Water
Resour. Res., 45, 1–13, https://doi.org/10.1029/2008WR007392, 2009.
Jachens, E. R.: Data for Cases 1 & 3 (event magnitudes and inter-arrival times), HydroShare, https://doi.org/10.4211/hs.e3c159631acd470cbeef5fa1abe0142e, 2020.
Johnson, S. and Rothacher, J.: Stream discharge in gaged watersheds at the Andrews Experimental Forest, 1949 to present., Long-Term Ecol. Res. For. Sci. Data Bank [Database], https://doi.org/10.6073/pasta/c85f62e9070a4ebe5e455190b4879c0c, 2019.
Karlsen, R. H., Bishop, K., Grabs, T., Ottosson-Löfvenius, M., Laudon,
H., and Seibert, J.: The role of landscape properties, storage and
evapotranspiration on variability in streamflow recessions in a boreal
catchment, J. Hydrol., 570, 315–328, https://doi.org/10.1016/j.jhydrol.2018.12.065, 2018.
Kirchner, J. W.: Catchments as simple dynamical systems: Catchment
characterization, rainfall-runoff modeling, and doing hydrology backward,
Water Resour. Res., 45, 1–34, https://doi.org/10.1029/2008WR006912, 2009.
Liu, J., Han, X., Chen, X., Lin, H., and Wang, A.: How well can the
subsurface storage–discharge relation be interpreted and predicted using
the geometric factors in headwater areas?, Hydrol. Process., 30,
4826–4840, https://doi.org/10.1002/hyp.10958, 2016.
Lyon, S. W., Koutsouris, A., Scheibler, F., Jarsjö, J., Mbanguka, R.,
Tumbo, M., Robert, K. K., Sharma, A. N., and van der Velde, Y.: Interpreting
characteristic drainage timescale variability across Kilombero Valley,
Tanzania, Hydrol. Process., 29, 1912–1924, https://doi.org/10.1002/hyp.10304, 2015.
McMillan, H., Gueguen, M., Grimon, E., Woods, R., Clark, M., and Rupp, D. E.:
Spatial variability of hydrological processes and model structure
diagnostics in a 50 km2 catchment, Hydrol. Process., 28, 4896–4913,
https://doi.org/10.1002/hyp.9988, 2014.
McMillan, H. K., Clark, M. P., Bowden, W. B., Duncan, M., and Woods, R. A.:
Hydrological field data from a modeller's perspective: Part 1. Diagnostic
tests for model structure, Hydrol. Process., 25, 511–522,
https://doi.org/10.1002/hyp.7841, 2011.
Meriö, L., Ala-aho, P., Linjama, J., Hjort, J., Kløve, B. and
Marttila, H.: Snow to Precipitation Ratio Controls Catchment Storage and
Summer Flows in Boreal Headwater Catchments, Water Resour. Res.,
55, 4096–4109, https://doi.org/10.1029/2018WR023031, 2019.
Mutzner, R., Bertuzzo, E., Tarolli, P., Weijs, S. V., Nicotina, L., Ceola,
S., Tomasic, N., Rodriguez-Iturbe, I., Parlange, M. B., and Rinaldo, A.:
Geomorphic signatures on Brutsaert base flow recession analysis, Water
Resour. Res., 49, 5462–5472, https://doi.org/10.1002/wrcr.20417, 2013.
Ploum, S. W., Lyon, S. W., Teuling, A. J., Laudon, H., and van der Velde, Y.:
Soil frost effects on streamflow recessions in a sub-arctic catchment,
Hydrol. Process., 33, 1304–1316, https://doi.org/10.1002/hyp.13401, 2019.
Roques, C., Rupp, D. E., and Selker, J. S.: Improved streamflow recession
parameter estimation with attention to calculation of , Adv. Water
Resour., 108, 29–43, https://doi.org/10.1016/j.advwatres.2017.07.013, 2017.
Rupp, D. E. and Selker, J. S.: Drainage of a horizontal Boussinesq aquifer
with a power law hydraulic conductivity profile, Water Resour. Res., 41,
1–8, https://doi.org/10.1029/2005WR004241, 2005.
Rupp, D. E. and Selker, J. S.: Information, artifacts, and noise in dQ∕dt –
Q recession analysis, Adv. Water Resour., 29, 154–160,
https://doi.org/10.1016/j.advwatres.2005.03.019, 2006a.
Rupp, D. E. and Selker, J. S.: On the use of the Boussinesq equation for
interpreting recession hydrographs from sloping aquifers, Water Resour.
Res., 42, 1–15, https://doi.org/10.1029/2006WR005080, 2006b.
