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Abstract. The Limpopo Basin in southern Africa is prone
to droughts which affect the livelihood of millions of peo-
ple in South Africa, Botswana, Zimbabwe and Mozambique.
Seasonal drought early warning is thus vital for the whole re-
gion. In this study, the predictability of hydrological droughts
during the main runoff period from December to May is as-
sessed using statistical approaches. Three methods (multiple
linear models, artificial neural networks, random forest re-
gression trees) are compared in terms of their ability to fore-
cast streamflow with up to 12 months of lead time. The fol-
lowing four main findings result from the study.

1. There are stations in the basin at which standard-
ised streamflow is predictable with lead times up to
12 months. The results show high inter-station differ-
ences of forecast skill but reach a coefficient of deter-
mination as high as 0.73 (cross validated).

2. A large range of potential predictors is considered in
this study, comprising well-established climate indices,
customised teleconnection indices derived from sea sur-
face temperatures and antecedent streamflow as a proxy
of catchment conditions. El Niño and customised in-
dices, representing sea surface temperature in the At-
lantic and Indian oceans, prove to be important telecon-
nection predictors for the region. Antecedent stream-
flow is a strong predictor in small catchments (with me-
dian 42 % explained variance), whereas teleconnections
exert a stronger influence in large catchments.

3. Multiple linear models show the best forecast skill in
this study and the greatest robustness compared to artifi-
cial neural networks and random forest regression trees,

despite their capabilities to represent nonlinear relation-
ships.

4. Employed in early warning, the models can be used
to forecast a specific drought level. Even if the coeffi-
cient of determination is low, the forecast models have
a skill better than a climatological forecast, which is
shown by analysis of receiver operating characteristics
(ROCs). Seasonal statistical forecasts in the Limpopo
show promising results, and thus it is recommended to
employ them as complementary to existing forecasts in
order to strengthen preparedness for droughts.

1 Introduction

Drought is a slowly progressing phenomenon which is chal-
lenging to detect ahead. As a result, drought management
frequently remains crisis management, which is limited to
fighting drought when impacts have already started to un-
fold. A more desirable reaction is the conversion of crisis
management to risk management (Wilhite and Hayes, 2000).
This is a challenging process in which drought forecasting
with a long lead time is recommended in order to adopt mit-
igation actions and raise preparedness (Vicente-Serrano et
al., 2012a). Forecasting products should be tailored to the
end users’ needs, such as water resources managers (Win-
semius et al., 2014; Masih et al., 2014). The forecast infor-
mation must satisfy the need for a thorough drought assess-
ment without overwhelming end users with high complexity.
Seasonal forecasts have a high uncertainty; therefore, it is
an important task to convey the skill of the forecast system,
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and for end users to include uncertainty information in the
decision-making process. This can be achieved, for example,
by providing probabilistic drought forecast information.

The Limpopo Basin in southern Africa (ca. 408 000 km2)
is strongly affected by droughts, which had severe impacts on
agriculture, economy and food security in southern Africa,
for example, in the early 1980s and 1990s (Love et al., 2010;
Rouault and Richard, 2003; Rouault, 2005; Masih et al.,
2014; FAO, 2004). The Limpopo Basin is a highly modi-
fied catchment, where irrigation demands by agriculture are
high and may even exceed supply in parts of the basin (FAO,
1997). Southern African water resources are regarded as be-
ing highly affected by seasonal variability, a fact that is
likely to be exacerbated by climate change (Kusangaya et
al., 2014). Zhu and Ringler (2010) estimated a decrease in
Limpopo streamflow by 2030 due to climate change, which
is contradictory to studies that found increases of precipi-
tation (Tadross et al., 2005) and runoff (Li et al., 2015) in
parts of southern Africa, including vast parts of the Limpopo
Basin.

Hence, it seems that the climate change impact in the
Limpopo Basin remains very uncertain and might exhibit a
stronger effect on precipitation variability than on average
precipitation (Tadross et al., 2005). The high inter-annual
variability of precipitation and the tense condition of wa-
ter resources require improvements in water management
in the riparian states (South Africa, Botswana, Zimbabwe
and Mozambique) who cooperate within the Limpopo Wa-
tercourse Commission since 2003. This study analyses the
annual to seasonal predictability of (seasonal) hydrologi-
cal drought in the Limpopo Basin using statistical meth-
ods which could improve the preparedness and help mitigate
drought disasters.

