Hydrol. Earth Syst. Sci., 24, 1159-1170, 2020
https://doi.org/10.5194/hess-24-1159-2020

© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Hydrology and
Earth System
Sciences

Recession analysis revisited: impacts of climate on

parameter estimation

Elizabeth R. Jachens', David E. Rupp?, Clément Roques’, and John S. Selker!

Department of Biological and Ecologic Engineering, Oregon State University, Corvallis, OR 97330, USA
20regon Climate Change Research Institute, College of Earth, Oceanic, and Atmospheric Sciences,

Oregon State University, Corvallis, OR 97330, USA

3Department of Earth Sciences, ETH Zurich, 8092 Ziirich, Switzerland

Correspondence: Elizabeth R. Jachens (erjachens@gmail.com)

Received: 30 April 2019 — Discussion started: 4 June 2019

Revised: 1 February 2020 — Accepted: 3 February 2020 — Published: 11 March 2020

Abstract. Recession analysis is a classical method in hydrol-
ogy to assess watersheds’ hydrological properties by means
of the receding limb of a hydrograph, frequently expressed
as the rate of change in discharge (—dQ/dr) against dis-
charge (Q). This relationship is often assumed to take the
form of a power law —dQ/dt =a 0", where a and b are re-
cession parameters. Recent studies have highlighted major
differences in the estimation of the recession parameters de-
pending on the method, casting doubt on our ability to prop-
erly evaluate and compare hydrological properties across wa-
tersheds based on recession analysis of —dQ/dt vs. Q. This
study shows that estimation based on collective recessions
as an average watershed response is strongly affected by
the distributions of event inter-arrival time, magnitudes, and
antecedent conditions, implying that the resulting recession
parameters do not represent watershed properties as much
as they represent the climate. The main outcome from this
work highlights that proper evaluation of watershed proper-
ties is only ensured by considering independent individual
recession events. While average properties can be assessed
by considering the average (or median) values of a and b,
their variabilities provide critical insight into the sensitivity
of a watershed to the initial conditions involved prior to each
recharge event.

1 Introduction

Accurate representations of watershed-scale hydrological
processes are urgent in a global- and anthropogenic-change
perspective. Streamflow recession analysis has been rou-
tinely used for about half a century to assess watershed
properties (e.g., Brutsaert and Nieber, 1977; Kirchner, 2009;
Mcmillan et al., 2014) and more recently their vulnerabil-
ity to climatic and anthropogenic factors (Berghuijs et al.,
2016; Brooks et al., 2015; Buttle, 2018; Fan et al., 2019).
Recession analysis is commonly done by plotting the time
rate of change in discharge —dQ/dr vs. discharge Q with
bi-logarithmic axes. Theory for an idealized single aquifer
predicts a power law relationship with parameters a and b
(Brutsaert and Nieber, 1977; Rupp and Selker, 2005).

—dQ/dr =aQ" )]

However, it has long been recognized that the accuracy in
the estimation of those parameters is highly sensitive to the
methods used (Chen et al., 2018; Dralle et al., 2017; Roques
et al., 2017; Rupp and Selker, 2006a; Santos et al., 2019;
Stoelzle et al., 2013).

Two categories of parameter estimation methods are based
on: (1) the aggregation of all observations in the space of
—dQ/dr vs. Q, hereafter referred to as the “point cloud”, to
describe the average watershed behavior and (2) the identifi-
cation of individual recession events in the space of —dQ/d¢
vs. QO to look at the variability of a watershed’s response.
There is a long history of recession analysis parameter esti-
mation using the point cloud beginning with Brutsaert and
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Nieber (1977), and it remains common (e.g., Buttle, 2018;
Liu et al., 2016; Merio et al., 2019; Ploum et al., 2019;
Sanchez-Murillo et al., 2015; Stewart, 2015; Vannier et al.,
2014; Yeh and Huang, 2019). In recent literature there has
been a shift toward using individual recessions to estimate re-
cession parameters (Basso et al., 2015; Karlsen et al., 2018;
Roques et al., 2017), and Santos et al. (2019) go as far as to
question the validity of point cloud estimation methods.

