Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Volume 21, issue 5
Hydrol. Earth Syst. Sci., 21, 2595–2614, 2017
https://doi.org/10.5194/hess-21-2595-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 21, 2595–2614, 2017
https://doi.org/10.5194/hess-21-2595-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 30 May 2017

Research article | 30 May 2017

Examining the impacts of precipitation isotope input (δ18Oppt) on distributed, tracer-aided hydrological modelling

Carly J. Delavau et al.

Related authors

Evaluation of ensemble precipitation forecasts generated through post-processing in a Canadian catchment
Sanjeev K. Jha, Durga L. Shrestha, Tricia A. Stadnyk, and Paulin Coulibaly
Hydrol. Earth Syst. Sci., 22, 1957–1969, https://doi.org/10.5194/hess-22-1957-2018,https://doi.org/10.5194/hess-22-1957-2018, 2018
Short summary
Recent trends and variability in river discharge across northern Canada
Stephen J. Déry, Tricia A. Stadnyk, Matthew K. MacDonald, and Bunu Gauli-Sharma
Hydrol. Earth Syst. Sci., 20, 4801–4818, https://doi.org/10.5194/hess-20-4801-2016,https://doi.org/10.5194/hess-20-4801-2016, 2016
Short summary

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Modelling approaches
Simulations of future changes in thermal structure of Lake Erken: proof of concept for ISIMIP2b lake sector local simulation strategy
Ana I. Ayala, Simone Moras, and Donald C. Pierson
Hydrol. Earth Syst. Sci., 24, 3311–3330, https://doi.org/10.5194/hess-24-3311-2020,https://doi.org/10.5194/hess-24-3311-2020, 2020
Short summary
Assessment of the geomorphic effectiveness of controlled floods in a braided river using a reduced-complexity numerical model
Luca Ziliani, Nicola Surian, Gianluca Botter, and Luca Mao
Hydrol. Earth Syst. Sci., 24, 3229–3250, https://doi.org/10.5194/hess-24-3229-2020,https://doi.org/10.5194/hess-24-3229-2020, 2020
Short summary
Worldwide lake level trends and responses to background climate variation
Benjamin M. Kraemer, Anton Seimon, Rita Adrian, and Peter B. McIntyre
Hydrol. Earth Syst. Sci., 24, 2593–2608, https://doi.org/10.5194/hess-24-2593-2020,https://doi.org/10.5194/hess-24-2593-2020, 2020
Short summary
Modeling inorganic carbon dynamics in the Seine River continuum in France
Audrey Marescaux, Vincent Thieu, Nathalie Gypens, Marie Silvestre, and Josette Garnier
Hydrol. Earth Syst. Sci., 24, 2379–2398, https://doi.org/10.5194/hess-24-2379-2020,https://doi.org/10.5194/hess-24-2379-2020, 2020
Short summary
A new form of the Saint–Venant equations for variable topography
Cheng-Wei Yu, Ben R. Hodges, and Frank Liu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-75,https://doi.org/10.5194/hess-2020-75, 2020
Revised manuscript accepted for HESS
Short summary

Cited articles

Aylsworth, J. M. and Kettles, I. M.: Distribution of peatlands, in: The Physical Environment of the Mackenzie Valley, Northwest Territories: A Base Line for the Assessment of Environmental Change, edited by: Dyke, L. D. and Brooks, G. R., Geological Survey of Canada Bulletin 547, Geological Survey of Canada, Ottawa, 49–55, 2000.
Beven, K. and Binley, A.: The future of distributed models: Model calibration and uncertainty prediction, Hydrol. Process., 6, 279–298, https://doi.org/10.1002/hyp.3360060305, 1992.
Birkel, C. and Soulsby, C.: Advancing tracer-aided rainfall–runoff modelling: a review of progress, problems and unrealised potential, Hydrol. Process., 29, 5227–5240, https://doi.org/10.1002/hyp.10594, 2015.
Birkel, C., Dunn, S. M., Tetzlaff, D., and Soulsby, C.: Assessing the value of high-resolution isotope tracer data in the stepwise development of a lumped conceptual rainfall–runoff model, Hydrol. Process., 24, 2335–2348, https://doi.org/10.1002/hyp.7763, 2010a.
Birkel, C., Tetzlaff, D., Dunn, S. M., and Soulsby, C.: Towards a simple dynamic process conceptualization in rainfall–runoff models using multi-criteria calibration and tracers in temperate, upland catchments, Hydrol. Process., 24, 260–275, https://doi.org/10.1002/hyp.7478, 2010b.
Publications Copernicus
Download
Short summary
Hydrological models have large amounts of uncertainty in streamflow predictions. Using extra data (e.g. isotope tracers) helps evaluate whether the model is getting the right answers for the right reasons. In a Canadian basin, three types of isotope in precipitation input are used to drive a tracer-aided model and assess the resulting model uncertainty. This study shows how a tracer-aided model can be used at the larger scale, and that the model can be of value in such regions.
Hydrological models have large amounts of uncertainty in streamflow predictions. Using extra...
Citation