In order to understand hydrological droughts and to cope
with them properly, an appropriate drought indicator has to
be selected and forecasted (Wetterhall et al., 2015; Win-
semius et al., 2014). In the Limpopo Basin, the main rainy
season runoff lasts from December to May, and the total
streamflow of the period is an adequate indicator for hydro-
logical droughts. In this study, the standardised streamflow
index (SSI) is used as hydrological drought index (Vicente-
Serrano, 2012b). Standardisation of streamflow is less com-
mon than for precipitation (Mishra and Singh, 2010), but
nevertheless useful for two reasons. First, it facilitates the
comparison of droughts at different stations. Second, the
standardised indicator is normally distributed and has, there-
fore, a higher sensitivity to droughts compared to original
streamflow which is often strongly positively skewed.

Statistical streamflow forecasting is challenging due to the
complexity of the signal and the underlying processes, es-
pecially in highly modified catchments such as the Limpopo
Basin (FAO, 2004). The streamflow signal integrates mete-
orological, hydrological and anthropogenic effects, such as
irrigation and water storage, thus interlacing hydrological
drought and water scarcity (Van Loon and Van Lanen, 2013).

Anthropogenic effects (e.g. operation of dams and irrigation)
are typically time-varying and can be considered in hydro-
logical models (Trambauer et al., 2014). Thereby, it is pos-
sible to separate drought from water scarcity (Van Loon and
Van Lanen, 2013) by simulating naturalised streamflow. In a
statistical approach as presented here, the anthropogenic ef-
fect is not accounted for and therefore increases prediction
uncertainties.

Atmospheric circulation processes have a chaotic compo-
nent that is not susceptible to prediction, but predictability
can be deduced from the land–atmosphere and land–ocean
interactions. The latter can be represented by teleconnections
to sea surface temperatures (SSTs), which is a common ap-
proach in both tropical and humid climates. In more dry cli-
mate zones, the land–atmosphere interaction, and therefore
the land surface moisture condition, is likely to be more im-
portant (Koster et al., 2000), since atmospheric moisture is
recycled over the land surface (Gimeno et al., 2010). It can
be expected that both SSTs and land surface conditions are
important factors in the Limpopo Basin, because it extends
from the ocean to very arid regions in Botswana.

The term “teleconnection” refers to the influence of some-
times remote ocean regions on atmospheric variables, such
as moisture content or precipitation. Past studies on southern
African precipitation found predictability based on El Niño,
the Indian Ocean and the Atlantic Ocean (Reason et al., 2006;
Landman et al., 2005; Landman and Mason, 1999). However,
the atmospheric circulation is very complex, sometimes hav-
ing the effect that even strong El Niño events do not propa-
gate to the region (Thomson et al., 2003). A reason might be
that the ocean region south of Africa is the major source for
precipitation in southern Africa (Gimeno et al., 2010). This
region is characterised by the chaotic collision system of the
warm Agulhas and the cold Antarctic circumpolar ocean cur-
rent (see Fig. 1) (Peterson and Stramma, 1991). In the colli-
sion process, warm Agulhas eddies can form, maintaining
higher evaporation until they dissipate. There are more com-
plex effects such as the Darwin sea level pressure (Manatsa
et al., 2007), the linkage of the El Niño–Southern Oscillation
(ENSO) with the Indian Ocean dipole (Yuan and Li, 2008) or
the stratospheric quasi-biennial oscillation (Jury, 1996) and
even the Antarctic ozone depletion (Manatsa et al., 2013).
Despite that complexity, SST teleconnections remain the pre-
ferred choice of predictors in seasonal forecasting (Landman
et al., 2005; Landman and Mason, 1999; Funk et al., 2014).
In this study, widely used climate indices are complemented
with customised indices resulting from a composite and cor-
relation analysis of SSTs in the Indian and Atlantic oceans.

