Articles | Volume 21, issue 3
https://doi.org/10.5194/hess-21-1611-2017
https://doi.org/10.5194/hess-21-1611-2017
Research article
 | 
17 Mar 2017
Research article |  | 17 Mar 2017

Seasonal forecasting of hydrological drought in the Limpopo Basin: a comparison of statistical methods

Mathias Seibert, Bruno Merz, and Heiko Apel

Related authors

Technical Note: Resolution Enhancement of Flood Inundation Grids
Seth Bryant, Guy Schumann, Heiko Apel, Heidi Kreibich, and Bruno Merz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-156,https://doi.org/10.5194/hess-2023-156, 2023
Preprint under review for HESS
Short summary
What controls the tail behaviour of flood series: Rainfall or runoff generation?
Elena Macdonald, Bruno Merz, Björn Guse, Viet Dung Nguyen, Xiaoxiang Guan, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-186,https://doi.org/10.5194/hess-2023-186, 2023
Preprint under review for HESS
Short summary
Brief communication: Impact forecasting could substantially improve the emergency management of deadly floods: case study July 2021 floods in Germany
Heiko Apel, Sergiy Vorogushyn, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 22, 3005–3014, https://doi.org/10.5194/nhess-22-3005-2022,https://doi.org/10.5194/nhess-22-3005-2022, 2022
Short summary
Recurrence analysis of extreme event-like data
Abhirup Banerjee, Bedartha Goswami, Yoshito Hirata, Deniz Eroglu, Bruno Merz, Jürgen Kurths, and Norbert Marwan
Nonlin. Processes Geophys., 28, 213–229, https://doi.org/10.5194/npg-28-213-2021,https://doi.org/10.5194/npg-28-213-2021, 2021
Do small and large floods have the same drivers of change? A regional attribution analysis in Europe
Miriam Bertola, Alberto Viglione, Sergiy Vorogushyn, David Lun, Bruno Merz, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 1347–1364, https://doi.org/10.5194/hess-25-1347-2021,https://doi.org/10.5194/hess-25-1347-2021, 2021
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Seasonal soil moisture and crop yield prediction with fifth-generation seasonal forecasting system (SEAS5) long-range meteorological forecasts in a land surface modelling approach
Theresa Boas, Heye Reemt Bogena, Dongryeol Ryu, Harry Vereecken, Andrew Western, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 27, 3143–3167, https://doi.org/10.5194/hess-27-3143-2023,https://doi.org/10.5194/hess-27-3143-2023, 2023
Short summary
A genetic particle filter scheme for univariate snow cover assimilation into Noah-MP model across snow climates
Yuanhong You, Chunlin Huang, Zuo Wang, Jinliang Hou, Ying Zhang, and Peipei Xu
Hydrol. Earth Syst. Sci., 27, 2919–2933, https://doi.org/10.5194/hess-27-2919-2023,https://doi.org/10.5194/hess-27-2919-2023, 2023
Short summary
Investigating the response of land–atmosphere interactions and feedbacks to spatial representation of irrigation in a coupled modeling framework
Patricia Lawston-Parker, Joseph A. Santanello Jr., and Nathaniel W. Chaney
Hydrol. Earth Syst. Sci., 27, 2787–2805, https://doi.org/10.5194/hess-27-2787-2023,https://doi.org/10.5194/hess-27-2787-2023, 2023
Short summary
Validation of precipitation reanalysis products for rainfall-runoff modelling in Slovenia
Marcos Julien Alexopoulos, Hannes Müller-Thomy, Patrick Nistahl, Mojca Šraj, and Nejc Bezak
Hydrol. Earth Syst. Sci., 27, 2559–2578, https://doi.org/10.5194/hess-27-2559-2023,https://doi.org/10.5194/hess-27-2559-2023, 2023
Short summary
Statistical post-processing of precipitation forecasts using circulation classifications and spatiotemporal deep neural networks
Tuantuan Zhang, Zhongmin Liang, Wentao Li, Jun Wang, Yiming Hu, and Binquan Li
Hydrol. Earth Syst. Sci., 27, 1945–1960, https://doi.org/10.5194/hess-27-1945-2023,https://doi.org/10.5194/hess-27-1945-2023, 2023
Short summary

Cited articles

Belayneh, A., Adamowski, J., Khalil, B., and Ozga-Zielinski, B.: Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet neural network and wavelet support vector regression models, J. Hydrol., 508, 418–429, https://doi.org/10.1016/j.jhydrol.2013.10.052, 2014.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
Chen, J., Li, M., and Wang, W.: Statistical Uncertainty Estimation Using Random Forests and Its Application to Drought Forecast, Math. Probl. Eng., 2012, 915053, https://doi.org/10.1155/2012/915053, 2012.
Diro, G. T., Black, E., and Grimes, D. I. F.: Seasonal forecasting of Ethiopian spring rains, Meteorol. Appl., 83, 73–83, https://doi.org/10.1002/met.63, 2008.
Download
Short summary
Seasonal early warning is vital for drought management in arid regions like the Limpopo Basin in southern Africa. This study shows that skilled seasonal forecasts can be achieved with statistical methods built upon driving factors for drought occurrence. These are the hydrological factors for current streamflow and meteorological drivers represented by anomalies in sea surface temperatures of the surrounding oceans, which combine to form unique combinations in the drought forecast models.