When Brutseart and Nieber (1977) first proposed their
recession analysis method, aquifer recession behavior was
identified by fitting a lower envelope to the point cloud,
thus assuming small values of —dQ/dr for a given Q rep-
resent aquifer discharge flow, and anything larger has con-
tributions from faster pathways such as overland flow. This
lower-envelope (LE) method of estimating recession analysis
parameters was shown to be highly subject to artifacts aris-
ing from measurement noise and recording precision (Rupp
and Selker, 2006a; Troch et al., 1993), and improvements
to fitting a lower envelope have been proposed (Stoelzle et
al., 2013; Thomas et al., 2015). An alternative fitting method
wherein b was estimated as the best linear fit to the point
cloud was introduced by Vogel and Kroll (1992) as the cen-
tral tendency (CT). The central tendency method was adapted
by Kirchner (2009) to address the undue weight of highly un-
certain extreme points. Kirchner (2009) also suggested fitting
a polynomial function to averages within bins of the cloud
data. All of these point cloud fitting approaches fundamen-
tally treat each computation of —dQ/d¢ and Q as reflecting a
single average underlying curve, with deviations from a sin-
gle curve effectively treated as noise. In other studies, data
have been subset by season or month (e.g., Szilagyi et al.,
2007; Thomas et al., 2015) to examine seasonal variations in
the recession characteristics with the subsets still treated to
point cloud analyses.

In contrast, the variability in watershed response to indi-
vidual recharge events can be depicted by fitting recession
parameters to individual recession events. Several authors
have observed that individual recessions had greater b values
than the point cloud did (Biswal and Marani, 2010; McMil-
lan et al., 2011, 2014; Mutzner et al., 2013; Shaw and Riha,
2012); a larger value of b indicates a time rate of decline that
decreases more quickly with decreasing streamflow. Consis-
tent with these studies, we have also observed individual re-
cessions that have a larger b value than the point cloud fit
across watersheds in the Oregon Cascades. As an example,
we present in Fig. 1 recessions for Lookout Creek, Oregon,
USA, using daily discharge data (m® s~!) from 1949 to 2016
(USGS station no. 14161500; United States Geological Sur-
vey) (Johnson and Rothacher, 2019; obtained from USGS,
2019). In the 66 years of data presented, a total of 1309 re-
cession events are identified with an average of 19 events per
year. It is clear that values of b for individual recession events
tend to be larger than b for the point cloud, particularly at
lower discharges. In this example, individual event selection
criteria include recessions lasting longer than 5 d, starting 1d
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Figure 1. Recession analysis plot in log-log space for Lookout
Creek (USGS no. 14161500). Individual recession fits are displayed
with color scale differencing by values following a discretization ac-
cording to decile groups. This discretization allows for the descrip-
tion of the organization of individual recessions where recessions
with similar b values appear to be horizontally offset. The point
cloud has a value of b = 1.4 (binning average shown as a black dot-
ted line) compared to b = 2.8 for the median individual recession.

after the peak to exclude the influence of overland flow and
ending at the next precipitation event, following other stud-
ies (Biswal and Marani, 2010; Shaw and Riha, 2012). The
b parameter estimated using point cloud analysis (binning
average method; BA) is smaller (b = 1.5) compared to the
median of b values from the individual recessions (b = 2.8
with 50 % of individual recessions taking values from 2.0 to
4.7; see the color bar of Fig. 1). The frequency distribution
of the b parameter from the individual recessions is skewed
right and roughly log-normal, which suggests that b from the
point cloud does not represent an average or “master’”’ reces-
sion behavior.

For a given discharge range in Fig. 1, there appears to be
multiple individual recessions with similar values of b that
are horizontally offset, implying a common b but a variable a
value. The offset of individual recession events suggests that
antecedent conditions may be influencing the location of the
recession curves (e.g., Rupp et al., 2009), consistent with var-
ious theoretical definitions of a that include the aquifer sat-
urated thickness at the onset of the recession as a parameter
(Rupp and Selker, 2006b). Many authors have associated the
pattern of shifted individual recessions with seasonality (Bart
and Hope, 2014; Dralle et al., 2015; Karlsen et al., 2018;
McMillan et al., 2011; Shaw and Riha, 2012; Tashie et al.,
2019). Authors describe a generally sinusoidal relationship
with larger a values associated with summer months (Dralle
et al., 2015; Shaw and Riha, 2012) and a weaker seasonal
relationship for values of b (Karlsen et al., 2018; Tashie et
al., 2019). Seasonality associated with meteorological condi-
tions may well be used as a predictor of a or b, but season-
ality alone fails to address the underlying climatic conditions
that control streamflow recession. Instead of describing the
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variability between events based on seasonality as a proxy,
parameter estimation should focus on antecedent and me-
teorological conditions that control streamflow recession in
order to form a more comprehensive physically based under-
standing of recession parameters (e.g., Bart and Hope, 2014;
Karlsen et al., 2018).

This paper explores the source of the offset (In(a)) and
slope (b) on individual recessions. Using a time series of syn-
thetic hydrographs with known parameters, we compare dif-
ferent methods for estimating the recession analysis param-
eters and the sensitivity to the method on the frequency and
magnitude of events that make up the hydrograph. We are
particularly concerned with how individual recessions col-
lectively create the emergent point cloud and seek to describe
how recession parameter estimation of the point cloud is af-
fected by the distribution of individual recessions.

