Articles | Volume 21, issue 5
https://doi.org/10.5194/hess-21-2595-2017
https://doi.org/10.5194/hess-21-2595-2017
Research article
 | 
30 May 2017
Research article |  | 30 May 2017

Examining the impacts of precipitation isotope input (δ18Oppt) on distributed, tracer-aided hydrological modelling

Carly J. Delavau, Tricia Stadnyk, and Tegan Holmes

Related authors

Evaluation of ensemble precipitation forecasts generated through post-processing in a Canadian catchment
Sanjeev K. Jha, Durga L. Shrestha, Tricia A. Stadnyk, and Paulin Coulibaly
Hydrol. Earth Syst. Sci., 22, 1957–1969, https://doi.org/10.5194/hess-22-1957-2018,https://doi.org/10.5194/hess-22-1957-2018, 2018
Short summary
Recent trends and variability in river discharge across northern Canada
Stephen J. Déry, Tricia A. Stadnyk, Matthew K. MacDonald, and Bunu Gauli-Sharma
Hydrol. Earth Syst. Sci., 20, 4801–4818, https://doi.org/10.5194/hess-20-4801-2016,https://doi.org/10.5194/hess-20-4801-2016, 2016
Short summary

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Modelling approaches
Estimating velocity distribution and flood discharge at river bridges using entropy theory – insights from computational fluid dynamics flow fields
Farhad Bahmanpouri, Tommaso Lazzarin, Silvia Barbetta, Tommaso Moramarco, and Daniele P. Viero
Hydrol. Earth Syst. Sci., 28, 3717–3737, https://doi.org/10.5194/hess-28-3717-2024,https://doi.org/10.5194/hess-28-3717-2024, 2024
Short summary
Isotopic evaluation of the National Water Model reveals missing agricultural irrigation contributions to streamflow across the western United States
Annie L. Putman, Patrick C. Longley, Morgan C. McDonnell, James Reddy, Michelle Katoski, Olivia L. Miller, and J. Renée Brooks
Hydrol. Earth Syst. Sci., 28, 2895–2918, https://doi.org/10.5194/hess-28-2895-2024,https://doi.org/10.5194/hess-28-2895-2024, 2024
Short summary
Timing of spring events changes under modelled future climate scenarios in a mesotrophic lake
Jorrit P. Mesman, Inmaculada C. Jiménez-Navarro, Ana I. Ayala, Javier Senent-Aparicio, Dennis Trolle, and Don C. Pierson
Hydrol. Earth Syst. Sci., 28, 1791–1802, https://doi.org/10.5194/hess-28-1791-2024,https://doi.org/10.5194/hess-28-1791-2024, 2024
Short summary
Effects of high-quality elevation data and explanatory variables on the accuracy of flood inundation mapping via Height Above Nearest Drainage
Fernando Aristizabal, Taher Chegini, Gregory Petrochenkov, Fernando Salas, and Jasmeet Judge
Hydrol. Earth Syst. Sci., 28, 1287–1315, https://doi.org/10.5194/hess-28-1287-2024,https://doi.org/10.5194/hess-28-1287-2024, 2024
Short summary
A hybrid data-driven approach to analyze the drivers of lake level dynamics
Márk Somogyvári, Dieter Scherer, Frederik Bart, Ute Fehrenbach, Akpona Okujeni, and Tobias Krueger
EGUsphere, https://doi.org/10.5194/egusphere-2023-2111,https://doi.org/10.5194/egusphere-2023-2111, 2023
Short summary

Cited articles

Aylsworth, J. M. and Kettles, I. M.: Distribution of peatlands, in: The Physical Environment of the Mackenzie Valley, Northwest Territories: A Base Line for the Assessment of Environmental Change, edited by: Dyke, L. D. and Brooks, G. R., Geological Survey of Canada Bulletin 547, Geological Survey of Canada, Ottawa, 49–55, 2000.
Beven, K. and Binley, A.: The future of distributed models: Model calibration and uncertainty prediction, Hydrol. Process., 6, 279–298, https://doi.org/10.1002/hyp.3360060305, 1992.
Birkel, C. and Soulsby, C.: Advancing tracer-aided rainfall–runoff modelling: a review of progress, problems and unrealised potential, Hydrol. Process., 29, 5227–5240, https://doi.org/10.1002/hyp.10594, 2015.
Birkel, C., Dunn, S. M., Tetzlaff, D., and Soulsby, C.: Assessing the value of high-resolution isotope tracer data in the stepwise development of a lumped conceptual rainfall–runoff model, Hydrol. Process., 24, 2335–2348, https://doi.org/10.1002/hyp.7763, 2010a.
Birkel, C., Tetzlaff, D., Dunn, S. M., and Soulsby, C.: Towards a simple dynamic process conceptualization in rainfall–runoff models using multi-criteria calibration and tracers in temperate, upland catchments, Hydrol. Process., 24, 260–275, https://doi.org/10.1002/hyp.7478, 2010b.
Download
Short summary
Hydrological models have large amounts of uncertainty in streamflow predictions. Using extra data (e.g. isotope tracers) helps evaluate whether the model is getting the right answers for the right reasons. In a Canadian basin, three types of isotope in precipitation input are used to drive a tracer-aided model and assess the resulting model uncertainty. This study shows how a tracer-aided model can be used at the larger scale, and that the model can be of value in such regions.