Articles | Volume 23, issue 1
https://doi.org/10.5194/hess-23-1-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-23-1-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A simple model for local-scale sensible and latent heat advection contributions to snowmelt
Centre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
John W. Pomeroy
Centre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
Warren D. Helgason
Centre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
Department of Civil, Geological, and Environmental Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
Related authors
Phillip Harder, Warren D. Helgason, and John W. Pomeroy
The Cryosphere, 18, 3277–3295, https://doi.org/10.5194/tc-18-3277-2024, https://doi.org/10.5194/tc-18-3277-2024, 2024
Short summary
Short summary
Remote sensing the amount of water in snow (SWE) at high spatial resolutions is an unresolved challenge. In this work, we tested a drone-mounted passive gamma spectrometer to quantify SWE. We found that the gamma observations could resolve the average and spatial variability of SWE down to 22.5 m resolutions. Further, by combining drone gamma SWE and lidar snow depth we could estimate SWE at sub-metre resolutions which is a new opportunity to improve the measurement of shallow snowpacks.
Zhe Zhang, Yanping Li, Fei Chen, Phillip Harder, Warren Helgason, James Famiglietti, Prasanth Valayamkunnath, Cenlin He, and Zhenhua Li
Geosci. Model Dev., 16, 3809–3825, https://doi.org/10.5194/gmd-16-3809-2023, https://doi.org/10.5194/gmd-16-3809-2023, 2023
Short summary
Short summary
Crop models incorporated in Earth system models are essential to accurately simulate crop growth processes on Earth's surface and agricultural production. In this study, we aim to model the spring wheat in the Northern Great Plains, focusing on three aspects: (1) develop the wheat model at a point scale, (2) apply dynamic planting and harvest schedules, and (3) adopt a revised heat stress function. The results show substantial improvements and have great importance for agricultural production.
Phillip Harder, John W. Pomeroy, and Warren D. Helgason
The Cryosphere, 14, 1919–1935, https://doi.org/10.5194/tc-14-1919-2020, https://doi.org/10.5194/tc-14-1919-2020, 2020
Short summary
Short summary
Unmanned-aerial-vehicle-based (UAV) structure-from-motion (SfM) techniques have the ability to map snow depths in open areas. Here UAV lidar and SfM are compared to map sub-canopy snowpacks. Snow depth accuracy was assessed with data from sites in western Canada collected in 2019. It is demonstrated that UAV lidar can measure the sub-canopy snow depth at a high accuracy, while UAV-SfM cannot. UAV lidar promises to quantify snow–vegetation interactions at unprecedented accuracy and resolution.
Xing Fang, John W. Pomeroy, Chris M. DeBeer, Phillip Harder, and Evan Siemens
Earth Syst. Sci. Data, 11, 455–471, https://doi.org/10.5194/essd-11-455-2019, https://doi.org/10.5194/essd-11-455-2019, 2019
Short summary
Short summary
Meteorological, snow survey, streamflow, and groundwater data are presented from Marmot Creek Research Basin, a small alpine-montane forest headwater catchment in the Alberta Rockies. It was heavily instrumented, experimented upon, and operated by several federal government agencies between 1962 and 1986 and was re-established starting in 2004 by the University of Saskatchewan Centre for Hydrology. These long-term legacy data serve to advance our knowledge of hydrology of the Canadian Rockies.
Phillip Harder, Michael Schirmer, John Pomeroy, and Warren Helgason
The Cryosphere, 10, 2559–2571, https://doi.org/10.5194/tc-10-2559-2016, https://doi.org/10.5194/tc-10-2559-2016, 2016
Short summary
Short summary
This paper assesses the accuracy of high-resolution snow depth maps generated from unmanned aerial vehicle imagery. Snow depth maps are generated from differencing snow-covered and snow-free digital surface models produced from structure from motion techniques. On average, the estimated snow depth error was 10 cm. This technique is therefore useful for observing snow accumulation and melt in deep snow but is restricted to observing peak snow accumulation in shallow snow.
Phillip Harder, Warren D. Helgason, and John W. Pomeroy
The Cryosphere, 18, 3277–3295, https://doi.org/10.5194/tc-18-3277-2024, https://doi.org/10.5194/tc-18-3277-2024, 2024
Short summary
Short summary
Remote sensing the amount of water in snow (SWE) at high spatial resolutions is an unresolved challenge. In this work, we tested a drone-mounted passive gamma spectrometer to quantify SWE. We found that the gamma observations could resolve the average and spatial variability of SWE down to 22.5 m resolutions. Further, by combining drone gamma SWE and lidar snow depth we could estimate SWE at sub-metre resolutions which is a new opportunity to improve the measurement of shallow snowpacks.
Mazda Kompanizare, Diogo Costa, Merrin L. Macrae, John W. Pomeroy, and Richard M. Petrone
Hydrol. Earth Syst. Sci., 28, 2785–2807, https://doi.org/10.5194/hess-28-2785-2024, https://doi.org/10.5194/hess-28-2785-2024, 2024
Short summary
Short summary
A new agricultural tile drainage module was developed in the Cold Region Hydrological Model platform. Tile flow and water levels are simulated by considering the effect of capillary fringe thickness, drainable water and seasonal regional groundwater dynamics. The model was applied to a small well-instrumented farm in southern Ontario, Canada, where there are concerns about the impacts of agricultural drainage into Lake Erie.
André Bertoncini and John W. Pomeroy
EGUsphere, https://doi.org/10.5194/egusphere-2024-288, https://doi.org/10.5194/egusphere-2024-288, 2024
Short summary
Short summary
Rainfall and snowfall spatial estimation for hydrological purposes is often compromised in cold mountain regions due to inaccessibility, creating sparse gauge networks with few high-elevation gauges. This study developed a framework to quantify gauge network uncertainty, considering elevation to aid in future gauge placement in mountain regions. Results show that gauge placement above 2000 m was the most cost-effective measure to decrease gauge network uncertainty in the Canadian Rockies.
Zhihua He, Kevin Shook, Christopher Spence, John W. Pomeroy, and Colin Whitfield
Hydrol. Earth Syst. Sci., 27, 3525–3546, https://doi.org/10.5194/hess-27-3525-2023, https://doi.org/10.5194/hess-27-3525-2023, 2023
Short summary
Short summary
This study evaluated the impacts of climate change on snowmelt, soil moisture, and streamflow over the Canadian Prairies. The entire prairie region was divided into seven basin types. We found strong variations of hydrological sensitivity to precipitation and temperature changes in different land covers and basins, which suggests that different water management and adaptation methods are needed to address enhanced water stress due to expected climate change in different regions of the prairies.
Zhe Zhang, Yanping Li, Fei Chen, Phillip Harder, Warren Helgason, James Famiglietti, Prasanth Valayamkunnath, Cenlin He, and Zhenhua Li
Geosci. Model Dev., 16, 3809–3825, https://doi.org/10.5194/gmd-16-3809-2023, https://doi.org/10.5194/gmd-16-3809-2023, 2023
Short summary
Short summary
Crop models incorporated in Earth system models are essential to accurately simulate crop growth processes on Earth's surface and agricultural production. In this study, we aim to model the spring wheat in the Northern Great Plains, focusing on three aspects: (1) develop the wheat model at a point scale, (2) apply dynamic planting and harvest schedules, and (3) adopt a revised heat stress function. The results show substantial improvements and have great importance for agricultural production.
Kevin Robert Shook, Paul H. Whitfield, Christopher Spence, and John Willard Pomeroy
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-51, https://doi.org/10.5194/hess-2023-51, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
Recent studies suggest that the velocities of water running off landscapes in the Canadian Prairies may be much smaller than are generally assumed. Analyses of historical flows for 23 basins in central Alberta, showed that many of the rivers responded more slowly, and that the flows are much slower, than would be estimated from equations developed elsewhere. The effects of slow flow velocities on the development of hydrological models of the region are discussed, as are the possible causes.
Marcos R. C. Cordeiro, Kang Liang, Henry F. Wilson, Jason Vanrobaeys, David A. Lobb, Xing Fang, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 26, 5917–5931, https://doi.org/10.5194/hess-26-5917-2022, https://doi.org/10.5194/hess-26-5917-2022, 2022
Short summary
Short summary
This study addresses the issue of increasing interest in the hydrological impacts of converting cropland to perennial forage cover in the Canadian Prairies. By developing customized models using the Cold Regions Hydrological Modelling (CRHM) platform, this long-term (1992–2013) modelling study is expected to provide stakeholders with science-based information regarding the hydrological impacts of land use conversion from annual crop to perennial forage cover in the Canadian Prairies.
Christopher Spence, Zhihua He, Kevin R. Shook, John W. Pomeroy, Colin J. Whitfield, and Jared D. Wolfe
Hydrol. Earth Syst. Sci., 26, 5555–5575, https://doi.org/10.5194/hess-26-5555-2022, https://doi.org/10.5194/hess-26-5555-2022, 2022
Short summary
Short summary
We learnt how streamflow from small creeks could be altered by wetland removal in the Canadian Prairies, where this practice is pervasive. Every creek basin in the region was placed into one of seven groups. We selected one of these groups and used its traits to simulate streamflow. The model worked well enough so that we could trust the results even if we removed the wetlands. Wetland removal did not change low flow amounts very much, but it doubled high flow and tripled average flow.
Dhiraj Pradhananga and John W. Pomeroy
Hydrol. Earth Syst. Sci., 26, 2605–2616, https://doi.org/10.5194/hess-26-2605-2022, https://doi.org/10.5194/hess-26-2605-2022, 2022
Short summary
Short summary
This study considers the combined impacts of climate and glacier changes due to recession on the hydrology and water balance of two high-elevation glaciers. Peyto and Athabasca glacier basins in the Canadian Rockies have undergone continuous glacier loss over the last 3 to 5 decades, leading to an increase in ice exposure and changes to the elevation and slope of the glacier surfaces. Streamflow from these glaciers continues to increase more due to climate warming than glacier recession.
Christopher Spence, Zhihua He, Kevin R. Shook, Balew A. Mekonnen, John W. Pomeroy, Colin J. Whitfield, and Jared D. Wolfe
Hydrol. Earth Syst. Sci., 26, 1801–1819, https://doi.org/10.5194/hess-26-1801-2022, https://doi.org/10.5194/hess-26-1801-2022, 2022
Short summary
Short summary
We determined how snow and flow in small creeks change with temperature and precipitation in the Canadian Prairie, a region where water resources are often under stress. We tried something new. Every watershed in the region was placed in one of seven groups based on their landscape traits. We selected one of these groups and used its traits to build a model of snow and streamflow. It worked well, and by the 2040s there may be 20 %–40 % less snow and 30 % less streamflow than the 1980s.