Many methods have been applied in drought forecasting
(Mishra and Singh, 2011). Three models are chosen for com-
parison in this study. The first are multiple linear models
(MLMs), which are widely used in similar studies (Diro
et al., 2011, e.g.). They are, however, limited to linear com-
binations of predictors. Artificial neural networks (ANNs)
are applied as a second method. They are flexible nonlinear
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models and have been applied successfully in several sea-
sonal prediction studies (Mwale et al., 2004; Morid et al.,
2007; Mishra and Desai, 2006). In addition, we develop ran-
dom forest regression (RFOR) tree models (Breiman, 2001).
These are particularly suited for representing conditional re-
lationships in complex data including nonlinearities. Ran-
dom forest regression trees have only rarely been applied for
seasonal drought forecasting (Chen et al., 2012). These data-
driven approaches are useful for seasonal forecasting in re-
gions where hydrological observations are available, but ad-
ditional data characterising the catchments are limited.

A recent publication by Trambauer et al. (2015) pre-
sented forecasting results for the Limpopo Basin achieved
by a chain of process-based models, namely the hydrological
model PCR-GLOBWB (Van Beek and Bierkens, 2009) with
input from the seasonal forecasting system S4 (Molteni et al.,
2011) and reanalysis data ERA-Interim (Dee et al., 2011) by
ECMWF. The skill of the forecasting system for total stream-
flow between December and May (DJFMAM) exceeded cli-
matological forecasts (climatology) with “moderate skill for
all lead times” up to 5 months (forecast in December) (Tram-
bauer et al., 2015). To parameterise such models is challeng-
ing in data-sparse regions such as southern Africa (Tram-
bauer et al., 2014). Compared to forecasts based on simula-
tion models, statistical forecast models require less input data
and computational power. The main requirement for model
development is a sufficiently long record of relevant drought
indicators. In summary, both approaches have their advan-
tages and disadvantages. Here, we evaluate the predictability
of hydrological drought in a data-driven approach, which can
serve as a baseline for other seasonal forecast systems. Spe-
cial care is taken of the predictor selection, model validation
and forecast verification process for the use of the forecast
models in a drought early warning system. We present the
forecasting skill for hydrological drought during the main
rainy season runoff from December to May achieved with
the three selected statistical models.

2 Data and methods

2.1 Study area: Limpopo Basin

The Limpopo Basin is located in southern Africa with
the riparian states South Africa, Botswana, Zimbabwe and
Mozambique, where it flows into the Indian Ocean and cov-
ers an area of approximately 400 000 km2 (Fig. 1). The area
is dominated by hot steppe climate, while the southernmost
regions reach into the warm temperate climate zone of South
Africa and the eastern region comprises parts of the savanna
climate in Mozambique. The highest mountains of the Water-
berg mountain range in South Africa reach ca. 2300 m in ele-
vation. The rainy season usually lasts from October to March.
The average annual rainfall ranges from ca. 250 to 1050 mm
with 530 mm on average, but with high inter-annual varia-

Figure 1. Location of the Limpopo Basin and streamflow stations.
Streamflow stations with sub-basins are numbered according to Ta-
ble 1 and elevation (max. 2300 m) as background (left). Location
of the Limpopo Basin within sub-Saharan Africa and schematic of
ocean currents with the warm Agulhas Current and the Benguela,
South Atlantic and Antarctic Circumpolar (South Atlantic) currents
shown on the right.

Figure 2. Box plot of monthly streamflow at station Chokwe.

tion which makes drought a common natural hazard. Mean
annual runoff is approximately 4550 millionm3 a−1 (station
Chokwe) and the main rainy season runoff lasts from De-
cember to May (Fig. 2). Rainfed farming and grazing is
very common, but commercial irrigation farming is also
widespread, so that irrigation is the most important wa-
ter usage with about 50 % of total water use (FAO, 2004).
Intra-basin and inter-basin water transfers exist in South
Africa (inter-basin transfers from Incomati, Usutu and Or-
ange rivers) and Botswana (intra-basin transfers). Water use
and storage heavily affect streamflow with the effect that, for
example, in the Matlabas subcatchment only approximately
5 % of the naturalised mean annual runoff is recorded (FAO,
2004, Table 8). The total dam capacity is ca. 2500 millionm3,
and the dam capacity per subcatchment often exceeds mean
annual streamflow (Table 1). Hence, many of the streamflow
time series are heavily affected by water use and manage-
ment.
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Table 1. Streamflow stations included in the analysis: observation period, average annual streamflow volume (Qann) (in Mm3 a−1), dam
capacity (VDam) (in Mm3), dam capacity relative to mean annual flow volume (VDrel), catchment area (area) (in km2). Dam capacities are
estimations based on available information.

