Articles | Volume 21, issue 2
https://doi.org/10.5194/hess-21-863-2017
https://doi.org/10.5194/hess-21-863-2017
Research article
 | 
14 Feb 2017
Research article |  | 14 Feb 2017

Monitoring the variations of evapotranspiration due to land use/cover change in a semiarid shrubland

Tingting Gong, Huimin Lei, Dawen Yang, Yang Jiao, and Hanbo Yang

Related authors

A benchmark dataset for global evapotranspiration estimation based on FLUXNET2015 from 2000 to 2022
Wangyipu Li, Zhaoyuan Yao, Yifan Qu, Hanbo Yang, Yang Song, Lisheng Song, Lifeng Wu, and Yaokui Cui
Earth Syst. Sci. Data, 17, 3835–3855, https://doi.org/10.5194/essd-17-3835-2025,https://doi.org/10.5194/essd-17-3835-2025, 2025
Short summary
Evapotranspiration stress intensifies with enhanced sensitivity to soil moisture deficits in a rapidly greening China
Yuan Liu, Yong Wang, Yong Zhao, Shouzhi Chen, Longhao Wang, Wenjing Yang, Xing Li, Xinxi Li, Huimin Lei, Huanyu Chang, Jiaqi Zhai, Yongnan Zhu, Qingming Wang, and Ting Ye
Hydrol. Earth Syst. Sci., 29, 3379–3404, https://doi.org/10.5194/hess-29-3379-2025,https://doi.org/10.5194/hess-29-3379-2025, 2025
Short summary
Enhanced understanding of dominant drivers of Water Yield change across China through the improved coupled carbon and water model
Huilan Shen, Hanbo Yang, and Changming Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-2152,https://doi.org/10.5194/egusphere-2025-2152, 2025
Short summary
The general formulation for runoff components estimation and attribution at mean annual time scale
Yufen He, Changming Li, and Hanbo Yang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-349,https://doi.org/10.5194/hess-2024-349, 2024
Preprint under review for HESS
Short summary
Estimating the sensitivity of the Priestley–Taylor coefficient to air temperature and humidity
Ziwei Liu, Hanbo Yang, Changming Li, and Taihua Wang
Hydrol. Earth Syst. Sci., 28, 4349–4360, https://doi.org/10.5194/hess-28-4349-2024,https://doi.org/10.5194/hess-28-4349-2024, 2024
Short summary

Cited articles

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56, FAO, Rome, 300, D05109, 1998.
Baldocchi, D. D. and Wilson, K. B.: Modeling CO2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales, Ecol. Model., 142, 155–184, 2001.
Barr, A. G., Morgenstern, K., Black, T. A., McCaughey, J. H., and Nesic, Z.: Surface energy balance closure by the eddy-covariance method above three boreal forest stands and implications for the measurement of the CO2 flux, Agr. Forest Meteorol., 140, 322–337, 2006.
Chen, S., Chen, J., Lin, G., Zhang, W., Miao, H., Wei, L., Huang, J., and Han, X.: Energy balance and partition in Inner Mongolia steppe ecosystems with different land use types, Agr. Forest Meteorol., 149, 1800–1809, 2009.
Download
Short summary
Seasonal and inter-annual features of ET were analyzed over four periods. A normalization method was adopted to exclude the effects of potential evapotranspiration and soil water stress on ET. During the land degradation process, when natural vegetation (including leaves and branches), sand dunes, dry sand layers, and BSCs were all bulldozed, ET was observed to increase at a mild rate. In a vegetation rehabilitation process with sufficient groundwater, ET also increased at a faster rate.
Share