Dhiraj Pradhananga, John W. Pomeroy, Caroline Aubry-Wake, D. Scott Munro, Joseph Shea, Michael N. Demuth, Nammy Hang Kirat, Brian Menounos, and Kriti Mukherjee
Earth Syst. Sci. Data, 13, 2875–2894, https://doi.org/10.5194/essd-13-2875-2021, https://doi.org/10.5194/essd-13-2875-2021, 2021
Short summary
Short summary
This paper presents hydrological, meteorological, glaciological and geospatial data of Peyto Glacier Basin in the Canadian Rockies. They include high-resolution DEMs derived from air photos and lidar surveys and long-term hydrological and glaciological model forcing datasets derived from bias-corrected reanalysis products. These data are crucial for studying climate change and variability in the basin and understanding the hydrological responses of the basin to both glacier and climate change.
Paul H. Whitfield, Philip D. A. Kraaijenbrink, Kevin R. Shook, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 25, 2513–2541, https://doi.org/10.5194/hess-25-2513-2021, https://doi.org/10.5194/hess-25-2513-2021, 2021
Short summary
Short summary
Using only warm season streamflow records, regime and change classifications were produced for ~ 400 watersheds in the Nelson and Mackenzie River basins, and trends in water storage and vegetation were detected from satellite imagery. Three areas show consistent changes: north of 60° (increased streamflow and basin greenness), in the western Boreal Plains (decreased streamflow and basin greenness), and across the Prairies (three different patterns of increased streamflow and basin wetness).
Chris M. DeBeer, Howard S. Wheater, John W. Pomeroy, Alan G. Barr, Jennifer L. Baltzer, Jill F. Johnstone, Merritt R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn Marshall, Elizabeth Campbell, Philip Marsh, Sean K. Carey, William L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren D. Helgason, Andrew M. Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, Michael N. Demuth, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 25, 1849–1882, https://doi.org/10.5194/hess-25-1849-2021, https://doi.org/10.5194/hess-25-1849-2021, 2021
Short summary
Short summary
This article examines future changes in land cover and hydrological cycling across the interior of western Canada under climate conditions projected for the 21st century. Key insights into the mechanisms and interactions of Earth system and hydrological process responses are presented, and this understanding is used together with model application to provide a synthesis of future change. This has allowed more scientifically informed projections than have hitherto been available.
Julie M. Thériault, Stephen J. Déry, John W. Pomeroy, Hilary M. Smith, Juris Almonte, André Bertoncini, Robert W. Crawford, Aurélie Desroches-Lapointe, Mathieu Lachapelle, Zen Mariani, Selina Mitchell, Jeremy E. Morris, Charlie Hébert-Pinard, Peter Rodriguez, and Hadleigh D. Thompson
Earth Syst. Sci. Data, 13, 1233–1249, https://doi.org/10.5194/essd-13-1233-2021, https://doi.org/10.5194/essd-13-1233-2021, 2021
Short summary
Short summary
This article discusses the data that were collected during the Storms and Precipitation Across the continental Divide (SPADE) field campaign in spring 2019 in the Canadian Rockies, along the Alberta and British Columbia border. Various instruments were installed at five field sites to gather information about atmospheric conditions focussing on precipitation. Details about the field sites, the instrumentation used, the variables collected, and the collection methods and intervals are presented.
Vincent Vionnet, Christopher B. Marsh, Brian Menounos, Simon Gascoin, Nicholas E. Wayand, Joseph Shea, Kriti Mukherjee, and John W. Pomeroy
The Cryosphere, 15, 743–769, https://doi.org/10.5194/tc-15-743-2021, https://doi.org/10.5194/tc-15-743-2021, 2021
Short summary
Short summary
Mountain snow cover provides critical supplies of fresh water to downstream users. Its accurate prediction requires inclusion of often-ignored processes. A multi-scale modelling strategy is presented that efficiently accounts for snow redistribution. Model accuracy is assessed via airborne lidar and optical satellite imagery. With redistribution the model captures the elevation–snow depth relation. Redistribution processes are required to reproduce spatial variability, such as around ridges.
Richard Essery, Hyungjun Kim, Libo Wang, Paul Bartlett, Aaron Boone, Claire Brutel-Vuilmet, Eleanor Burke, Matthias Cuntz, Bertrand Decharme, Emanuel Dutra, Xing Fang, Yeugeniy Gusev, Stefan Hagemann, Vanessa Haverd, Anna Kontu, Gerhard Krinner, Matthieu Lafaysse, Yves Lejeune, Thomas Marke, Danny Marks, Christoph Marty, Cecile B. Menard, Olga Nasonova, Tomoko Nitta, John Pomeroy, Gerd Schädler, Vladimir Semenov, Tatiana Smirnova, Sean Swenson, Dmitry Turkov, Nander Wever, and Hua Yuan
The Cryosphere, 14, 4687–4698, https://doi.org/10.5194/tc-14-4687-2020, https://doi.org/10.5194/tc-14-4687-2020, 2020
Short summary
Short summary
Climate models are uncertain in predicting how warming changes snow cover. This paper compares 22 snow models with the same meteorological inputs. Predicted trends agree with observations at four snow research sites: winter snow cover does not start later, but snow now melts earlier in spring than in the 1980s at two of the sites. Cold regions where snow can last until late summer are predicted to be particularly sensitive to warming because the snow then melts faster at warmer times of year.
Nikolas O. Aksamit and John W. Pomeroy
The Cryosphere, 14, 2795–2807, https://doi.org/10.5194/tc-14-2795-2020, https://doi.org/10.5194/tc-14-2795-2020, 2020
Short summary
Short summary
In cold regions, it is increasingly important to quantify the amount of water stored as snow at the end of winter. Current models are inconsistent in their estimates of snow sublimation due to atmospheric turbulence. Specific wind structures have been identified that amplify potential rates of surface and blowing snow sublimation during blowing snow storms. The recurrence of these motions has been modeled by a simple scaling argument that has its foundation in turbulent boundary layer theory.
Nicholas J. Kinar, John W. Pomeroy, and Bing Si
Geosci. Instrum. Method. Data Syst., 9, 293–315, https://doi.org/10.5194/gi-9-293-2020, https://doi.org/10.5194/gi-9-293-2020, 2020
Short summary
Short summary
Heat pulse probes are widely used to monitor soil thermal and physical properties for agricultural and hydrological monitoring related to crop productivity, drought, snowmelt, and evapotranspiration. Changes in the effective probe spacing distance can cause measurement inaccuracy. This paper uses a novel heat pulse probe and theory to compensate for changes in effective distance, thereby enabling more accurate sensor outputs useful for forecasts and predictions of drought and flooding.
Phillip Harder, John W. Pomeroy, and Warren D. Helgason
The Cryosphere, 14, 1919–1935, https://doi.org/10.5194/tc-14-1919-2020, https://doi.org/10.5194/tc-14-1919-2020, 2020
Short summary
Short summary
Unmanned-aerial-vehicle-based (UAV) structure-from-motion (SfM) techniques have the ability to map snow depths in open areas. Here UAV lidar and SfM are compared to map sub-canopy snowpacks. Snow depth accuracy was assessed with data from sites in western Canada collected in 2019. It is demonstrated that UAV lidar can measure the sub-canopy snow depth at a high accuracy, while UAV-SfM cannot. UAV lidar promises to quantify snow–vegetation interactions at unprecedented accuracy and resolution.
Xing Fang and John W. Pomeroy
Hydrol. Earth Syst. Sci., 24, 2731–2754, https://doi.org/10.5194/hess-24-2731-2020, https://doi.org/10.5194/hess-24-2731-2020, 2020
Short summary
Short summary
High-resolution Weather Research and Forecasting model near-surface outputs from control and future periods were bias-corrected by downscaling outputs with respect to meteorological stations in Marmot Creek Research Basin, Canadian Rocky Mountains. A hydrological model simulation driven by the bias-corrected outputs showed declined seasonal peak snowpack, shorter snow-cover duration, higher evapotranspiration, and increased streamflow discharge in Marmot Creek for the warmer and wetter future.
Vincent Vionnet, Vincent Fortin, Etienne Gaborit, Guy Roy, Maria Abrahamowicz, Nicolas Gasset, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 24, 2141–2165, https://doi.org/10.5194/hess-24-2141-2020, https://doi.org/10.5194/hess-24-2141-2020, 2020
Short summary
Short summary
The 2013 Alberta flood in Canada was typical of late-spring floods in mountain basins combining intense precipitation with rapid melting of late-lying snowpack. Hydrological simulations of this event are mainly influenced by (i) the spatial resolution of the atmospheric forcing due to the best estimate of precipitation at the kilometer scale and changes in turbulent fluxes contributing to snowmelt and (ii) uncertainties in initial snow conditions at high elevations. Soil texture has less impact.
Zilefac Elvis Asong, Mohamed Ezzat Elshamy, Daniel Princz, Howard Simon Wheater, John Willard Pomeroy, Alain Pietroniro, and Alex Cannon
Earth Syst. Sci. Data, 12, 629–645, https://doi.org/10.5194/essd-12-629-2020, https://doi.org/10.5194/essd-12-629-2020, 2020
Short summary
Short summary
This dataset provides an improved set of forcing data for large-scale hydrological models for climate change impact assessment in the Mackenzie River Basin (MRB). Here, the strengths of two historical datasets were blended to produce a less-biased long-record product for hydrological modelling and climate change impact assessment over the MRB. This product is then used to bias-correct climate projections from the Canadian Regional Climate Model under RCP8.5.
Christopher B. Marsh, John W. Pomeroy, and Howard S. Wheater
Geosci. Model Dev., 13, 225–247, https://doi.org/10.5194/gmd-13-225-2020, https://doi.org/10.5194/gmd-13-225-2020, 2020
Short summary
Short summary
The Canadian Hydrological Model (CHM) is a next-generation distributed model. Although designed to be applied generally, it has a focus for application where cold-region processes, such as snowpacks, play a role in hydrology. A key feature is that it uses a multi-scale surface representation, increasing efficiency. It also enables algorithm comparisons in a flexible structure. Model philosophy, design, and several cold-region-specific examples are described.
Paul H. Whitfield, Philip D. A. Kraaijenbrink, Kevin R. Shook, and John W. Pomeroy
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-671, https://doi.org/10.5194/hess-2019-671, 2020
Revised manuscript not accepted
Short summary
Short summary
Using partial year streamflow records a regime and change classification were produced for ~ 400 watersheds in the Saskatchewan and Mackenzie River basins, and trends in water storage and vegetation were detected from satellite imagery. Three areas show consistent changes; north of 60° [increased streamflow and basin greenness], in the western Boreal Plains [decreased streamflow and basin greenness], and across the Prairies [three different patterns of increased streamflow and basin wetness].