Station Time period Qann VDam VDrel Area

1 Woodbush June 1977–February 2012 (34.2 years) 8.53 1.94 0.23 12
2 Rietvallei January 1971–March 2012 (39.6 years) 2.90 0.00 0.00 15
3 Naauwpoort March 1957–October 2010 (47.1 years) 10.57 14.22 1.35 87
4 Hartbeeshoek October 1964–March 2012 (44.8 years) 4.52 0.00 0.00 101
5 Krokodilrivier March 1972–March 2012 (40.1 years) 185.46 0.00 0.00 215
6 Doorndraai September 1954–February 2012 (57.4 years) 8.24 44.20 5.36 409
7 Mokolo August 1980–February 2012 (31.4 years) 119.50 145.92 1.22 4315
8 Letaba Ranch October 1959–March 2012 (45.4 years) 100.77 235.60 2.34 4724
9 Beestekraal March 1951–March 2012 (59.9 years) 153.67 268.79 1.75 6032
10 Klipvoor April 1970–March 2012 (42 years) 118.70 134.16 1.13 6159
11 Glen Alpine May 1970–February 2012 (41.8 years) 101.40 67.47 0.67 11 246
12 Loskop Noord September 1938–May 2011 (44.7 years) 230.14 960.68 4.17 16 542
13 Buffelspoort September 1955–March 2012 (56.5 years) 131.27 487.45 3.71 20 383
14 Botswana April 1971–February 2012 (36.8 years) 475.09 945.19 1.99 100 977
15 Combomume March 1966–August 2011 (41.1 years) 3084.29 1311.16 0.43 259 214
16 Chokwe July 1951–May 2011 (56.8 years) 4552.25 3252.13 0.71 343 225

2.2 Data

The database of this study comprises streamflow data, which
serve as both predictand and predictor, climate indices and
gridded sea surface temperature anomalies (potential predic-
tors). The Global Runoff Data Centre (GRDC, 2011) pro-
vides streamflow from all countries in the Limpopo Basin.
These data are extended by the runoff observations avail-
able from the Department of Water Affairs of the Republic
of South Africa (DWAF) and Mozambique Regional Admin-
istration of Waters in the South (ARA-Sul). A subset of 16
stations (Fig. 1 and Table 1) satisfies the following condi-
tions:

– a record length of at least 30 years (360 observations at
monthly resolution);

– completeness of at least 90 % in the observation period.

The stations selected for this study are mainly located in the
South African part of the basin where data availability is bet-
ter and the conditions are met (Fig. 1). The HydroSHEDS
data set (Lehner et al., 2008) is used to derive catchment
outlines per station and catchment areas. Dam capacities are
collated from the DWAF database (http://www.dwaf.gov.za/
Hydrology/).

Several prominent atmospheric indices are acquired from
the online resources provided by the Climate Prediction
Center of the National Oceanic and Atmospheric Adminis-
tration (NOAA). To represent the influence of the ENSO,
the SST indices of regions Niño-1 and -2, Niño-3, Niño-4,
Niño-3.4 are compiled in addition to the Trans-Niño and the
Oceanic Niño index (see Table 2 for a detailed list). These
indices form the basis of the potential predictors. This set of

widely used indices is augmented with customised predic-
tors based on analysing the sea surface temperature data set
HadISST~1.1 (Rayner et al., 2003) provided by the British
Met office.

2.3 Hydrological drought predictand: standardised
streamflow index

In streamflow standardisation, a time series is transformed
to a normally distributed time series, which can be applied
at different temporal scales. The discharge is averaged for
the chosen period (for example, January–February) for ev-
ery year, and this series of annual averages is then stan-
dardised. The use of standardised streamflow translates into
a drought metric independent of catchment size, climatol-
ogy and streamflow characteristics (Lorenzo-Lacruz et al.,
2013). Furthermore, the strength of event anomalies can eas-
ily be compared between very different catchments. For the
purpose of seasonal drought forecasting, the inter-annual
variability of low flow is more important than in a general
streamflow forecast. The distribution of streamflow is usu-
ally right skewed; hence, high extremes can have a large
effect in the model training process. Standardisation trans-
forms the original flow distribution into a normal distribu-
tion with a mean of 0 and standard deviation of 1. Thus, it
is likely that the models are more sensitive to low flow vari-
ability, when trained with standardised streamflow. However,
only a few hydrological studies use standardised streamflow,
e.g. Modarres (2006). In meteorological studies, forecasting
of standardised precipitation is more frequent, e.g. Mishra
and Desai (2005), Morid et al. (2007) and Belayneh et al.
(2014). Another beneficial aspect of forecasting standardised
indices is that the transformed variables are normally dis-
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Table 2. Climate indices used as potential predictors.