2 Methods

This section presents methods for (1) the definition of three
synthetic hydrographs, (2) the description of recession ex-
traction from the hydrograph, and (3) the comparisons be-
tween four fitting methods for parameter estimation applied
to a discharge time series for Lookout Creek.

2.1 Synthetic-hydrograph methods

This paper makes use of synthetic hydrographs to explore
factors that change b for individual recession events as well
as the inter-arrival times of individual events that create the
point cloud. Our synthetic hydrographs are created by defin-
ing individual recession events and stitching them together
to create a long time series. Synthetic hydrographs were
chosen for this study because each individual recession can
be definitively identified, as the characteristics are known,
which is unrealistic when considering real watersheds. Fur-
thermore, the synthetic hydrographs can be specified to di-
rectly compare different climatic controls without the con-
founding variables traditionally associated with real water-
sheds. For these purposes, the specifications of the synthetic
hydrographs were chosen to explore the effects of the magni-
tudes and frequency of recharge events on the recession anal-
ysis parameters from collective vs. individual recessions.

The falling limb of the hydrograph is assumed to follow a
power law following Eq. (2) (Dewandel et al., 2003; Drogue,
1972; Rupp and Woods, 2008):

o) = Qo(% v 1) , @

where Q is the discharge, Qg is the initial discharge prior
recession at t =0, ¢ is the time in days since the recession
started, T is a characteristic timescale, and w is the dimen-
sionless power law decay exponent. Equation (2) can be ex-

pressed as Eq. (1) witha = w/(t Q(l)/w) and b = (1+w)/w.
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Holding t constant and varying the initial condition Qy,
results in a hysteretic relationship of —dQ/d¢ vs. Q, in con-
trast to a constant a value which produces a single non-
hysteric relationship. Defining a as a function of initial con-
ditions has both theoretical (e.g., Rupp and Selker, 2006b)
and empirical (e.g., Bart and Hope, 2014) support. The con-
stancy of t is not well established, but we assume it is con-
stant for the scenarios examined here. Consequentially, a
constant t results in a variable value for a that is inversely
proportional to the initial discharge. An inverse relation-
ship is consistent with theoretical expectations for non-linear
aquifers (b > 1), where Qg increases with increasing initial
saturated thickness (see Figs. 2 and 3 in Rupp et al., 2006b).
Though the particular timescale is not important to our ob-
jectives, we chose it to be 45 d. Brutsaert (2008) noted a ten-
dency for t to be near 45d across a large number of basins
when fitting Eq. (1) with b = 1 to point cloud data. It remains
to be seen whether a similarly narrow distribution of T occurs
for b not equal to 1.

A pulse recharge amount corresponding to a given Qg can
be calculated by integrating Eq. (2) from r = 0 to r = oo. For
w > 1 (b < 2), the recharge volume is

V=DA=1Qp/(w—1), (3)

where D is the depth of recharge and A is the aquifer area.
For w <1 (b > 2), integrating Eq. (2) results in an infinite
volume, so b > 2 can only be sustained over a finite part of
any recession. Values of b > 2 have been derived from the
physical theory for the early portion of a recession (Brut-
saert and Nieber, 1977; Rupp and Selker, 2005) or can be ob-
tained from recession curves over a finite time period while
retaining physical realism by combining discharge from mul-
tiple linear (b = 1) or non-linear (1 < b < 2) reservoirs (e.g.,
McMillan et al., 2011). The effect on b of combining lin-
ear reservoirs in parallel (e.g., Clark et al., 2009; Gao et al.,
2017; Harman et al., 2009) and series (e.g., Rupp et al., 2009;
Wang, 2011) has received much more attention.

We compared three hypothetical time series generated
with different assumptions about the distribution of the mag-
nitudes and inter-arrival times of recharge events and the su-
perposition of recession events (Table 1). The inter-arrival
times are distributed log-normally (Cases 1 and 3) or uni-
formly (Case 2). Event magnitudes (as defined by Qo) are
either distributed log-normally (Cases 1 and 3) or have a con-
stant magnitude (Case 2). Events are either independent of
antecedent conditions (Case 1), or events are superimposed
on antecedent conditions (Cases 2 and 3) (Table 1 and Fig. 2).

To generate the time series for Cases 1 and 3, indepen-
dent recessions were created using a random-number gen-
erator for a log-normal distribution for event peak magni-
tude and duration for a total of 10 years of time series
data. The log-normal distributions for event magnitude and
duration are chosen for the synthetic hydrographs because
the distributions for Lookout Creek are skewed right and
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Figure 3. Recession analysis for Lookout Creek to aid in the com-
parison of four different fitting methods and the dependency on pa-
rameter estimation shown visually (lower envelope — LE, central
tendency — CT, and binning average — BA) and individual reces-
sions parameters (median individual recession — MI). Depending
on the fitting method, the parameter estimation for a and b will be
different.
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Table 1. Synthetic-hydrograph scenarios.