Rupp, D. E. and Woods, R. A.: Increased flexibility in base flow modelling
using a power law transmissivity profile, Hydrol. Process., 22, 2667–2671, https://doi.org/10.1002/hyp.6863, 2008.
Rupp, D. E., Schmidt, J., Woods, R. A., and Bidwell, V. J.: Analytical
assessment and parameter estimation of a low-dimensional groundwater model,
J. Hydrol., 377, 143–154, https://doi.org/10.1016/j.jhydrol.2009.08.018, 2009.
Sánchez-Murillo, R., Brooks, E. S., Elliot, W. J., Gazel, E., and Boll,
J.: Baseflow recession analysis in the inland Pacific Northwest of the
United States, Hydrogeol. J., 23, 287–303,
https://doi.org/10.1007/s10040-014-1191-4, 2015.
Santos, A. C., Portela, M. M., Rinaldo, A., and Schaefli, B.: Estimation of
streamflow recession parameters: New insights from an analytic streamflow
distribution model, Hydrol. Process., 33, 1595–1609, https://doi.org/10.1002/hyp.13425, 2019.
Selker, J. S. and Haith, D. A.: Development and Testing of Single-Parameter
Precipitation Distributions, Water Resour. Res., 26, 2733–2740,
https://doi.org/10.1029/WR026i011p02733, 1990.
Shaw, S. B. and Riha, S. J.: Examining individual recession events instead
of a data cloud: Using a modified interpretation of dQ/dt-Q streamflow
recession in glaciated watersheds to better inform models of low flow, J.
Hydrol., 434–435, 46–54, https://doi.org/10.1016/j.jhydrol.2012.02.034, 2012.
Stewart, M. K.: Promising new baseflow separation and recession analysis methods applied to streamflow at Glendhu Catchment, New Zealand, Hydrol. Earth Syst. Sci., 19, 2587–2603, https://doi.org/10.5194/hess-19-2587-2015, 2015.
Stoelzle, M., Stahl, K., and Weiler, M.: Are streamflow recession characteristics really characteristic?, Hydrol. Earth Syst. Sci., 17, 817–828, https://doi.org/10.5194/hess-17-817-2013, 2013.
Szilagyi, J., Gribovszki, Z., and Kalicz, P.: Estimation of catchment-scale
evapotranspiration from baseflow recession data: Numerical model and
practical application results, J. Hydrol., 336, 206–217,
https://doi.org/10.1016/j.jhydrol.2007.01.004, 2007.
Tashie, A., Scaife, C. I., and Band, L. E.: Transpiration and Subsurface
Controls of Streamflow Recession Characteristics, Hydrol. Process., 33, 2561–2575,
https://doi.org/10.1002/hyp.13530, 2019.
Thomas, B. F., Vogel, R. M., and Famiglietti, J. S.: Objective hydrograph
baseflow recession analysis, J. Hydrol., 525, 102–112,
https://doi.org/10.1016/j.jhydrol.2015.03.028, 2015.
Troch, P. A., de Troch, F. P., and Brutsaert, W.: Effective Water Table Depth
to Describe Initial Conditions Prior to Storm Rainfall in Humid Regions, J. Water Resour. Res., 29, 427–434 1993.
USGS: National Water Information System, available at: https://waterdata.usgs.gov/nwis/uv?site_no=14161500 (last access: 1 February 2020), 2019.
Vannier, O., Braud, I., and Anquetin, S.: Regional estimation of
catchment-scale soil properties by means of streamflow recession analysis
for use in distributed hydrological models, Hydrol. Process., 28,
6276–6291, https://doi.org/10.1002/hyp.10101, 2014.
Vogel, R. M. and Kroll, C. N.: Regional Geohydrologic-Geomorphic
Relationships for the Estimation of Low-Flow Statistics, Water Resour.,
28, 2451–2458, 1992.
Wang, D.: On the base flow recession at the Panola Mountain Research
Watershed, Georgia, United States, Water Resour. Res., 47, 1–10,
https://doi.org/10.1029/2010WR009910, 2011.
Yeh, H. and Huang, C.: Evaluation of basin storage-discharge sensitivity in Taiwan using low‐flow recession analysis, Hydrol. Process., 1–14, https://doi.org/10.1002/hyp.13411, 2019.
Short summary
Recession analysis uses the receding streamflow following precipitation events to estimate watershed-average properties. Two methods for recession analysis use recession events individually or all events collectively. Using synthetic case studies, this paper shows that analyzing recessions collectively produces flawed interpretations. Moving forward, recession analysis using individual recessions should be used to describe the average and variability of watershed behavior.
Recession analysis uses the receding streamflow following precipitation events to estimate...