Michael Schirmer and John W. Pomeroy
Hydrol. Earth Syst. Sci., 24, 143–157, https://doi.org/10.5194/hess-24-143-2020, https://doi.org/10.5194/hess-24-143-2020, 2020
Short summary
Short summary
The spatial distribution of snow water equivalent (SWE) and melt are important for hydrological applications in alpine terrain. We measured the spatial distribution of melt using a drone in very high resolution and could relate melt to topographic characteristics. Interestingly, melt and SWE were not related spatially, which influences the speed of areal melt out. We could explain this by melt varying over larger distances than SWE.
Kabir Rasouli, John W. Pomeroy, and Paul H. Whitfield
Hydrol. Earth Syst. Sci., 23, 4933–4954, https://doi.org/10.5194/hess-23-4933-2019, https://doi.org/10.5194/hess-23-4933-2019, 2019
Short summary
Short summary
The combined effects of changes in climate, vegetation, and soils on mountain hydrology were modeled in three mountain basins. In the Yukon, an insignificant increasing effect of vegetation change on snow was found to be important enough to offset the climate change effect. In the Canadian Rockies, a combined effect of soil and climate change on runoff became significant, whereas their individual effects were not significant. Only vegetation change decreased runoff in the basin in Idaho.
Robert N. Armstrong, John W. Pomeroy, and Lawrence W. Martz
Hydrol. Earth Syst. Sci., 23, 4891–4907, https://doi.org/10.5194/hess-23-4891-2019, https://doi.org/10.5194/hess-23-4891-2019, 2019
Short summary
Short summary
Digital and thermal images taken near midday were used to scale daily point observations of key factors driving actual-evaporation estimates across a complex Canadian Prairie landscape. Point estimates of actual evaporation agreed well with observed values via eddy covariance. Impacts of spatial variations on areal estimates were minor, and no covariance was found between model parameters driving the energy term. The methods can be applied further to improve land surface parameterisations.
Zilefac Elvis Asong, Mohamed Elshamy, Daniel Princz, Howard Wheater, John Pomeroy, Alain Pietroniro, and Alex Cannon
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-249, https://doi.org/10.5194/hess-2019-249, 2019
Publication in HESS not foreseen
Xing Fang, John W. Pomeroy, Chris M. DeBeer, Phillip Harder, and Evan Siemens
Earth Syst. Sci. Data, 11, 455–471, https://doi.org/10.5194/essd-11-455-2019, https://doi.org/10.5194/essd-11-455-2019, 2019
Short summary
Short summary
Meteorological, snow survey, streamflow, and groundwater data are presented from Marmot Creek Research Basin, a small alpine-montane forest headwater catchment in the Alberta Rockies. It was heavily instrumented, experimented upon, and operated by several federal government agencies between 1962 and 1986 and was re-established starting in 2004 by the University of Saskatchewan Centre for Hydrology. These long-term legacy data serve to advance our knowledge of hydrology of the Canadian Rockies.
Kabir Rasouli, John W. Pomeroy, J. Richard Janowicz, Tyler J. Williams, and Sean K. Carey
Earth Syst. Sci. Data, 11, 89–100, https://doi.org/10.5194/essd-11-89-2019, https://doi.org/10.5194/essd-11-89-2019, 2019
Short summary
Short summary
A set of hydrometeorological data including daily precipitation, hourly air temperature, humidity, wind, solar and net radiation, soil temperature, soil moisture, snow depth and snow water equivalent, streamflow and water level in a groundwater well, and geographical information system data are presented in this paper. This dataset was recorded at different elevation bands in Wolf Creek Research Basin, near Whitehorse, Yukon Territory, Canada.
Gerhard Krinner, Chris Derksen, Richard Essery, Mark Flanner, Stefan Hagemann, Martyn Clark, Alex Hall, Helmut Rott, Claire Brutel-Vuilmet, Hyungjun Kim, Cécile B. Ménard, Lawrence Mudryk, Chad Thackeray, Libo Wang, Gabriele Arduini, Gianpaolo Balsamo, Paul Bartlett, Julia Boike, Aaron Boone, Frédérique Chéruy, Jeanne Colin, Matthias Cuntz, Yongjiu Dai, Bertrand Decharme, Jeff Derry, Agnès Ducharne, Emanuel Dutra, Xing Fang, Charles Fierz, Josephine Ghattas, Yeugeniy Gusev, Vanessa Haverd, Anna Kontu, Matthieu Lafaysse, Rachel Law, Dave Lawrence, Weiping Li, Thomas Marke, Danny Marks, Martin Ménégoz, Olga Nasonova, Tomoko Nitta, Masashi Niwano, John Pomeroy, Mark S. Raleigh, Gerd Schaedler, Vladimir Semenov, Tanya G. Smirnova, Tobias Stacke, Ulrich Strasser, Sean Svenson, Dmitry Turkov, Tao Wang, Nander Wever, Hua Yuan, Wenyan Zhou, and Dan Zhu
Geosci. Model Dev., 11, 5027–5049, https://doi.org/10.5194/gmd-11-5027-2018, https://doi.org/10.5194/gmd-11-5027-2018, 2018
Short summary
Short summary
This paper provides an overview of a coordinated international experiment to determine the strengths and weaknesses in how climate models treat snow. The models will be assessed at point locations using high-quality reference measurements and globally using satellite-derived datasets. How well climate models simulate snow-related processes is important because changing snow cover is an important part of the global climate system and provides an important freshwater resource for human use.
Zilefac Elvis Asong, Howard Simon Wheater, John Willard Pomeroy, Alain Pietroniro, Mohamed Ezzat Elshamy, Daniel Princz, and Alex Cannon
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2018-128, https://doi.org/10.5194/essd-2018-128, 2018
Preprint withdrawn
Short summary
Short summary
Cold regions hydrology is very sensitive to the impacts of climate warming. We need better hydrological models driven by reliable climate data in order to assess hydrologic responses to climate change. Cold regions often have sparse surface observations, particularly at high elevations that generate a major amount of runoff. We produce a long-term dataset that can be used to better understand and represent the seasonal/inter-annual variability of hydrological fluxes and the the timing of runoff.
Julie M. Thériault, Ida Hung, Paul Vaquer, Ronald E. Stewart, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 22, 4491–4512, https://doi.org/10.5194/hess-22-4491-2018, https://doi.org/10.5194/hess-22-4491-2018, 2018
Short summary
Short summary
Precipitation events associated with rain and snow on the eastern slopes of the Rocky Mountains, Canada, are a critical aspect of the regional water cycle. The goal is to characterize the precipitation and weather conditions in the Kananaskis Valley, Alberta, during a field experiment. Mainly dense solid precipitation reached the surface and occurred during downslope and upslope conditions. The precipitation phase has critical implications on the severity of flooding events in the area.
Sebastian A. Krogh and John W. Pomeroy
Hydrol. Earth Syst. Sci., 22, 3993–4014, https://doi.org/10.5194/hess-22-3993-2018, https://doi.org/10.5194/hess-22-3993-2018, 2018
Short summary
Short summary
The Arctic has warmed and vegetation has expanded; however, impacts on hydrology are poorly understood. This study used observed meteorology from the last 56 years and changes in vegetation to simulate the water cycle of an Arctic headwater basin. Several changes were found: decreased snow cover duration, deeper permafrost and earlier peak flows. Most changes are from climate change; however, vegetation impacts blowing snow, partially compensating the impact of climate change on streamflow.
Xicai Pan, Warren Helgason, Andrew Ireson, and Howard Wheater
Hydrol. Earth Syst. Sci., 21, 5401–5413, https://doi.org/10.5194/hess-21-5401-2017, https://doi.org/10.5194/hess-21-5401-2017, 2017
Short summary
Short summary
In this paper we present a case study from a heterogeneous pasture site in the Canadian prairies, where we have quantified the various components of the water balance on the field scale, and critically examine some of the simplifying assumptions which are often invoked when applying water budget approaches in applied hydrology. We highlight challenges caused by lateral fluxes of blowing snow and ambiguous partitioning of snow melt water into runoff and infiltration.
Marcos R. C. Cordeiro, Henry F. Wilson, Jason Vanrobaeys, John W. Pomeroy, Xing Fang, and The Red-Assiniboine Project Biophysical Modelling Team
Hydrol. Earth Syst. Sci., 21, 3483–3506, https://doi.org/10.5194/hess-21-3483-2017, https://doi.org/10.5194/hess-21-3483-2017, 2017
Short summary
Short summary
The physically based Cold Regions Hydrological Model (CRHM) was utilized to simulate runoff in the La Salle River, located in the northern Great Plains with flat topography, clay soils, and surface drainage. Snow sublimation and transport as well as infiltration to frozen soils were identified as critical in defining snowmelt. Challenges in representing infiltration into frozen but dry clay soils and flow routing under both dry and flooded conditions indicate the need for further study.
Maxime Litt, Jean-Emmanuel Sicart, Delphine Six, Patrick Wagnon, and Warren D. Helgason
The Cryosphere, 11, 971–987, https://doi.org/10.5194/tc-11-971-2017, https://doi.org/10.5194/tc-11-971-2017, 2017
Short summary
Short summary
Climate variations might change the frequency of typical weather conditions. We present a weather pattern classification as an useful tool for identifying changing glacier wind regimes. We show the intensity of turbulent heat exchanges between ice and air changes with these regimes, as well as the importance of discrepancies between bulk-aerodynamic and eddy-covariance fluxes. The results suggest these discrepancies influence melt estimates from surface energy balance calculations.
Craig D. Smith, Anna Kontu, Richard Laffin, and John W. Pomeroy
The Cryosphere, 11, 101–116, https://doi.org/10.5194/tc-11-101-2017, https://doi.org/10.5194/tc-11-101-2017, 2017
Short summary
Short summary
One of the objectives of the WMO Solid Precipitation Intercomparison Experiment (SPICE) was to assess the performance of automated instruments that measure snow water equivalent and make recommendations on the best measurement practices and data interpretation. This study assesses the Campbell Scientific CS725 and the Sommer SSG100 for measuring SWE. Different measurement principals of the instruments as well as site characteristics influence the way that the SWE data should be interpreted.
Nikolas O. Aksamit and John W. Pomeroy
The Cryosphere, 10, 3043–3062, https://doi.org/10.5194/tc-10-3043-2016, https://doi.org/10.5194/tc-10-3043-2016, 2016
Short summary
Short summary
The first implementation of particle tracking velocimetry in outdoor alpine blowing snow has both provided new insight on intermittent snow particle transport initiation and entrainment in the dense near-surface "creep" layer whilst also confirming some wind tunnel observations. Environmental PTV has shown to be a viable avenue for furthering our understanding of the coupling of the atmospheric boundary layer turbulence and blowing snow transport.
