Articles | Volume 23, issue 6
Hydrol. Earth Syst. Sci., 23, 2601–2614, 2019
https://doi.org/10.5194/hess-23-2601-2019
Hydrol. Earth Syst. Sci., 23, 2601–2614, 2019
https://doi.org/10.5194/hess-23-2601-2019

Research article 17 Jun 2019

Research article | 17 Jun 2019

On the choice of calibration metrics for “high-flow” estimation using hydrologic models

Naoki Mizukami et al.

Related authors

Flood spatial coherence, triggers, and performance in hydrological simulations: large-sample evaluation of four streamflow-calibrated models
Manuela I. Brunner, Lieke A. Melsen, Andrew W. Wood, Oldrich Rakovec, Naoki Mizukami, Wouter J. M. Knoben, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 25, 105–119, https://doi.org/10.5194/hess-25-105-2021,https://doi.org/10.5194/hess-25-105-2021, 2021
Short summary
Flexible vector-based spatial configurations in land models
Shervan Gharari, Martyn P. Clark, Naoki Mizukami, Wouter J. M. Knoben, Jefferson S. Wong, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 24, 5953–5971, https://doi.org/10.5194/hess-24-5953-2020,https://doi.org/10.5194/hess-24-5953-2020, 2020
Short summary
Mapping (dis)agreement in hydrologic projections
Lieke A. Melsen, Nans Addor, Naoki Mizukami, Andrew J. Newman, Paul J. J. F. Torfs, Martyn P. Clark, Remko Uijlenhoet, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 22, 1775–1791, https://doi.org/10.5194/hess-22-1775-2018,https://doi.org/10.5194/hess-22-1775-2018, 2018
Short summary
Climate change impacts on flood risk and asset damages within mapped 100-year floodplains of the contiguous United States
Cameron Wobus, Ethan Gutmann, Russell Jones, Matthew Rissing, Naoki Mizukami, Mark Lorie, Hardee Mahoney, Andrew W. Wood, David Mills, and Jeremy Martinich
Nat. Hazards Earth Syst. Sci., 17, 2199–2211, https://doi.org/10.5194/nhess-17-2199-2017,https://doi.org/10.5194/nhess-17-2199-2017, 2017
Short summary
The CAMELS data set: catchment attributes and meteorology for large-sample studies
Nans Addor, Andrew J. Newman, Naoki Mizukami, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017,https://doi.org/10.5194/hess-21-5293-2017, 2017
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Reduction of vegetation-accessible water storage capacity after deforestation affects catchment travel time distributions and increases young water fractions in a headwater catchment
Markus Hrachowitz, Michael Stockinger, Miriam Coenders-Gerrits, Ruud van der Ent, Heye Bogena, Andreas Lücke, and Christine Stumpp
Hydrol. Earth Syst. Sci., 25, 4887–4915, https://doi.org/10.5194/hess-25-4887-2021,https://doi.org/10.5194/hess-25-4887-2021, 2021
Short summary
Combining split-sample testing and hidden Markov modelling to assess the robustness of hydrological models
Etienne Guilpart, Vahid Espanmanesh, Amaury Tilmant, and François Anctil
Hydrol. Earth Syst. Sci., 25, 4611–4629, https://doi.org/10.5194/hess-25-4611-2021,https://doi.org/10.5194/hess-25-4611-2021, 2021
Short summary
Hydrologically informed machine learning for rainfall–runoff modelling: towards distributed modelling
Herath Mudiyanselage Viraj Vidura Herath, Jayashree Chadalawada, and Vladan Babovic
Hydrol. Earth Syst. Sci., 25, 4373–4401, https://doi.org/10.5194/hess-25-4373-2021,https://doi.org/10.5194/hess-25-4373-2021, 2021
Short summary
Development and evaluation of 0.05° terrestrial water storage estimates using Community Atmosphere Biosphere Land Exchange (CABLE) land surface model and assimilation of GRACE data
Natthachet Tangdamrongsub, Michael F. Jasinski, and Peter J. Shellito
Hydrol. Earth Syst. Sci., 25, 4185–4208, https://doi.org/10.5194/hess-25-4185-2021,https://doi.org/10.5194/hess-25-4185-2021, 2021
Short summary
Conditioning ensemble streamflow prediction with the North Atlantic Oscillation improves skill at longer lead times
Seán Donegan, Conor Murphy, Shaun Harrigan, Ciaran Broderick, Dáire Foran Quinn, Saeed Golian, Jeff Knight, Tom Matthews, Christel Prudhomme, Adam A. Scaife, Nicky Stringer, and Robert L. Wilby
Hydrol. Earth Syst. Sci., 25, 4159–4183, https://doi.org/10.5194/hess-25-4159-2021,https://doi.org/10.5194/hess-25-4159-2021, 2021
Short summary

Cited articles

Addor, N., Newman, A., Mizukami, N., and Clark, M.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, https://doi.org/10.5065/D6G73C3Q, 2017a. a, b
Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017b. a
Berghuijs, W. R., Woods, R. A., Hutton, C. J., and Sivapalan, M.: Dominant flood generating mechanisms across the United States, Geophys. Res. Lett., 43, 4382–4390, https://doi.org/10.1002/2016GL068070, 2016. a
Bergström, S.: The HBV model, in: Compute Models of Watershed Hydrology, edited by: Singh, V., chap. The HBV mo, Water Resouces Publications, Highlands Ranch Co., 1995. a
Bourgin, F., Andréassian, V., Perrin, C., and Oudin, L.: Transferring global uncertainty estimates from gauged to ungauged catchments, Hydrol. Earth Syst. Sci., 19, 2535–2546, https://doi.org/10.5194/hess-19-2535-2015, 2015. a
Download
Short summary
We find that Nash–Sutcliffe (NSE)-based model calibrations result in poor reproduction of high-flow events, such as the annual peak flows that are used for flood frequency estimation. The use of Kling–Gupta efficiency (KGE) results in annual peak flow estimates that are better than from NSE, with only a slight degradation in performance with respect to other related metrics.