Event Event inter-arrival ~ Superposition of
magnitudes  time antecedent flow?
Case 1 Log-normal Log-normal No
Case2  Constant Constant Yes
Case3 Log-normal Log-normal Yes

roughly log-normal (Supplement Fig. S1), which is also con-
sistent with other skewed-right precipitation distributions in
previous studies (Begueria et al., 2009; Selker and Haith,
1990). Recharge events were created with log-normally dis-
tributed inter-arrival times (u = 2.5, 0 = 1) and event mag-
nitudes (u = 1d, o = 1) where both values are normalized
by timescale and the unit hydrograph respectively, resulting
in dimensionless quantities. These values of u and o result in
event lengths with a mean of 20 d and an average of 18 events
per year. This value was chosen to be comparable to the 19
events per year identified in the Lookout Creek example. The
distributions of both the inter-arrival times and event magni-
tudes are skewed right, representing the high frequency of
smaller events and less frequent large events. Changing u
and o will modify the amount of variability in individual
recessions and could be further explored with different dis-
tributions in future research regarding the resulting variabil-
ity in b. Case 2 assumes a constant event inter-arrival time
(u = 450/7) and magnitudes (u = 1). The mean inter-arrival
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time of 10d is intended to be comparable with the 19 events
per year identified in the Lookout Creek example.

For Case 1, the individual recessions were combined to
make a time series such that each event was concatenated
onto the last event disregarding the antecedent flows. For
Cases 2 and 3, individual recessions were superimposed on
antecedent flows, appealing to the simplest model presented
by the instantaneous unit hydrograph method (Dooge, 1973).
We acknowledge that the framework for the instantaneous
unit hydrograph as described in Dooge (1973) does not con-
sider non-linear reservoirs, but we use it as a simple represen-
tation to produce variability between recessions. We discuss
the implicit assumptions of this model in the Discussions
and Conclusions section. From Fig. 2, the baseflow from the
first event, O, is a simple continuation of the first recession.
The underlying second event, Qc, is defined by the second
event’s initial magnitude (constant in Case 2 and randomly
generated in Case 3). The resulting flow, Qp, is the sum of
Op and Qc.

As aresult, Case 1 looks specifically at a time series events
where the falling limb of each event maintains the same de-
cay constant and the effect of having no antecedent baseflow
influence on streamflow. By including baseflow to Case 2 but
maintaining equal inter-arrival times and event magnitudes,
we look specifically at the effect of antecedent conditions on
individual recessions and the point cloud. Case 3 combines
the distribution of event inter-arrival times and magnitudes
of Case 1 with the baseflow conditions of Case 2, best rep-
resenting the variability and inter-arrival times of individual
recession events seen in Fig. 1 for data from Lookout Creek.
Each case will address how the controls on the hydrograph
affect the recession analysis plot and the estimates of a and
b.

2.2 Recession extraction method

Recession extraction from observed hydrographs and the as-
sociated sensitivities to different criteria have been explored
by Dralle et al. (2017), including minimum recession length
and the definition of the beginning and the end of the event.
For Lookout Creek, we used extraction criteria similar to
those of other studies (e.g., Chen and Krajewski, 2016; Dralle
et al., 2017; Stoelzle et al., 2013) and applied the same crite-
ria prior to all fitting methods presented in Sect. 2.3 to isolate
differences in calculated b values due to the fitting method
only. An individual recession event duration must be longer
than 5 d. Rainfall data can be used to identify non-interrupted
recessions, but rainfall data will not available in all cases, so
we rely on the hydrograph only. The start of the recession is
defined as 1 d after the discharge peak to account for the pres-
ence of overland flow. The end of the recession occurs at the
minimum discharge prior to an increase in discharge greater
than the error associated with instrument precision for stage
height of ~ 0.5 cm, which translates into errors in discharge
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from ~ 0.01-0.1m3 s~!, depending on the rating curve and
the discharge level (Thomas et al., 2015).

For the synthetic hydrographs used in Sect. 3.2, events of
any length were included; the recession start was selected at
peak discharge because overland flow was not a factor; and
the end of the recession was chosen as the time immediately
before the next generated discharge peak.

2.3 Parameter estimation methods

Four methods of estimating representative recession param-
eters were evaluated: lower envelope, central tendency, bin-
ning average (Kirchner, 2009), and the median individual re-
cessions (MI) (Roques et al., 2017). Linear regression in bi-
logarithmic space was used with each method for consistency
across methods.