Phillip Harder, Michael Schirmer, John Pomeroy, and Warren Helgason
The Cryosphere, 10, 2559–2571, https://doi.org/10.5194/tc-10-2559-2016, https://doi.org/10.5194/tc-10-2559-2016, 2016
Short summary
Short summary
This paper assesses the accuracy of high-resolution snow depth maps generated from unmanned aerial vehicle imagery. Snow depth maps are generated from differencing snow-covered and snow-free digital surface models produced from structure from motion techniques. On average, the estimated snow depth error was 10 cm. This technique is therefore useful for observing snow accumulation and melt in deep snow but is restricted to observing peak snow accumulation in shallow snow.
Xicai Pan, Daqing Yang, Yanping Li, Alan Barr, Warren Helgason, Masaki Hayashi, Philip Marsh, John Pomeroy, and Richard J. Janowicz
The Cryosphere, 10, 2347–2360, https://doi.org/10.5194/tc-10-2347-2016, https://doi.org/10.5194/tc-10-2347-2016, 2016
Short summary
Short summary
This study demonstrates a robust procedure for accumulating precipitation gauge measurements and provides an analysis of bias corrections of precipitation measurements across experimental sites in different ecoclimatic regions of western Canada. It highlights the need for and importance of precipitation bias corrections at both research sites and operational networks for water balance assessment and the validation of global/regional climate–hydrology models.
Amber M. Peterson, Warren D. Helgason, and Andrew M. Ireson
Hydrol. Earth Syst. Sci., 20, 1373–1385, https://doi.org/10.5194/hess-20-1373-2016, https://doi.org/10.5194/hess-20-1373-2016, 2016
Short summary
Short summary
Remote sensing techniques can provide useful large-scale estimates of soil moisture. However, these methods often only sense near-surface soil moisture, whereas many applications require estimates of the entire root zone. In this study we propose and test methods to "depth-scale" the shallow soil moisture measurements obtained using the cosmic-ray neutron probe to represent the entire root zone, thereby improving the applicability of this measurement approach.
Nicolas R. Leroux and John W. Pomeroy
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-55, https://doi.org/10.5194/tc-2016-55, 2016
Revised manuscript not accepted
Short summary
Short summary
Snowmelt runoff reaches our rivers and is critical for water management and consumption in cold regions. Preferential flow paths form while snow is melting and accelerate the timing at which meltwater reaches the base of the snowpack and has great impact on basin hydrology. A novel 2D numerical model that simulates water and heat fluxes through a melting snowpack is presented. Its ability to simulate formation and flow through preferential flow paths and impacts on snowmelt runoff are discussed.
M. Litt, J.-E. Sicart, and W. Helgason
Atmos. Meas. Tech., 8, 3229–3250, https://doi.org/10.5194/amt-8-3229-2015, https://doi.org/10.5194/amt-8-3229-2015, 2015
Short summary
Short summary
We deal with surface turbulent flux calculations on a tropical glacier and analyse the related errors. We use data from two eddy-covariance systems and wind speed and temperature profiles collected during a 2-month measurement campaign undertaken within the atmospheric surface layer of the glacier. We show the largest error sources are related to roughness length uncertainties and to nonstationarity of the flow induced by the interaction of outer-layer eddies with the surface-layer flow.
C. B. Ménard, R. Essery, and J. Pomeroy
Hydrol. Earth Syst. Sci., 18, 2375–2392, https://doi.org/10.5194/hess-18-2375-2014, https://doi.org/10.5194/hess-18-2375-2014, 2014
X. Fang, J. W. Pomeroy, C. R. Ellis, M. K. MacDonald, C. M. DeBeer, and T. Brown
Hydrol. Earth Syst. Sci., 17, 1635–1659, https://doi.org/10.5194/hess-17-1635-2013, https://doi.org/10.5194/hess-17-1635-2013, 2013
Related subject area
Subject: Snow and Ice | Techniques and Approaches: Modelling approaches
Inferring sediment-discharge event types in an Alpine catchment from sub-daily time series
Debris cover effects on energy and mass balance of Batura Glacier in the Karakoram over the past 20 years
The application and modification of WRF-Hydro/Glacier to a cold-based Antarctic glacier
Spatio-temporal information propagation using sparse observations in hyper-resolution ensemble-based snow data assimilation
Simulated hydrological effects of grooming and snowmaking in a ski resort on the local water balance
Spatial distribution and controls of snowmelt runoff in a sublimation-dominated environment in the semiarid Andes of Chile
Snow data assimilation for seasonal streamflow supply prediction in mountainous basins
Canopy structure, topography, and weather are equally important drivers of small-scale snow cover dynamics in sub-alpine forests
Climate sensitivity of the summer runoff of two glacierised Himalayan catchments with contrasting climate
A snow and glacier hydrological model for large catchments – case study for the Naryn River, central Asia
Precipitation biases and snow physics limitations drive the uncertainties in macroscale modeled snow water equivalent
Development and parameter estimation of snowmelt models using spatial snow-cover observations from MODIS
Recent hydrological response of glaciers in the Canadian Rockies to changing climate and glacier configuration
Future projections of High Atlas snowpack and runoff under climate change
Trends and variability in snowmelt in China under climate change
Assimilation of citizen science data in snowpack modeling using a new snow data set: Community Snow Observations
Snowpack dynamics in the Lebanese mountains from quasi-dynamically downscaled ERA5 reanalysis updated by assimilating remotely sensed fractional snow-covered area
The evaluation of the potential of global data products for snow hydrological modelling in ungauged high-alpine catchments
Learning about precipitation lapse rates from snow course data improves water balance modeling
Snow water equivalents exclusively from snow depths and their temporal changes: the Δsnow model
Application of machine learning techniques for regional bias correction of snow water equivalent estimates in Ontario, Canada
Sensitivity of snow models to the accuracy of meteorological forcings in mountain environments
Snow processes in mountain forests: interception modeling for coarse-scale applications
Satellite-derived products of solar and longwave irradiances used for snowpack modelling in mountainous terrain
Using Gravity Recovery and Climate Experiment data to derive corrections to precipitation data sets and improve modelled snow mass at high latitudes
The role of liquid water percolation representation in estimating snow water equivalent in a Mediterranean mountain region (Mount Lebanon)
Hyper-resolution ensemble-based snow reanalysis in mountain regions using clustering
The sensitivity of modeled snow accumulation and melt to precipitation phase methods across a climatic gradient
Assessment of SWAT spatial and temporal transferability for a high-altitude glacierized catchment
Modeling experiments on seasonal lake ice mass and energy balance in the Qinghai–Tibet Plateau: a case study
Assimilation of passive microwave AMSR-2 satellite observations in a snowpack evolution model over northeastern Canada
A simple temperature-based method to estimate heterogeneous frozen ground within a distributed watershed model
Technical note: Representing glacier geometry changes in a semi-distributed hydrological model
Projected cryospheric and hydrological impacts of 21st century climate change in the Ötztal Alps (Austria) simulated using a physically based approach
Scenario approach for the seasonal forecast of Kharif flows from the Upper Indus Basin
The role of glacier changes and threshold definition in the characterisation of future streamflow droughts in glacierised catchments
Modelling hydrologic impacts of light absorbing aerosol deposition on snow at the catchment scale
Liquid water infiltration into a layered snowpack: evaluation of a 3-D water transport model with laboratory experiments
Assessing glacier melt contribution to streamflow at Universidad Glacier, central Andes of Chile
Modelling liquid water transport in snow under rain-on-snow conditions – considering preferential flow
Developing a representative snow-monitoring network in a forested mountain watershed
Subgrid parameterization of snow distribution at a Mediterranean site using terrestrial photography
Assessing the benefit of snow data assimilation for runoff modeling in Alpine catchments
Stable oxygen isotope variability in two contrasting glacier river catchments in Greenland
Spatio-temporal variability of snow water equivalent in the extra-tropical Andes Cordillera from distributed energy balance modeling and remotely sensed snow cover
A conceptual, distributed snow redistribution model
Diagnostic calibration of a hydrological model in a mountain area by hydrograph partitioning
Meltwater run-off from Haig Glacier, Canadian Rocky Mountains, 2002–2013
Modeling the snow surface temperature with a one-layer energy balance snowmelt model
Estimating degree-day factors from MODIS for snowmelt runoff modeling
Amalie Skålevåg, Oliver Korup, and Axel Bronstert
Hydrol. Earth Syst. Sci., 28, 4771–4796, https://doi.org/10.5194/hess-28-4771-2024, https://doi.org/10.5194/hess-28-4771-2024, 2024
Short summary
Short summary
We present a cluster-based approach for inferring sediment discharge event types from suspended sediment concentration and streamflow. Applying it to a glacierised catchment, we find event magnitude and shape complexity to be the key characteristics separating event types, while hysteresis is less important. The four event types are attributed to compound rainfall–melt extremes, high snowmelt and glacier melt, freeze–thaw-modulated snow-melt and precipitation, and late-season glacier melt.
Yu Zhu, Shiyin Liu, Ben W. Brock, Lide Tian, Ying Yi, Fuming Xie, Donghui Shangguan, and Yiyuan Shen
Hydrol. Earth Syst. Sci., 28, 2023–2045, https://doi.org/10.5194/hess-28-2023-2024, https://doi.org/10.5194/hess-28-2023-2024, 2024
Short summary
Short summary
This modeling-based study focused on Batura Glacier from 2000 to 2020, revealing that debris alters its energy budget, affecting mass balance. We propose that the presence of debris on the glacier surface effectively reduces the amount of latent heat available for ablation, which creates a favorable condition for Batura Glacier's relatively low negative mass balance. Batura Glacier shows a trend toward a less negative mass balance due to reduced ablation.
Tamara Pletzer, Jonathan P. Conway, Nicolas J. Cullen, Trude Eidhammer, and Marwan Katurji
Hydrol. Earth Syst. Sci., 28, 459–478, https://doi.org/10.5194/hess-28-459-2024, https://doi.org/10.5194/hess-28-459-2024, 2024
Short summary
Short summary
We applied a glacier and hydrology model in the McMurdo Dry Valleys (MDV) to model the start and duration of melt over a summer in this extreme polar desert. To do so, we found it necessary to prevent the drainage of melt into ice and optimize the albedo scheme. We show that simulating albedo (for the first time in the MDV) is critical to modelling the feedbacks of albedo, snowfall and melt in the region. This paper is a first step towards more complex spatial modelling of melt and streamflow.