Variable/data set Start Source

Southern Oscillation Index (SOI) January 1951 Climate Prediction Center of NOAA
Darwin sea level pressure January 1951 Climate Prediction Center of NOAA
Tahiti sea level pressure January 1951 Climate Prediction Center of NOAA
ENSO indices (ERSST) January 1950 Climate Prediction Center of NOAA
ENSO indices (OISST) January 1982 Climate Prediction Center of NOAA
North Atlantic Oscillation (NAO) January 1950 Climate Prediction Center of NOAA
Indian Ocean dipole mode index (DMI) November 1981 Based on OISST v.2 (Reynolds et al., 2007)
Oceanic Niño index (ONI) February 1950 Based on ERSST v.3b (Smith et al., 2008)
Trans-Niño index (TNI) March 1870 HadSST 1.1 and OISST v.2
Niño 3.4 (HadSST) January 1871 Climate Prediction Center of NOAA

tributed and defined for R, whereas precipitation and stream-
flow are defined for R≥0, only. Thus, corrections normally
applied to prevent undefined forecasts (such as precipitation
below zero) are not required.

Streamflow standardisation (Shukla and Wood, 2008;
Vicente-Serrano, 2012b) is conducted using the algorithms
implemented in the R package SPEI version 1.6. This algo-
rithm uses the gamma distribution and unbiased probability
weighted moments as the fitting method. The SSIs are calcu-
lated for each station at the scale of 6 months. SSIMay

6 of May
at that scale covers the desired main runoff period from De-
cember to May, henceforth named SSIDJFMAM. The stream-
flow conditions are classified as drought when SSI<−0.5,
which has a 30.9 % probability (given the normal distribu-
tion of SSI) and thus is an approximation of the lower tercile
extremes.

2.4 Potential predictors: customised climate indices
based on SSTs

Besides widely used climate indices, specific predictors are
derived based on an analysis of past droughts and stream-
flow variability. SST fields and SSI are compared to detect
ocean regions with predictive potential for streamflow in the
Limpopo Basin. The analysis is limited to streamflow of the
station Chokwe which has the largest catchment area of all
stations. The ocean region is restricted to an area extending
from latitudes 50◦ S to 25◦ N and longitudes 65◦W to 115◦ E.

Composite analysis is used to identify ocean regions with
predictive potential for droughts. Composites are generated
for SST anomalies preceding drought from December to
May defined by the drought threshold of SSIDJFMAM<−0.5.
Hence, composites are calculated for every month from the
November before DJFMAM to the previous year’s Decem-
ber. Composite maps are constructed by calculating the aver-
age SST field for the selected years. The resulting map shows
the SST anomalies associated to droughts in the Limpopo
Basin and the respective significance levels tested with the
Mann–Whitney test for two samples.

Additionally, correlation analysis is conducted with
SSIDJFMAM and the SST field to identify ocean regions with
predictive potential for streamflow variability. The signif-
icance of the Pearson correlations is calculated with t =

r
√
N−2
1−r2 using the Student’s t distribution with df=N − 2

degrees of freedom, sample size N and observed correlation
r by testing the null hypothesis ρ = 0 (correlation of the gen-
eral population).

Ocean regions that show correlations and composite
anomalies with a significance level of 0.05 are chosen for
the construction of potential predictors. The region outlines
are manually specified and defined rather generously so as to
cover the anomaly regions resulting from different analyses.
Then, indices are calculated by spatially aggregating the SST
data to obtain time series with monthly means. Every index
is calculated at three aggregation levels: 1, 3 and 6 months. A
longer aggregation period indicates longer-lasting anomalies
of SST, while the 1-monthly anomaly might capture short-
term effects.