Because a change of hydraulic regime was suggestive in
Fig. 1 between high-flow ranges and low-flow ranges, reces-
sion analysis parameters were estimated for two flow ranges,
early time and late time. Early time and late time describe
a theoretical transition of flow regimes between high-flow
and low-flow ranges (Brutsaert and Nieber, 1977). To re-
duce the subjectivity of distinguishing between high and low
flows, a breakpoint in discharge separating high- from low-
flow behavior was optimized to best represent the analyti-
cal solution. By separating the data into two subgroups, ei-
ther smaller or larger than a defined breakpoint discharge,
the best-fit line was determined for each subgroup. The lo-
cation of the breakpoint is defined so the error between the
observed ratio of b for the two subgroups and the theoreti-
cal ratio (b =3 for early and 1.5 for late give a ratio of 2)
is minimized, theoretically defining the subgroup above the
breakpoint as early time and the subgroup below the break-
point at late time.

For each of the four estimated methods, parameters were
estimated for the early-time and late-time behavior sepa-
rately. For the LE method, b was fixed to 3 and 1.5 for
early and late time, respectively, following Brutsaert and
Nieber (1977), and a was chosen such that 5% of points
were below the lower envelope (Brutsaert, 2008; Troch et
al., 1993; Wang, 2011). It should be noted that using these
values for b assumes that the groundwater discharge behaves
like discharge from a single, initially saturated, and homoge-
nous Boussinesq aquifer. An alternative method to fitting the
lower envelope without a predefined value of b was intro-
duced by Thomas et al. (2015) using quantile regression to
estimate both a and b, but it was not used in this study. For
the CT method, the fit included all points of —dQ/dt vs. O
as unweighted (Vogel and Kroll, 1992). For the BA method,
bins spanned at least 1 % of the logarithmic range, and a line,
instead of the polynomial suggested by Kirchner (2009), was
fit to the binned data. We dispensed with the inverse-variance
bin weighting used by Kirchner (2009) to account for data
noise when we applied the method to the synthetic reces-
sions because some bins contained few points with very low
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Table 2. Comparison of recession analysis parameters a and b for
Lookout Creek between different methods: lower envelope (LE),
central tendency (CT), binning average (BA), and the median indi-
vidual recession (MI). Each value is represented as a ratio of pa-
rameter estimation for early to late time. Depending on the fitting
method, the parameter estimation for a and b will be different.

log(a b ()
[s—l (m3 S—l)l—b])
Early Late ‘ Early Late
LE -5.6 -3.0 3.0 1.5
CT -3.0 —1.8 1.9 1.0
BA 2.6 —1.6 1.8 1.2
MI -39 —8.1 2.7 6.4

variance and therefore were weighted excessively. For the M1
method, parameters were estimated for individual recessions
following Roques et al. (2017), and the medians of a and b
were calculated. In all cases, the time derivative of —dQ /d¢
was computed using the exponential-time-step (ETS) method
proposed by Roques et al. (2017).

3 Results

3.1 Parameter estimation for observed recessions
(Lookout Creek)

In Fig. 3 we display the recession plot stacking all individual
recessions resulting in the formation of the point cloud. The
different fitting strategies revealed that the LE, CT, and BA
methods all fit to the point cloud and result in different val-
ues of b when applied to the observed daily averaged stream-
flow for Lookout Creek: early-time values of b are over 50 %
larger for LE (fixed at 1.5) than CT and BA, and late-time
values of b are 50 % and 25 % larger for LE than CT and BA,
respectively (Fig. 3 and Table 2). The CT and BA methods
are fairly consistent with each other for both early and late
time, whereas the predefined theoretical b values for the LE
appear to provide poorer fits to the point cloud.

More importantly, parameter estimation differs greatly
whether the point cloud or individual recessions are used.
The late-time b value which defines the low-flow baseflow
regime is 6 times greater for MI than CT (Table 2). Using the
MI method, the b value is larger than any other method for
both early and late time.

3.2 Synthetic-hydrograph results
Based on the similar results from BA and CT methods dis-
cussed above, and the questionable practice of setting an

early- and late-time b a priori as we did in the LE method,
hereafter we use the BA method to represent the point cloud

Hydrol. Earth Syst. Sci., 24, 1159-1170, 2020

recession parameter estimation when comparing it to the MI
method using individual recessions.

The recession decay exponent w in Eq. (2) was set to 1.2;
distinct values of w were not used for early and late time.
This value for w results in b = 1.8 for an individual synthetic
recession, which is near the reported median of individual b
values of 2.0 in Biswal and Marani (2010) and 2.1 in Shaw
and Riha (2012) and Roques et al. (2017), though less than
the median individual b of 2.8 for Lookout Creek.