Esteban Alonso-González, Kristoffer Aalstad, Norbert Pirk, Marco Mazzolini, Désirée Treichler, Paul Leclercq, Sebastian Westermann, Juan Ignacio López-Moreno, and Simon Gascoin
Hydrol. Earth Syst. Sci., 27, 4637–4659, https://doi.org/10.5194/hess-27-4637-2023, https://doi.org/10.5194/hess-27-4637-2023, 2023
Short summary
Short summary
Here we explore how to improve hyper-resolution (5 m) distributed snowpack simulations using sparse observations, which do not provide information from all the areas of the simulation domain. We propose a new way of propagating information throughout the simulations adapted to the hyper-resolution, which could also be used to improve simulations of other nature. The method has been implemented in an open-source data assimilation tool that is readily accessible to everyone.
Samuel Morin, Hugues François, Marion Réveillet, Eric Sauquet, Louise Crochemore, Flora Branger, Étienne Leblois, and Marie Dumont
Hydrol. Earth Syst. Sci., 27, 4257–4277, https://doi.org/10.5194/hess-27-4257-2023, https://doi.org/10.5194/hess-27-4257-2023, 2023
Short summary
Short summary
Ski resorts are a key socio-economic asset of several mountain areas. Grooming and snowmaking are routinely used to manage the snow cover on ski pistes, but despite vivid debate, little is known about their impact on water resources downstream. This study quantifies, for the pilot ski resort La Plagne in the French Alps, the impact of grooming and snowmaking on downstream river flow. Hydrological impacts are mostly apparent at the seasonal scale and rather neutral on the annual scale.
Álvaro Ayala, Simone Schauwecker, and Shelley MacDonell
Hydrol. Earth Syst. Sci., 27, 3463–3484, https://doi.org/10.5194/hess-27-3463-2023, https://doi.org/10.5194/hess-27-3463-2023, 2023
Short summary
Short summary
As the climate of the semiarid Andes is very dry, much of the seasonal snowpack is lost to the atmosphere through sublimation. We propose that snowmelt runoff originates from specific areas that we define as snowmelt hotspots. We estimate that snowmelt hotspots produce half of the snowmelt runoff in a small study catchment but represent about a quarter of the total area. Snowmelt hotspots may be important for groundwater recharge, rock glaciers, and mountain peatlands.
Sammy Metref, Emmanuel Cosme, Matthieu Le Lay, and Joël Gailhard
Hydrol. Earth Syst. Sci., 27, 2283–2299, https://doi.org/10.5194/hess-27-2283-2023, https://doi.org/10.5194/hess-27-2283-2023, 2023
Short summary
Short summary
Predicting the seasonal streamflow supply of water in a mountainous basin is critical to anticipating the operation of hydroelectric dams and avoiding hydrology-related hazard. This quantity partly depends on the snowpack accumulated during winter. The study addresses this prediction problem using information from streamflow data and both direct and indirect snow measurements. In this study, the prediction is improved by integrating the data information into a basin-scale hydrological model.
Giulia Mazzotti, Clare Webster, Louis Quéno, Bertrand Cluzet, and Tobias Jonas
Hydrol. Earth Syst. Sci., 27, 2099–2121, https://doi.org/10.5194/hess-27-2099-2023, https://doi.org/10.5194/hess-27-2099-2023, 2023
Short summary
Short summary
This study analyses snow cover evolution in mountainous forested terrain based on 2 m resolution simulations from a process-based model. We show that snow accumulation patterns are controlled by canopy structure, but topographic shading modulates the timing of melt onset, and variability in weather can cause snow accumulation and melt patterns to vary between years. These findings advance our ability to predict how snow regimes will react to rising temperatures and forest disturbances.
Sourav Laha, Argha Banerjee, Ajit Singh, Parmanand Sharma, and Meloth Thamban
Hydrol. Earth Syst. Sci., 27, 627–645, https://doi.org/10.5194/hess-27-627-2023, https://doi.org/10.5194/hess-27-627-2023, 2023
Short summary
Short summary
A model study of two Himalayan catchments reveals that the summer runoff from the glacierized parts of the catchments responds strongly to temperature forcing and is insensitive to precipitation forcing. The runoff from the non-glacierized parts has the exact opposite behaviour. The interannual variability and decadal changes of runoff under a warming climate is determined by the response of glaciers to temperature forcing and that of off-glacier areas to precipitation perturbations.
Sarah Shannon, Anthony Payne, Jim Freer, Gemma Coxon, Martina Kauzlaric, David Kriegel, and Stephan Harrison
Hydrol. Earth Syst. Sci., 27, 453–480, https://doi.org/10.5194/hess-27-453-2023, https://doi.org/10.5194/hess-27-453-2023, 2023
Short summary
Short summary
Climate change poses a potential threat to water supply in glaciated river catchments. In this study, we added a snowmelt and glacier melt model to the Dynamic fluxEs and ConnectIvity for Predictions of HydRology model (DECIPHeR). The model is applied to the Naryn River catchment in central Asia and is found to reproduce past change discharge and the spatial extent of seasonal snow cover well.
Eunsang Cho, Carrie M. Vuyovich, Sujay V. Kumar, Melissa L. Wrzesien, Rhae Sung Kim, and Jennifer M. Jacobs
Hydrol. Earth Syst. Sci., 26, 5721–5735, https://doi.org/10.5194/hess-26-5721-2022, https://doi.org/10.5194/hess-26-5721-2022, 2022
Short summary
Short summary
While land surface models are a common approach for estimating macroscale snow water equivalent (SWE), the SWE accuracy is often limited by uncertainties in model physics and forcing inputs. In this study, we found large underestimations of modeled SWE compared to observations. Precipitation forcings and melting physics limitations dominantly contribute to the SWE underestimations. Results provide insights into prioritizing strategies to improve the SWE simulations for hydrologic applications.
Dhiraj Raj Gyawali and András Bárdossy
Hydrol. Earth Syst. Sci., 26, 3055–3077, https://doi.org/10.5194/hess-26-3055-2022, https://doi.org/10.5194/hess-26-3055-2022, 2022
Short summary
Short summary
In this study, different extensions of the degree-day model were calibrated on snow-cover distribution against freely available satellite snow-cover images. The calibrated models simulated the distribution very well in Baden-Württemberg (Germany) and Switzerland. In addition to reliable identification of snow cover, the melt outputs from the calibrated models were able to improve the flow simulations in different catchments in the study region.
Dhiraj Pradhananga and John W. Pomeroy
Hydrol. Earth Syst. Sci., 26, 2605–2616, https://doi.org/10.5194/hess-26-2605-2022, https://doi.org/10.5194/hess-26-2605-2022, 2022
Short summary
Short summary
This study considers the combined impacts of climate and glacier changes due to recession on the hydrology and water balance of two high-elevation glaciers. Peyto and Athabasca glacier basins in the Canadian Rockies have undergone continuous glacier loss over the last 3 to 5 decades, leading to an increase in ice exposure and changes to the elevation and slope of the glacier surfaces. Streamflow from these glaciers continues to increase more due to climate warming than glacier recession.
Alexandre Tuel, Nabil El Moçayd, Moulay Driss Hasnaoui, and Elfatih A. B. Eltahir
Hydrol. Earth Syst. Sci., 26, 571–588, https://doi.org/10.5194/hess-26-571-2022, https://doi.org/10.5194/hess-26-571-2022, 2022
Short summary
Short summary
Snowmelt in the High Atlas is critical for irrigation in Morocco but is threatened by climate change. We assess future trends in High Atlas snowpack by modelling it under historical and future climate scenarios and estimate their impact on runoff. We find that the combined warming and drying will result in a roughly 80 % decline in snowpack, a 5 %–30 % decrease in runoff efficiency and 50 %–60 % decline in runoff under a business-as-usual scenario.
Yong Yang, Rensheng Chen, Guohua Liu, Zhangwen Liu, and Xiqiang Wang
Hydrol. Earth Syst. Sci., 26, 305–329, https://doi.org/10.5194/hess-26-305-2022, https://doi.org/10.5194/hess-26-305-2022, 2022
Short summary
Short summary
A comprehensive assessment of snowmelt is missing for China. Trends and variability in snowmelt in China under climate change are investigated using historical precipitation and temperature data (1951–2017) and projection scenarios (2006–2099). The snowmelt and snowmelt runoff ratio show significant spatial and temporal variability in China. The spatial variability in snowmelt changes may lead to regional differences in the impact of snowmelt on the water supply.
Ryan L. Crumley, David F. Hill, Katreen Wikstrom Jones, Gabriel J. Wolken, Anthony A. Arendt, Christina M. Aragon, Christopher Cosgrove, and Community Snow Observations Participants
Hydrol. Earth Syst. Sci., 25, 4651–4680, https://doi.org/10.5194/hess-25-4651-2021, https://doi.org/10.5194/hess-25-4651-2021, 2021
Short summary
Short summary
In this study, we use a new snow data set collected by participants in the Community Snow Observations project in coastal Alaska to improve snow depth and snow water equivalence simulations from a snow process model. We validate our simulations with multiple datasets, taking advantage of snow telemetry (SNOTEL), snow depth and snow water equivalence, and remote sensing measurements. Our results demonstrate that assimilating citizen science snow depth measurements can improve model performance.
Esteban Alonso-González, Ethan Gutmann, Kristoffer Aalstad, Abbas Fayad, Marine Bouchet, and Simon Gascoin
Hydrol. Earth Syst. Sci., 25, 4455–4471, https://doi.org/10.5194/hess-25-4455-2021, https://doi.org/10.5194/hess-25-4455-2021, 2021
Short summary
Short summary
Snow water resources represent a key hydrological resource for the Mediterranean regions, where most of the precipitation falls during the winter months. This is the case for Lebanon, where snowpack represents 31 % of the spring flow. We have used models to generate snow information corrected by means of remote sensing snow cover retrievals. Our results highlight the high temporal variability in the snowpack in Lebanon and its sensitivity to further warming caused by its hypsography.
Michael Weber, Franziska Koch, Matthias Bernhardt, and Karsten Schulz
Hydrol. Earth Syst. Sci., 25, 2869–2894, https://doi.org/10.5194/hess-25-2869-2021, https://doi.org/10.5194/hess-25-2869-2021, 2021
Short summary
Short summary
We compared a suite of globally available meteorological and DEM data with in situ data for physically based snow hydrological modelling in a small high-alpine catchment. Although global meteorological data were less suited to describe the snowpack properly, transferred station data from a similar location in the vicinity and substituting single variables with global products performed well. In addition, using 30 m global DEM products as model input was useful in such complex terrain.