2.5 Forecast model setup

The objective for the modelling is the predictability analysis
of standardised streamflow using teleconnections and catch-
ment conditions as predictors in data-driven approaches.
Suitable statistical methods are compared by assessing the
prediction performance and robustness for drought early
warning with a leave-one-out cross-validation scheme. The
adopted statistical methods are MLMs, ANNs coupled to the
genetic algorithm (ANN-GAs) and RFORs. MLMs are very
common in modelling systems with linear relationships be-
tween predictors and predictands (see details in Sect. 2.5.1).
ANN-GAs and RFORs are established data-mining meth-
ods. Both have the advantage of allowing nonlinear relation-
ships. ANNs are applied in this work in order to evaluate
if the forecast quality of the MLM predictor combinations
can be improved by allowing nonlinear relations. In a simi-
lar study, where Australian rainfall was forecasted, Mekanik
et al. (2013) achieved even better generalisation properties
with ANNs compared to MLMs. ANN-GAs and RFORs dif-
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Table 3. Lead time definition of SSIDJFMAM forecast: time of input
parameters (months abbreviated) and warning issue time.

Lead 12 9 6 3 2 1 0 −1

Input prev. Nov Feb May Aug Sep Oct Nov Dec
Issue prev. Dec Mar Jun Sep Oct Nov Dec Jan

fer, among other aspects, in the type of results which are de-
terministic for ANN-GAs and probabilistic for RFORs (see
details in Sect. 2.5.2 and 2.5.3). An overview of data flow,
model validation and forecast verification is presented in
Fig. 3, and details are discussed in Sect. 2.6.

The models are set up to predict the standardised total
streamflow of December–May (SSIDJFMAM), which is one
value per year, at the lead times of 1, 2, 3, 6, 9 and 12 months.
We apply a strict definition of lead time as the difference (in
months) between the availability of the forecast and the start
of the predicted period. The resulting dates of forecast issue
are presented in Table 3. Some time is lost due to the depen-
dency on external predictor data sources, which are not avail-
able immediately due to collation and processing operations.
Thus, the forecast based on month m would be available in
the following month m+ 1.

2.5.1 Multiple linear models

The first type of the data-driven models is the MLM. In
MLMs, the dependent variable y is related to linear combi-
nations of the intercept β0, the predictors x1 to xp with slope
factors β1 to βp and the error term ε:

y = β0+β1x1+β2x2+ . . .+βpxp + ε. (1)

In this study, ordinary least squares regression is applied to
estimate β0 to βp. This method requires independent pre-
dictors and normally distributed residuals. Collinearity in
the predictor data set can cause overfitting effects. Despite
these limitations, MLM is relatively robust to outliers, can
produce good approximations and has been successfully ap-
plied in similar studies relating atmospheric teleconnections
to drought indicators (Mishra and Singh, 2010), for exam-
ple, in the prediction of Ethiopian rains (Diro et al., 2008,
2011). The strength is the simplistic and reductionistic ap-
proach, employing only a few significant predictors.

Predictor selection is performed by the automated both-
ways stepwise selection algorithm. Starting from an empty
model (intercept only), predictors are added to a model one
at a time and the model quality is calculated. The predictor
resulting in the highest model quality is retained and more
predictors are added likewise in the following iterations. In
both-ways stepwise selection, once added, predictors can still
be removed from the model at a later iteration step. The se-
lection process continues until the addition or removal of pre-
dictors does not lead to an increase in model quality. The
measure for model quality has to balance the goodness of

Model:
validation

Model:setup

Forecast:
verification

Probabilistic:hindcast

Sel.:predictors

D
eterm

inistic:hindcasts

Stepwise:forward
selection

Transform:to:probabilistic

No:selection

Regression:
tree:ensembles

Ensemble:mean

:Leave-one-out:cross-
validation::NSE:/:R²CV 

MLM

Receiver:operating:
characteristic::ROC

RFORANN-GAANN-GA

Quality:of:fit::
R²FIT

Full:set:of:potential:predictors

Figure 3. Modelling and validation scheme to account for the dif-
ferences in models: MLMs, ANN-GAs and RFORs. The predictors
selected for the MLMs are also used in the ANN-GAs, whereas
RFOR works with the complete predictor set. MLMs and ANN-
GAs are deterministic and require transformation to probabilistic
form, whereas RFOR is probabilistic and is transformed to a deter-
ministic value for the purpose of forecast comparison. Deterministic
forecast skill is assessed using the coefficient of determinationR2

CV;
the probabilistic properties are analysed using the ROC score.

fit with model complexity, i.e. the number of model param-
eters. Two measures are applied: Akaike’s information cri-
terion (AIC) and Bayesian information criterion (BIC), with
the latter resulting in more conservative models.