The b values and the offset of individual recessions result-
ing from Eq. (1) are both functions of w. A larger b value
indicates a more stable baseflow discharge (a slower decline
rate for given discharge). For a given value of b and 7, a
varies inversely with Q(l)/ -0, Decreasing w results in larger
values of b while also increasing the offset between individ-
ual recessions, resulting in a larger range of a values and
a more scattered point cloud. In contrast, as w approaches
infinity, the offset is minimized as b goes to 1, represent-
ing an exponential falling-limb recession in time (Rupp and
Woods, 2008). In this special case, all of the individual reces-
sions overlap with constant a (i.e., there is no offset among
individual recessions lines). While b = 1 is interpreted as a
linear reservoir according to traditional theory and is a con-
venience often assumed, this result suggests that a condition
where b = 1 and a is a constant is not consistent with the ex-
istence of a point cloud, except to the degree at which obser-
vation error introduces noise into the recession hydrograph
or other pathways (e.g., overland flow) contribute to the flow
in the stream. In summary, the more linear the response is
(the closer b is to 1), the smaller the offset is, whereas the
more non-linear the response (the larger the b) is, the greater
the offset and thus the more different the parameter estima-
tions between the point cloud and individual recession meth-
ods will be. The three following cases using synthetic hydro-
graphs are intended to highlight the offset of the individual
recession curves.

3.2.1 Casel

Recession analysis of a hydrograph with log-normally dis-
tributed event inter-arrival times and peak discharge with
a constant falling-limb decay constant (no baseflow repre-
sented) results in individual recession events with the same
b, horizontally shifted based on the initial discharge (Fig. 4).
In this case, the peak flow of the event is the only source of
variability in the recession parameter a. The variable event
magnitudes result in individual events located over a range of
In(Q) values, whereas if the same flow magnitude was pre-
served for each event, each individual recession would plot
on top of one another creating a single line without a point
cloud. The variable event inter-arrival times change the dura-
tion of an event, with longer events occurring over a greater
range on the y axis. In this simple hydrograph, parallel in-
dividual recessions are present, and all have b = 1.8, as ex-
pected. The value of b is estimated at 1.3 considering the
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point cloud, which appears to be significantly less than im-
posed individual b value of 1.8. This underestimation results
from the offset between individual recessions based on the
range of initial discharges.

To examine the sensitivity of parameter estimation to re-
cession extraction criteria, we evaluated how choosing the
start of the recession (i.e., the time elapsed since peak dis-
charge) affects the value of @ when using the point cloud
method. Whether we chose 0, 1, or 2d following peak dis-
charge, a from the point cloud a was 0.17 (-), and b was 1.3

).
3.2.2 Case2

The superposition of recession events accounts for the effects
of antecedent baseflow. The superposition changes the effec-
tive w of the falling limb of the hydrograph as the event re-
cession is added to the antecedent events, resulting in a vari-
able b value across the individual recessions (Fig. 5). The
median b value represented is 3.25 with a range of 2.56 to
3.41 (quantile range represented in the color bar of Fig. 5).
The point cloud b of 2.35 falls outside of the range of b values
for individual recessions. Superposition results in a larger b
value than what would arise from non-superposition. Steeper
recessions (higher b value) are associated with events with
higher baseflow contribution given the same addition of flow.
By including antecedent-flow conditions, neither a nor b is
preserved between individual recessions.

3.23 Case3

A hydrograph more representative of real-case conditions
includes variable inter-arrival times and event magnitudes
from Case 1 and baseflow antecedent conditions from Case 2
(Fig. 6a). These complexities result in a recession plot where
the individual recessions represent the variability in wa-
tershed response represented by the hydrograph (Fig. 6b),
where a and b are different between individual recessions.
As with Cases 1 and 2, the median individual b value (3.3)
is greater than the point cloud b value (2.0). The minimum
individual b value is 1.9 with a maximum of 8.5, while the
point cloud b is near the low end of the range of individ-
ual b values (see the color bar of Fig. 6). The similarity of
features of Figs. 6b and 1 are noteworthy. Though many of
the observed recessions in Fig. 1 are slightly curvilinear (in
the log—log space), the synthetic recessions are power laws;
in both cases there is a tendency for recessions with lower
initial discharges to have higher values of b, yet still many
instances of recessions have similar initial discharges but dif-
ferent values of b.

4 Discussion and conclusions

In the 42 years since Brutsaert and Nieber (1977) proposed
their recession analysis, it has provided a seemingly sim-
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ple analytical method for estimating basin-scale hydrologic
properties. However, recent studies have highlighted the sen-
sitivity to estimation methods on the recession parameter val-
ues and to the resulting interpretation of average watershed
behavior. This paper explores the effect of the distribution
(in time and in magnitude) of individual recessions on pa-
rameter estimation and compares that to the parameter es-
timation from collective recessions (i.e., the point cloud).
The four estimation methods considered were the lower en-
velope, central tendency, binning, and individual recession
method. Because of the poorer apparent fit and problems
pointed out from previous studies when using the lower en-
velope and central tendency methods, we chose to use the
binning method to compare with results from the individual
recessions method for a set of synthetic case studies.