Francesco Avanzi, Giulia Ercolani, Simone Gabellani, Edoardo Cremonese, Paolo Pogliotti, Gianluca Filippa, Umberto Morra di Cella, Sara Ratto, Hervè Stevenin, Marco Cauduro, and Stefano Juglair
Hydrol. Earth Syst. Sci., 25, 2109–2131, https://doi.org/10.5194/hess-25-2109-2021, https://doi.org/10.5194/hess-25-2109-2021, 2021
Short summary
Short summary
Precipitation tends to increase with elevation, but the magnitude and distribution of this enhancement remain poorly understood. By leveraging over 11 000 spatially distributed, manual measurements of snow depth (snow courses) upstream of two reservoirs in the western European Alps, we show that these courses bear a characteristic signature of orographic precipitation. This opens a window of opportunity for improved modeling accuracy and, ultimately, our understanding of the water budget.
Michael Winkler, Harald Schellander, and Stefanie Gruber
Hydrol. Earth Syst. Sci., 25, 1165–1187, https://doi.org/10.5194/hess-25-1165-2021, https://doi.org/10.5194/hess-25-1165-2021, 2021
Short summary
Short summary
A new method to calculate the mass of snow is provided. It is quite simple but gives surprisingly good results. The new approach only requires regular snow depth observations to simulate respective water mass that is stored in the snow. It is called
ΔSNOW model, its code is freely available, and it can be applied in various climates. The method is especially interesting for studies on extremes (e.g., snow loads or flooding) and climate (e.g., precipitation trends).
Fraser King, Andre R. Erler, Steven K. Frey, and Christopher G. Fletcher
Hydrol. Earth Syst. Sci., 24, 4887–4902, https://doi.org/10.5194/hess-24-4887-2020, https://doi.org/10.5194/hess-24-4887-2020, 2020
Short summary
Short summary
Snow is a critical contributor to our water and energy budget, with impacts on flooding and water resource management. Measuring the amount of snow on the ground each year is an expensive and time-consuming task. Snow models and gridded products help to fill these gaps, yet there exist considerable uncertainties associated with their estimates. We demonstrate that machine learning techniques are able to reduce biases in these products to provide more realistic snow estimates across Ontario.
Silvia Terzago, Valentina Andreoli, Gabriele Arduini, Gianpaolo Balsamo, Lorenzo Campo, Claudio Cassardo, Edoardo Cremonese, Daniele Dolia, Simone Gabellani, Jost von Hardenberg, Umberto Morra di Cella, Elisa Palazzi, Gaia Piazzi, Paolo Pogliotti, and Antonello Provenzale
Hydrol. Earth Syst. Sci., 24, 4061–4090, https://doi.org/10.5194/hess-24-4061-2020, https://doi.org/10.5194/hess-24-4061-2020, 2020
Short summary
Short summary
In mountain areas high-quality meteorological data to drive snow models are rarely available, so coarse-resolution data from spatial interpolation of the available in situ measurements or reanalyses are typically employed. We perform 12 experiments using six snow models with different degrees of complexity to show the impact of the accuracy of the forcing on snow depth and snow water equivalent simulations at the Alpine site of Torgnon, discussing the results in relation to the model complexity.
Nora Helbig, David Moeser, Michaela Teich, Laure Vincent, Yves Lejeune, Jean-Emmanuel Sicart, and Jean-Matthieu Monnet
Hydrol. Earth Syst. Sci., 24, 2545–2560, https://doi.org/10.5194/hess-24-2545-2020, https://doi.org/10.5194/hess-24-2545-2020, 2020
Short summary
Short summary
Snow retained in the forest canopy (snow interception) drives spatial variability of the subcanopy snow accumulation. As such, accurately describing snow interception in models is of importance for various applications such as hydrological, weather, and climate predictions. We developed descriptions for the spatial mean and variability of snow interception. An independent evaluation demonstrated that the novel models can be applied in coarse land surface model grid cells.
Louis Quéno, Fatima Karbou, Vincent Vionnet, and Ingrid Dombrowski-Etchevers
Hydrol. Earth Syst. Sci., 24, 2083–2104, https://doi.org/10.5194/hess-24-2083-2020, https://doi.org/10.5194/hess-24-2083-2020, 2020
Short summary
Short summary
In mountainous terrain, the snowpack is strongly affected by incoming shortwave and longwave radiation. Satellite-derived products of incoming radiation were assessed in the French Alps and the Pyrenees and compared to meteorological forecasts, reanalyses and in situ measurements. We showed their good quality in mountains. The different radiation datasets were used as radiative forcing for snowpack simulations with the detailed model Crocus. Their impact on the snowpack evolution was explored.
Emma L. Robinson and Douglas B. Clark
Hydrol. Earth Syst. Sci., 24, 1763–1779, https://doi.org/10.5194/hess-24-1763-2020, https://doi.org/10.5194/hess-24-1763-2020, 2020
Short summary
Short summary
This study used a water balance approach based on GRACE total water storage to infer the amount of cold-season precipitation in four Arctic river basins. This was used to evaluate four gridded meteorological data sets, which were used as inputs to a land surface model. We found that the cold-season precipitation in these data sets needed to be increased by up to 55 %. Using these higher precipitation inputs improved the model representation of Arctic hydrology, particularly lying snow.
Abbas Fayad and Simon Gascoin
Hydrol. Earth Syst. Sci., 24, 1527–1542, https://doi.org/10.5194/hess-24-1527-2020, https://doi.org/10.5194/hess-24-1527-2020, 2020
Short summary
Short summary
Seasonal snowpack is an essential water resource in Mediterranean mountains. Here, we look at the role of water percolation in simulating snow mass (SWE), for the first time, in Mount Lebanon. We use SnowModel, a distributed snow model, forced by station data. The main sources of uncertainty were attributed to rain–snow partitioning, transient winter snowmelt, and the subpixel snow cover. Yet, we show that a process-based model is suitable to simulate wet snowpack in Mediterranean mountains.
Joel Fiddes, Kristoffer Aalstad, and Sebastian Westermann
Hydrol. Earth Syst. Sci., 23, 4717–4736, https://doi.org/10.5194/hess-23-4717-2019, https://doi.org/10.5194/hess-23-4717-2019, 2019
Short summary
Short summary
In this paper we address one of the big challenges in snow hydrology, namely the accurate simulation of the seasonal snowpack in ungauged regions. We do this by assimilating satellite observations of snow cover into a modelling framework. Importantly (and a novelty of the paper), we include a clustering approach that permits highly efficient ensemble simulations. Efficiency gains and dependency on purely global datasets, means that this method can be applied over large areas anywhere on Earth.
Keith S. Jennings and Noah P. Molotch
Hydrol. Earth Syst. Sci., 23, 3765–3786, https://doi.org/10.5194/hess-23-3765-2019, https://doi.org/10.5194/hess-23-3765-2019, 2019
Short summary
Short summary
There is a wide variety of modeling methods to designate precipitation as rain, snow, or a mix of the two. Here we show that method choice introduces marked uncertainty to simulated snowpack water storage (> 200 mm) and snow cover duration (> 1 month) in areas that receive significant winter and spring precipitation at air temperatures at and near freezing. This marked uncertainty has implications for water resources management as well as simulations of past and future hydroclimatic states.
Maria Andrianaki, Juna Shrestha, Florian Kobierska, Nikolaos P. Nikolaidis, and Stefano M. Bernasconi
Hydrol. Earth Syst. Sci., 23, 3219–3232, https://doi.org/10.5194/hess-23-3219-2019, https://doi.org/10.5194/hess-23-3219-2019, 2019
Short summary
Short summary
We tested the performance of the SWAT hydrological model after being transferred from a small Alpine watershed to a greater area. We found that the performance of the model for the greater catchment was satisfactory and the climate change simulations gave insights into the impact of climate change on our site. Assessment tests are important in identifying the strengths and weaknesses of the models when they are applied under extreme conditions different to the ones that were calibrated.
Wenfeng Huang, Bin Cheng, Jinrong Zhang, Zheng Zhang, Timo Vihma, Zhijun Li, and Fujun Niu
Hydrol. Earth Syst. Sci., 23, 2173–2186, https://doi.org/10.5194/hess-23-2173-2019, https://doi.org/10.5194/hess-23-2173-2019, 2019
Short summary
Short summary
Up to now, little has been known on ice thermodynamics and lake–atmosphere interaction over the Tibetan Plateau during ice-covered seasons due to a lack of field data. Here, model experiments on ice thermodynamics were conducted in a shallow lake using HIGHTSI. Water–ice heat flux was a major source of uncertainty for lake ice thickness. Heat and mass budgets were estimated within the vertical air–ice–water system. Strong ice sublimation occurred and was responsible for water loss during winter.
Fanny Larue, Alain Royer, Danielle De Sève, Alexandre Roy, and Emmanuel Cosme
Hydrol. Earth Syst. Sci., 22, 5711–5734, https://doi.org/10.5194/hess-22-5711-2018, https://doi.org/10.5194/hess-22-5711-2018, 2018
Short summary
Short summary
A data assimilation scheme was developed to improve snow water equivalent (SWE) simulations by updating meteorological forcings and snowpack states using passive microwave satellite observations. A chain of models was first calibrated to simulate satellite observations over northeastern Canada. The assimilation was then validated over 12 stations where daily SWE measurements were acquired during 4 winters (2012–2016). The overall SWE bias is reduced by 68 % compared to original SWE simulations.
Michael L. Follum, Jeffrey D. Niemann, Julie T. Parno, and Charles W. Downer
Hydrol. Earth Syst. Sci., 22, 2669–2688, https://doi.org/10.5194/hess-22-2669-2018, https://doi.org/10.5194/hess-22-2669-2018, 2018
Short summary
Short summary
Spatial patterns of snow and frozen ground within watersheds can impact the volume and timing of runoff. Commonly used snow and frozen ground simulation methods were modified to better account for the effects of topography and land cover on the spatial patterns of snow and frozen ground. When tested using a watershed in Vermont the modifications resulted in more accurate temporal and spatial simulation of both snow and frozen ground.
Jan Seibert, Marc J. P. Vis, Irene Kohn, Markus Weiler, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 22, 2211–2224, https://doi.org/10.5194/hess-22-2211-2018, https://doi.org/10.5194/hess-22-2211-2018, 2018
Short summary
Short summary
In many glacio-hydrological models glacier areas are assumed to be constant over time, which is a crucial limitation. Here we describe a novel approach to translate mass balances as simulated by the (glacio)hydrological model into glacier area changes. We combined the Δh approach of Huss et al. (2010) with the bucket-type model HBV and introduced a lookup table approach, which also allows periods with advancing glaciers to be represented, which is not possible with the original Huss method.
