Articles | Volume 21, issue 6
Hydrol. Earth Syst. Sci., 21, 2725–2737, 2017
https://doi.org/10.5194/hess-21-2725-2017
Hydrol. Earth Syst. Sci., 21, 2725–2737, 2017
https://doi.org/10.5194/hess-21-2725-2017

Research article 09 Jun 2017

Research article | 09 Jun 2017

Saturated hydraulic conductivity model computed from bimodal water retention curves for a range of New Zealand soils

Joseph Alexander Paul Pollacco et al.

Related authors

Technical Note: Improved partial wavelet coherency for understanding scale-specific and localized bivariate relationships in geosciences
Wei Hu and Bing Si
Hydrol. Earth Syst. Sci., 25, 321–331, https://doi.org/10.5194/hess-25-321-2021,https://doi.org/10.5194/hess-25-321-2021, 2021
Short summary
Technical note: Multiple wavelet coherence for untangling scale-specific and localized multivariate relationships in geosciences
Wei Hu and Bing Cheng Si
Hydrol. Earth Syst. Sci., 20, 3183–3191, https://doi.org/10.5194/hess-20-3183-2016,https://doi.org/10.5194/hess-20-3183-2016, 2016
Short summary
Estimating spatially distributed soil water content at small watershed scales based on decomposition of temporal anomaly and time stability analysis
W. Hu and B. C. Si
Hydrol. Earth Syst. Sci., 20, 571–587, https://doi.org/10.5194/hess-20-571-2016,https://doi.org/10.5194/hess-20-571-2016, 2016
Short summary
Soil water content evaluation considering time-invariant spatial pattern and space-variant temporal change
W. Hu and B. C. Si
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-12829-2013,https://doi.org/10.5194/hessd-10-12829-2013, 2013
Revised manuscript not accepted

Related subject area

Subject: Vadose Zone Hydrology | Techniques and Approaches: Modelling approaches
A scaling procedure for straightforward computation of sorptivity
Laurent Lassabatere, Pierre-Emmanuel Peyneau, Deniz Yilmaz, Joseph Pollacco, Jesús Fernández-Gálvez, Borja Latorre, David Moret-Fernández, Simone Di Prima, Mehdi Rahmati, Ryan D. Stewart, Majdi Abou Najm, Claude Hammecker, and Rafael Angulo-Jaramillo
Hydrol. Earth Syst. Sci., 25, 5083–5104, https://doi.org/10.5194/hess-25-5083-2021,https://doi.org/10.5194/hess-25-5083-2021, 2021
Short summary
From hydraulic root architecture models to macroscopic representations of root hydraulics in soil water flow and land surface models
Jan Vanderborght, Valentin Couvreur, Felicien Meunier, Andrea Schnepf, Harry Vereecken, Martin Bouda, and Mathieu Javaux
Hydrol. Earth Syst. Sci., 25, 4835–4860, https://doi.org/10.5194/hess-25-4835-2021,https://doi.org/10.5194/hess-25-4835-2021, 2021
Short summary
Simulated or measured soil moisture: which one is adding more value to regional landslide early warning?
Adrian Wicki, Per-Erik Jansson, Peter Lehmann, Christian Hauck, and Manfred Stähli
Hydrol. Earth Syst. Sci., 25, 4585–4610, https://doi.org/10.5194/hess-25-4585-2021,https://doi.org/10.5194/hess-25-4585-2021, 2021
Short summary
Interaction of soil water and groundwater during the freezing–thawing cycle: field observations and numerical modeling
Hong-Yu Xie, Xiao-Wei Jiang, Shu-Cong Tan, Li Wan, Xu-Sheng Wang, Si-Hai Liang, and Yijian Zeng
Hydrol. Earth Syst. Sci., 25, 4243–4257, https://doi.org/10.5194/hess-25-4243-2021,https://doi.org/10.5194/hess-25-4243-2021, 2021
Short summary
Assessing the dynamics of soil salinity with time-lapse inversion of electromagnetic data guided by hydrological modelling
Mohammad Farzamian, Dario Autovino, Angelo Basile, Roberto De Mascellis, Giovanna Dragonetti, Fernando Monteiro Santos, Andrew Binley, and Antonio Coppola
Hydrol. Earth Syst. Sci., 25, 1509–1527, https://doi.org/10.5194/hess-25-1509-2021,https://doi.org/10.5194/hess-25-1509-2021, 2021
Short summary

Cited articles

Anderson, J. L. and Bouma, J.: Relationships between saturated hydraulic conductivity and morphometric data of an argillic horizon, Soil Sci. Soc. Am. J., 37, 408–413, https://doi.org/10.2136/sssaj1973.03615995003700030029x, 1973.
Arya, L. M. and Paris, J. F.: A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data, Soil Sci. Soc. Am. J., 45, 1023–1030, https://doi.org/10.2136/sssaj1981.03615995004500060004x, 1981.
Balland, V. and Pollacco, J. A. P.: Modeling soil hydraulic properties for a wide range of soil conditions, Ecol. Model., 219, 300–316, 2008.
Borgesen, C. D., Jacobsen, O. H., Hansen, S., and Schaap, M. G.: Soil hydraulic properties near saturation, an improved conductivity model, J. Hydrol., 324, 40–50, https://doi.org/10.1016/j.jhydrol.2005.09.014, 2006.
Brooks, R. H. and Corey, A. T.: Hydraulic properties of porous media, Hydrol. Pap., 3, 1964.
Download
Short summary
Descriptions of soil hydraulic properties, such as soil moisture release curve, θ(h), and saturated hydraulic conductivities, Ks, are a prerequisite for hydrological models. Because it is usually more difficult to describe Ks than θ(h) from pedotransfer functions, we developed a physical unimodal model to compute Ks solely from hydraulic parameters derived from the Kosugi θ(h). We further adaptations to this model to adapt it to dual-porosity structural soils.