We hypothesize that the climate controls the distribution
of individual recessions in bi-logarithmic plots of —dQ/d¢
vs. Q. This distribution can be related to the variability in
recession analysis parameters. Using the three synthetic case
studies, we examine the effects of event inter-arrival time,
magnitude, and antecedent conditions on the distribution of
individual recession events that comprise the pattern of col-
lective recessions.

We conclude that recession analysis performed on collec-
tive recessions does not capture average watershed behavior,
regardless of the fitting method. The point cloud is an artifact
of the variability of the individual recessions, including the
event inter-arrival times and distribution of magnitudes. Indi-
vidual recessions with the same b but different a values can
be produced by varying the initial discharges (Case 1); vari-
ability of b for individual recessions can be produced by su-
perimposing events on antecedent-flow conditions (Case 2);
and different recession event lengths with different b val-
ues can be produced by including variable event inter-arrival
times and magnitudes (Case 3).

For Case 1, the recession analysis parameter a is equal
to w/(t Q(l)/ ), and thus the intercept of the individual re-
cession curves will scale with Qg. The result is a collec-
tion of individual recession curves that are horizontally offset
based on the initial discharge, producing a smaller b value
for the point cloud compared to the individual recessions.
Case 1 illustrates that the slope of individual recession events
can be greater than the best-fit line through the point cloud,
consistent with previous studies (Biswal and Marani, 2010;
Mutzner et al., 2013; Shaw and Riha, 2012). However, the
point cloud in Case 1 is generated by a collection of multi-
ple individual recessions, all with the same slope, and does
not have the variability in b values presented in these previ-
ous studies and shown for Lookout Creek in Fig. 1. Cases 2
and 3 use superposition of antecedent-flow events that conse-
quentially changes the individual b values, providing a pos-
sible explanation for the variability in b values for individual
recessions. For Case 2, the superposition of events takes ac-
count of antecedent conditions which results in a distribution
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Figure 4. (a) Hydrograph with log-normally distributed event inter-arrival times and peak magnitudes with each event maintaining a constant
falling-limb decay constant and (b) recession analysis with resulting parallel individual recessions having a constant b value (MI b = 1.8)
compared to the point cloud fit (black dotted line), which results in b = 1.3. Discharge and time are normalized, resulting in dimensionless
quantities. Gaps in the hydrograph are a result of individual event magnitudes that are smaller than the streamflow that precedes the event
start. The individual recessions are offset, which when viewed collectively, results in the point cloud.
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Figure 5. (a) Hydrograph of equally spaced recharge events with each underlying equal magnitude recession event superimposed on previous
ones resulting in varying falling-limb decay constants (x axis zoomed in to show detail) and (b) recession analysis plot showing a range of b
values of individual recessions (MI b = 3.25), with steeper recessions associated with events with a higher baseflow contribution, compared
to the point cloud fit (black dotted line — BA; b = 2.35). The color bar is divided into 10 ranges based on the individual b value; each range

contains 10 % of individual recessions, and the lowest range is in white for comparison to the point cloud range.

of individual b values despite the decay exponent w being
fixed. For Case 3, the horizontal offset of individual reces-
sions from Case 1 and the effects of antecedent conditions
from Case 2 result in the recessions with variable individual
b values that are horizontally offset to create a pattern similar
to that observed in a real watershed.

While the mean b for individual recessions in Case 1 is a
direct consequence of the value of w used in Eq. (2), this is
not true when the discharge from each application of Eq. (2),
which we call an event, is superimposed on the antecedent
flow, as in Cases 2 and 3. This superposition of events re-
sults in a range of individual recession b as often observed in
the literature (Basso et al., 2015; Biswal and Marani, 2010;
Mcmillan et al., 2014; Mutzner et al., 2013; Shaw and Riha,
2012); thus it appears that the straightforward superposition
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of events can recreate the watershed behavior. However, there
is a key underlying assumption of this superposition that is
inconsistent with a real watershed. To help describe this in-
consistency, we can compare two distinctly different con-
ceptual models of watersheds. The first, and very frequently
used, model is a single bucket with an outlet near the bottom.
The bucket contains a porous medium whose properties may
vary with depth to create a variety of non-linear outflows.
Each new recharge event adds to the pre-existing storage of
water in the bucket. The second model is the one used for
Cases 2 and 3: each new event adds water to a new and in-
dependent bucket, and the outflows from all buckets are ag-
gregated. Both conceptual models have components that are
patently unrealistic when applied to natural watersheds, but,
remarkably, the latter model produces a distribution of re-
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Figure 6. (a) Hydrograph with a log-normal distribution in recharge event inter-arrival times and magnitudes and (b) recession analysis plot
showing a large range of b values (with the median of b = 3.3), compared to the point cloud fit (black dotted line — BA; b = 2.0). The color
bar is divided into deciles in the distribution of b values compared to the point cloud range.