Florian Hanzer, Kristian Förster, Johanna Nemec, and Ulrich Strasser
Hydrol. Earth Syst. Sci., 22, 1593–1614, https://doi.org/10.5194/hess-22-1593-2018, https://doi.org/10.5194/hess-22-1593-2018, 2018
Short summary
Short summary
Climate change effects on snow, glaciers, and hydrology are investigated for the Ötztal Alps region (Austria) using a hydroclimatological model driven by climate projections for the RCP2.6, RCP4.5, and RCP8.5 scenarios. The results show declining snow amounts and strongly retreating glaciers with moderate effects on catchment runoff until the mid-21st century, whereas annual runoff volumes decrease strongly towards the end of the century.
Muhammad Fraz Ismail and Wolfgang Bogacki
Hydrol. Earth Syst. Sci., 22, 1391–1409, https://doi.org/10.5194/hess-22-1391-2018, https://doi.org/10.5194/hess-22-1391-2018, 2018
Marit Van Tiel, Adriaan J. Teuling, Niko Wanders, Marc J. P. Vis, Kerstin Stahl, and Anne F. Van Loon
Hydrol. Earth Syst. Sci., 22, 463–485, https://doi.org/10.5194/hess-22-463-2018, https://doi.org/10.5194/hess-22-463-2018, 2018
Short summary
Short summary
Glaciers are important hydrological reservoirs. Short-term variability in glacier melt and also glacier retreat can cause droughts in streamflow. In this study, we analyse the effect of glacier changes and different drought threshold approaches on future projections of streamflow droughts in glacierised catchments. We show that these different methodological options result in different drought projections and that these options can be used to study different aspects of streamflow droughts.
Felix N. Matt, John F. Burkhart, and Joni-Pekka Pietikäinen
Hydrol. Earth Syst. Sci., 22, 179–201, https://doi.org/10.5194/hess-22-179-2018, https://doi.org/10.5194/hess-22-179-2018, 2018
Short summary
Short summary
Certain particles that have the ability to absorb sunlight deposit onto mountain snow via atmospheric transport mechanisms and then lower the snow's ability to reflect sunlight, which increases snowmelt. Herein we present a model aiming to simulate this effect and model the impacts on the streamflow of a southern Norwegian river. We find a significant difference in streamflow between simulations with and without the effect of light absorbing particles applied, in particular during spring melt.
Hiroyuki Hirashima, Francesco Avanzi, and Satoru Yamaguchi
Hydrol. Earth Syst. Sci., 21, 5503–5515, https://doi.org/10.5194/hess-21-5503-2017, https://doi.org/10.5194/hess-21-5503-2017, 2017
Short summary
Short summary
We reproduced the formation of capillary barriers and the development of preferential flow through snow using a multi-dimensional water transport model, which was then validated using laboratory experiments of liquid water infiltration into layered, initially dry snow. Simulation results showed that the model reconstructs some relevant features of capillary barriers and the timing of liquid water arrival at the snow base.
Claudio Bravo, Thomas Loriaux, Andrés Rivera, and Ben W. Brock
Hydrol. Earth Syst. Sci., 21, 3249–3266, https://doi.org/10.5194/hess-21-3249-2017, https://doi.org/10.5194/hess-21-3249-2017, 2017
Short summary
Short summary
We present an analysis of meteorological conditions and melt for Universidad Glacier in central Chile. This glacier is characterized by high melt rates over the ablation season, representing a mean contribution of between 10 and 13 % of the total runoff observed in the upper Tinguiririca Basin during the November 2009 to March 2010 period. Few studies have quantified the glacier melt contribution to river runoff in Chile, and this work represents a new precedent for the Andes.
Sebastian Würzer, Nander Wever, Roman Juras, Michael Lehning, and Tobias Jonas
Hydrol. Earth Syst. Sci., 21, 1741–1756, https://doi.org/10.5194/hess-21-1741-2017, https://doi.org/10.5194/hess-21-1741-2017, 2017
Short summary
Short summary
We discuss a dual-domain water transport model in a physics-based snowpack model to account for preferential flow (PF) in addition to matrix flow. So far no operationally used snow model has explicitly accounted for PF. The new approach is compared to existing water transport models and validated against in situ data from sprinkling and natural rain-on-snow (ROS) events. Our work demonstrates the benefit of considering PF in modelling hourly snowpack runoff, especially during ROS conditions.
Kelly E. Gleason, Anne W. Nolin, and Travis R. Roth
Hydrol. Earth Syst. Sci., 21, 1137–1147, https://doi.org/10.5194/hess-21-1137-2017, https://doi.org/10.5194/hess-21-1137-2017, 2017
Short summary
Short summary
We present a coupled modeling approach used to objectively identify representative snow-monitoring locations in a forested watershed in the western Oregon Cascades mountain range. The resultant Forest Elevational Snow Transect (ForEST) represents combinations of forested and open land cover types at low, mid-, and high elevations.
Rafael Pimentel, Javier Herrero, and María José Polo
Hydrol. Earth Syst. Sci., 21, 805–820, https://doi.org/10.5194/hess-21-805-2017, https://doi.org/10.5194/hess-21-805-2017, 2017
Short summary
Short summary
This study analyses the subgrid variability of the snow distribution in a Mediterranean region and formulates a parametric approach that includes these scale effects in the physical modelling of snow by means of accumulation–depletion curves associated with snow evolution patterns, by means of terrestrial photography. The results confirm that the use of these on a cell scale provides a solid foundation for the extension of point snow models to larger areas.
Nena Griessinger, Jan Seibert, Jan Magnusson, and Tobias Jonas
Hydrol. Earth Syst. Sci., 20, 3895–3905, https://doi.org/10.5194/hess-20-3895-2016, https://doi.org/10.5194/hess-20-3895-2016, 2016
Short summary
Short summary
In Alpine catchments, snowmelt is a major contribution to runoff. In this study, we address the question of whether the performance of a hydrological model can be enhanced by integrating data from an external snow monitoring system. To this end, a hydrological model was driven with snowmelt input from snow models of different complexities. Best performance was obtained with a snow model, which utilized data assimilation, in particular for catchments at higher elevations and for snow-rich years.
Jacob C. Yde, Niels T. Knudsen, Jørgen P. Steffensen, Jonathan L. Carrivick, Bent Hasholt, Thomas Ingeman-Nielsen, Christian Kronborg, Nicolaj K. Larsen, Sebastian H. Mernild, Hans Oerter, David H. Roberts, and Andrew J. Russell
Hydrol. Earth Syst. Sci., 20, 1197–1210, https://doi.org/10.5194/hess-20-1197-2016, https://doi.org/10.5194/hess-20-1197-2016, 2016
E. Cornwell, N. P. Molotch, and J. McPhee
Hydrol. Earth Syst. Sci., 20, 411–430, https://doi.org/10.5194/hess-20-411-2016, https://doi.org/10.5194/hess-20-411-2016, 2016
Short summary
Short summary
We present a high-resolution snow water equivalent estimation for the 2001–2014 period over the extratropical Andes Cordillera of Argentina and Chile, the first of its type. The effect of elevation on accumulation is confirmed, although this is less marked in the northern portion of the domain. The 3000–4000 m a.s.l. elevation band contributes the bulk of snowmelt, but the 4000–5000 m a.s.l. band is a significant source and deserves further monitoring and research.
S. Frey and H. Holzmann
Hydrol. Earth Syst. Sci., 19, 4517–4530, https://doi.org/10.5194/hess-19-4517-2015, https://doi.org/10.5194/hess-19-4517-2015, 2015
Short summary
Short summary
Temperature index melt models often lead to snow accumulation in high mountainous elevations. We developed a simple conceptual snow redistribution model working on a commonly used grid cell size of 1x1km. That model is integrated in the hydrological rainfall runoff model COSERO. Applying the model to the catchment of Oetztaler Ache, Austria, could prevent the accumulation of snow in the upper altitudes and lead to an improved model efficiency regarding discharge and snow coverage (MODIS).
Z. H. He, F. Q. Tian, H. V. Gupta, H. C. Hu, and H. P. Hu
Hydrol. Earth Syst. Sci., 19, 1807–1826, https://doi.org/10.5194/hess-19-1807-2015, https://doi.org/10.5194/hess-19-1807-2015, 2015
S. J. Marshall
Hydrol. Earth Syst. Sci., 18, 5181–5200, https://doi.org/10.5194/hess-18-5181-2014, https://doi.org/10.5194/hess-18-5181-2014, 2014
Short summary
Short summary
This paper presents a new 12-year glacier meteorological, mass balance, and run-off record from the Canadian Rocky Mountains. This provides insight into the glaciohydrological regime of the Rockies. For the period 2002-2013, about 60% of glacier meltwater run-off originated from seasonal snow and 40% was derived from glacier ice and firn. Ice and firn run-off is concentrated in the months of August and September, at which time it contributes significantly to regional-scale water resources.
J. You, D. G. Tarboton, and C. H. Luce
Hydrol. Earth Syst. Sci., 18, 5061–5076, https://doi.org/10.5194/hess-18-5061-2014, https://doi.org/10.5194/hess-18-5061-2014, 2014
Short summary
Short summary
This paper evaluates three improvements to an energy balance snowmelt model aimed to represent snow surface temperature while retaining the parsimony of a single layer. Surface heat flow is modeled using a forcing term related to the vertical temperature difference and a restore term related to the temporal gradient of surface temperature. Adjustments for melt water refreezing and thermal conductivity when the snow is shallow are introduced. The model performs well at the three test sites.
Z. H. He, J. Parajka, F. Q. Tian, and G. Blöschl
Hydrol. Earth Syst. Sci., 18, 4773–4789, https://doi.org/10.5194/hess-18-4773-2014, https://doi.org/10.5194/hess-18-4773-2014, 2014
Short summary
Short summary
In this paper, we propose a new method for estimating the snowmelt degree-day factor (DDFS) directly from MODIS snow covered area (SCA) and ground-based snow depth data without calibration. Snow density is estimated as the ratio between observed precipitation and changes in the snow volume for days with snow accumulation. DDFS values are estimated as the ratio between changes in the snow water equivalent and difference between the daily temperature and a threshold value for days with snowmelt.
Cited articles
Aiken, R. M., Flerchinger, G. N., Farahani, H. J., and Johnsen, K. E.: Energy
Balance Simulation for Surface Soil and Residue Temperatures with Incomplete
Cover, Agron. J., 89, 404–415, 1997.
Brun, E., Martin, E., Simon, V., Gendre, C., and Coleou, C.: An Energy and
Mass Model of Snow Cover Suitable for Operational Avalanche Forecastiong, J.