cession events in the space of —dQ/d¢ vs. Q that is more
like what is observed in the Lookout Creek basin and oth-
ers (Mutzner et al., 2013; Shaw and Riha, 2012). This find-
ing reveals key information about the subsurface plumbing
system of the basin and its dynamics that could be explored
with models with a higher degree of realism. We acknowl-
edge that there are other ways to create watershed memory
that would also generate variability in apparent recession pa-
rameters and would be worthwhile to consider. For example,
following previous works that have shown that multiple lin-
ear reservoirs can generate power law recessions (Clark et
al., 2009; Harman et al., 2009), one could explore combi-
nations of parallel linear reservoirs with varying sizes and
recession constants under time-varying recharge. However,
based on the results of Harman et al. (2009) using periodic
recharge events, it is not clear that this would lead to a dis-
tribution of recession curves of varying b values like what is
seen in Fig. 1. A similar, albeit more complicated, exercise
could also be done with combinations of parallel non-linear
reservoirs with distinct recession parameters.

An additional important simplifying assumption of this
study is the use of a constant timescale t for each individ-
ual event. Previous studies that have examined timescales
across basins by setting b =1 and estimating t from the
point cloud (Brutsaert, 2008; Lyon et al., 2015). However,
given the questionable of the validity of the point cloud es-
timation methods, additional studies of the variability of the
timescale among individual recession events and across the
basin should be done.

We show how the point cloud pattern does not arise from
watershed properties alone. The consequence is that param-
eters estimated from the point cloud do not represent wa-
tershed properties. In all three synthetic-hydrograph repre-
sentations, the median individual recession b is significantly
greater than b from the point cloud. Additionally, it is pos-
sible for the point cloud b to be smaller than the minimum

www.hydrol-earth-syst-sci.net/24/1159/2020/

individual recession b indicating the point cloud fit repre-
sents a behavior outside the range of watershed responses
represented by individual recession events. In contrast to the
point cloud, individual recession analysis provides insights
into the average and variability of watershed responses which
is highly dependent on the memory effect of the watershed.
The variability in individual responses gives insight into wa-
tershed complexities including heterogeneity in topography,
geology, and climate. Watersheds may present large vari-
ability in geology and so hydrogeological conditions such
as unconfined or confined aquifers, inter-basin groundwater
flows, high spatial hydraulic conductivity variability, depth-
dependent hydraulic conductivity, or large-scale discontinu-
ities. As a result, there are still opportunities to further char-
acterize the variability in watershed responses and the associ-
ated variability in individual b values to improve streamflow
prediction using recession analysis.

A strength of the critical-zone community is the ability to
create a global analysis by comparing across studies (Brooks
et al., 2015; Fan et al., 2019). However, a lack of consensus
for a standard method for recession analysis procedures ex-
ists and thus inhibits recession analysis studies from being
widely compared. If streamflow analysis is to be included in
a global analysis, results need to be comparable across scales
and observatories. There is a need for a common method
employed to compare the average and variability in water-
shed responses. Because estimated parameters may differ
greatly by estimation method, misinterpretation of hydrolog-
ical properties and incorrect predictions within the critical
zone are possible. When using the point cloud in particular,
a smaller recession parameter b at a late time could be, and
has been, interpreted to imply greater basin vulnerability to
drought (e.g., Berghuijs et al., 2016, 2014; Yeh and Huang,
2019). However, a more stable baseflow is implied by the dis-
tribution of b from the individual recessions and its median
b value, which can be much larger than what is estimated

Hydrol. Earth Syst. Sci., 24, 1159-1170, 2020



1168 E. R. Jachens et al.: Recession analysis revisited: impacts of climate on parameter estimation

from the point cloud. We suggest that the use of collective
recession analysis should be avoided in favor of individual
recession analysis as the standard to describe the average and
variability in watershed response. The methods employed for
recession analysis certainly require more attention. Correct
methods are critical to understand the underlying hydrology
and thus the interpretation of a watershed’s vulnerability to
climate change.

Code and data availability. The streamflow record for Look-
out Creek is freely available from the USGS website (https:
/Iwaterdata.usgs.gov/nwis/uv?site_no=14161500; USGS, 2019).
The source code for the exponential-time-step method is
available by request (Roques et al., 2017). Randomly gen-
erated log-normal event magnitudes and inter-arrival times
presented in this paper for Cases 1 and 3 are available
at: https://doi.org/10.4211/hs.e3c159631acd470cbeefSfalabe0142e
(Jachens, 2020). Respective codes can be obtained from the corre-
sponding author.
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