Glaciol., 35, 333–342, 1989.
Essery, R. and Pomeroy, J. W.: Implications of spatial distributions of snow
mass and melt rate for snow-cover depletion: theoretical considerations, Ann.
Glaciol., 38, 261–265, https://doi.org/10.3189/172756404781815275, 2004.
Essery, R., Granger, R. J., and Pomeroy, J. W.: Boundary-layer growth and
advection of heat over snow and soil patches: modelling and parameterization,
Hydrol. Process., 20, 953–967, 2006.
Fang, X. and Pomeroy, J. W.: Snowmelt runoff sensitivity analysis to drought
on the Canadian prairies, Hydrol. Process., 21, 2594–2609,
https://doi.org/10.1002/hyp.6796, 2007.
Fujita, K., Hiyama, K., Iida, H., and Ageta, Y.: Self-regulated fluctuations
in the ablation of a snow patch over four decades, Water Resour. Res., 46,
1–9, https://doi.org/10.1029/2009WR008383, 2010.
Garratt, J. R.: The Internal Boundary Layer – A Review, Bound.-Lay.
Meteorol., 50, 171–203, 1990.
Granger, R. J. and Male, D. H.: Melting of a prairie snowpack, J. Appl.
Meteorol., 17, 1833–1842, 1978.
Granger, R. J., Male, D. H., and Gray, D. M.: Prairie Snowmelt, in: Symposium
of the Water Studies Institute, 9–11 May 1978, Saskatoon, SK, Canada, 1978.
Granger, R. J., Pomeroy, J. W., and Parviainen, J.: Boundary-layer
integration approach to advection of sensible heat to a patchy snow cover,
Hydrol. Process., 16, 3559–3569, 2002.
Granger, R. J., Essery, R., and Pomeroy, J. W.: Boundary-layer growth over
snow and soil patches: Field Observations, Hydrol. Process., 20, 943–951,
2006.
Gray, D. M. and Landine, P. G.: Albedo Model for Shallow Prairie Snow Covers,
Can. J. Earth Sci., 24, 1760–1768, https://doi.org/10.1139/e87-168, 1987.
Gray, D. M. and Landine, P. G.: An Energy-Budget Snowmelt Model for the
Canadian Prairies, Can. J. Earth Sci., 25, 1292–1303, 1988.
Gray, D. M., Pomeroy, J. W., and Granger, R. J.: Prairie Snowmelt Runoff, in:
Water Research Themes, Conference Commemorating the Official Opening of the
National Hydrology Research Centre, Canadian Water Resources Association,
Saskatoon, Saskatchewan, Canada, 49–68, 1986.
Gray, D. M., Toth, B., Zhao, L., Pomeroy, J. W., and Granger, R. J.:
Estimating areal snowmelt infiltration into frozen soils, Hydrol. Process.,
15, 3095–3111, https://doi.org/10.1002/hyp.320, 2001.
Harder, P., Pomeroy, J. W., and Helgason, W. D.: Local scale advection of
sensible and latent heat during snowmelt, Geophys. Res. Lett., 44,
9769–9777, https://doi.org/10.1002/2017GL074394, 2017.
Harder, P., Helgason, W. D., and Pomeroy, J. W.: Modelling the snow-surface
energy balance during melt under exposed crop stubble, J. Hydrometeorol., 19,
1191–1214, https://doi.org/10.1175/JHM-D-18-0039.1, 2018.
Hsieh, C. I., Katul, G., and Chi, T. W.: An approximate analytical model for
footprint estimation of scalar fluxes in thermally stratified atmospheric
flows, Adv. Water Resour., 23, 765–772, https://doi.org/10.1016/S0309-1708(99)00042-1,
2000.
Imre, A. R. and Novotn, J.: Fractals and the Korcak-law: a history and a
correction, Eur. Phys. J. H, 41, 69–91, https://doi.org/10.1140/epjh/e2016-60039-8,
2016.
Jordan, R. E.: A one-dimensional temperature model for a snowcover: Technical
documentation for SNTHERM.89, Special Rep. 91-16, U.S. Army Cold Regions
Research and Engineering Laboratory, Hanover, NH, USA, 49 pp., 1991.
Legates, D. R. and McCabe, G. J.: Evaluating the Use of “Goodness of Fit”
Measures in Hydrologic and Hydroclimatic Model Validation, Water Resour.
Res., 35, 233–241, https://doi.org/10.1029/1998WR900018, 2005.
Lehning, M., Bartelt, P., Brown, B., Russi, T., Stockli, U., and Zimmerli,
M.: SNOWPACK model calculations for avalanche warning based upon a new
network of weather and snow stations, Cold Reg. Sci. Technol., 30, 145–157,
1999.
Liston, G. E.: Local advection of momentum, heat and moisture during the
melt of patchy snow covers, J. Appl. Meteorol., 34, 1705–1715, 1995.
Mandelbrot, B. B.: Stochastic models for the Earth's relief, shape and
fractal dimension of coastlines, and number-area rule for islands, P. Natl.
Acad. Sci. USA, 72, 3825–3838, 1975.
Mandelbrot, B. B.: The Fractal Geometry of Nature, Freeman, New York, USA,
1982.
Marks, D., Kimball, J., Tingey, D., and Link, T. E.: The sensitivity of
snowmelt processes to climate conditions and forest cover during
rain-on-snow: a case study of the 1996 Pacific Northwest Flood, Hydrol.
Process., 12, 1569–1587, 1998.
Marks, D., Domingo, J., Susong, D., Link, T. E., and Garen, D.: A spatially
distributed energy balance snowmelt model for application in mountain basins,
Hydrol. Process., 13, 1935–1959, 1999.
Marsh, P. and Pomeroy, J. W.: Meltwater Fluxes At an Arctic Forest-Tundra
Site, Hydrol. Process., 10, 1383–1400, 1996.
Marsh, P., Pomeroy, J. W., and Neumann, N.: Sensible heat flux and local
advection over a heterogeneous landscape at an Arctic tundra site during
snowtnelt, Ann. Glaciol., 25, 132–136, 1997.
Mott, R., Egli, L., Grünewald, T., Dawes, N., Manes, C., Bavay, M., and
Lehning, M.: Micrometeorological processes driving snow ablation in an Alpine
catchment, The Cryosphere, 5, 1083–1098,
https://doi.org/10.5194/tc-5-1083-2011, 2011.
Mott, R., Gromke, C., Grünewald, T., and Lehning, M.: Relative importance
of advective heat transport and boundary layer decoupling in the melt
dynamics of a patchy snow cover, Adv. Water Resour., 55, 88–97,
https://doi.org/10.1016/j.advwatres.2012.03.001, 2013.
Mott, R., Lehning, M., and Daniels, M.: Atmospheric Flow Development and
Associated Changes in Turbulent Sensible Heat Flux over a Patchy Mountain
Snow Cover, J. Hydrometeorol., 16, 1315–1340, https://doi.org/10.1175/JHM-D-14-0036.1,
2015.
Mott, R., Paterna, E., Horender, S., Crivelli, P., and Lehning, M.: Wind
tunnel experiments: cold-air pooling and atmospheric decoupling above a
melting snow patch, The Cryosphere, 10, 445–458,
https://doi.org/10.5194/tc-10-445-2016, 2016.
Mott, R., Schlögl, S., Dirks, L., and Lehning, M.: Impact of Extreme Land
Surface Heterogeneity on Micrometeorology over Spring Snow Cover, J.
Hydrometeorol., 18, 2705–2722, https://doi.org/10.1175/JHM-D-17-0074.1, 2017.
Pedersen, C. A. and Winther, J. G.: Intercomparison and validation of snow
albedo parameterization schemes in climate models, Clim. Dynam., 25,
351–362, https://doi.org/10.1007/s00382-005-0037-0, 2005.
Pomeroy, J. W., Gray, D. M., Brown, T., Hedstrom, N. R., Quinton, W. L.,
Granger, R. J., and Carey, S. K.: The cold regions hydrological model: a
platform for basing process representation and model structure on physical
evidence, Hydrol. Process., 21, 2650–2667, 2007.
Raleigh, M. S., Livneh, B., Lapo, K., and Lundquist, J. D.: How Does
Availability of Meteorological Forcing Data Impact Physically Based Snowpack
Simulations?, J. Hydrometeorol., 17, 99–120, https://doi.org/10.1175/JHM-D-14-0235.1,
2016.
Rigon, R., Rodriguez-Iturbe, I., Maritan, A., Giacometti, A., Tarboton, D.
G., and Rinaldo, A.: On Hack's Law, Water Resour. Res., 32, 3367–3374, 1996.
Sauter, T. and Galos, S. P.: Effects of local advection on the spatial
sensible heat flux variation on a mountain glacier, The Cryosphere, 10,
2887–2905, https://doi.org/10.5194/tc-10-2887-2016, 2016.
Shook, K.: Simulation of the Ablation of Prairie Snowcovers, PhD Thesis,
University of Saskatchewan, Saskatoon, Saskatchewan, Canada, 1995.
Shook, K. and Gray, D. M.: Snowmelt Resulting from Advection, Hydrol.
Process., 11, 1725–1736, 1997.
Shook, K., Gray, D. M., and Pomeroy, J. W.: Geometry of patchy snowcovers,
in: 50th Annual Eastern Snow Conference, 8–10 June 1993, Quebec City,
Canada, 89–98, 1993a.
Shook, K., Gray, D. M., and Pomeroy, J. W.: Temporal Variation in Snowcover
Area During Melt in Prairie and Alpine Environments, Nord. Hydrol., 24,
183–198, 1993b.
VanDerWal, J., Falconi, L., Januchowski, S., Storlie, L. S., and Storlie, C.:
SDMTools: Species Distribution Modelling Tools: Tools for processing data
associated with species distribution modelling exercises, available at:
https://cran.r-project.org/package=SDMTools (last access: 20 December
2018), 2014.
Weisman, R. N.: Snowmelt: A Two-Dimensional Turbulent Diffusion Model, Water
Resour. Res., 13, 337–342, 1977.
Wiscombe, W. J. and Warren, S. G.: A Model for the Spectral Albedo of Snow.
1: Pure Snow, J. Atmos. Sci., 37, 2712–2733, 1980.
Short summary
As snow cover becomes patchy during snowmelt, energy is advected from warm snow-free surfaces to cold snow-covered surfaces. This paper proposes a simple sensible and latent heat advection model for snowmelt situations that can be coupled to one-dimensional energy balance snowmelt models. The model demonstrates that sensible and latent heat advection fluxes can compensate for one another, especially in early melt periods.
As snow cover becomes patchy during snowmelt, energy is advected from warm snow-free surfaces to...