The models’ degree of overfitting is tested by performing
leave-one-out cross validation. The difference by which the
cross-validated root mean square error (RMSECV) exceeds
the RMSE of the model fit residuals is used as a measure of
generalisation properties. Furthermore, forecast uncertainty
is estimated based on RMSECV. Models are developed for
three sets of input aggregation levels and two information
criteria (AIC/BIC), resulting in six models per lead time and
station. For each lead time, the model achieving maximum
generalisation properties and minimal error configuration is
selected (only the selected models are presented in the re-
sults). The selected models contain varying numbers of pre-
dictors for which the relative importance is calculated. The
contribution to the total explained variance, i.e. the predictor
importance, depends on the order of the predictors. Predictor
importance is calculated with the R package “relaimpo” ac-
cording to Lindeman et al. (1980). Drought probability is cal-
culated under the assumption of a normally distributed fore-
cast error estimated using RMSECV (Diro et al., 2011).
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2.5.2 Artificial neural network models

The ANN is trained with the genetic algorithm (ANN-GA)
which was successfully applied in forecasting rainfall in east-
ern Africa by Mwale et al. (2007). The genetic algorithm
employs the processes of population growth for the model
learning process. The network is designed with at least three
layers, each containing a number of nodes. The nodes con-
tain the data and are connected to the nodes of the next layer
by transformation functions. The first layer is the input layer,
where each node represents a predictor variable. The last
layer is the output layer which contains the response vari-
able. There can be several hidden layers in between, but in
this study the models are set up with a single hidden layer.
The number of nodes in the hidden layer is varied over four
model setups with increasing complexity containing 3, 5, 7 or
10 nodes. All nodes of one layer are connected to the nodes
of the next layer. The nodes are parameterised by so-called
biases and weights, which define how the input from other
nodes are weighted. The values of a node j in the hidden
layer H are calculated based on the N input nodes xi by

Hj =

N∑
i=1

Wj ixi +Bj o, (2)

where Wj i are the weights for the input nodes and Bj o are
the biases of the hidden nodes. Then, the Hj value is trans-
lated by the nonlinear function

f (Hj )=
1

1+ e−Hj
, (3)

and combined by the weights and biases assigned in the out-
put layer to calculate the prediction value.

The next step is the model learning with the genetic al-
gorithm (GA) to determine the best parameterisation. The
learning process starts with a random generation of ANN
parameters. The GA is an iterative learning algorithm that
regards model parameterisations as chromosomes in a ge-
netic population (here 3000), which is subjected to evolu-
tionary processes, as with every iteration step, a new gen-
eration is created undergoing mutation and crossover. A to-
tal of 15 % of chromosomes in the new generation are as-
signed with random parameterisations. First, chromosomes
are ranked by forecast skill, called “fitness”. Then, the best
85 % of the chromosomes are retained in the genetic pool.
However, these are subjected to mutation and crossover pro-
cesses. During the mutation process, in a small part of the
chromosomes (here 5 %), some of the weights and biases are
mutated, i.e. values are randomised. Thereby, small changes
in the skilful chromosomes are triggered, which will be re-
tained for the next generation, if forecast skill is improved.
In the crossover process, pairs of chromosomes are chosen
from the retained chromosomes, and weights and biases are
exchanged at one point of the pair of chromosomes (here,
with a crossover rate of 0.6). The crossover makes sure that

skilful configurations stay in the population and slowly con-
verge to one solution. The procedure is iterated until the root
mean square error (fitness) is smaller than 0.005, or a max-
imum of 1500 iterations is reached. The ANN-GA method
is applied as implemented in the R package “ANN” (Roy-
Desrosiers, 2012).

The generalisation properties of the forecast models are
evaluated by leave-one-out cross validation in the same way
as with the MLM. The ANN-GA result is deterministic and
is transformed to a probabilistic drought forecast with the
same approach as with the MLM by assuming a normal dis-
tribution with a standard deviation estimated from the cross-
validated RMSECV.

2.5.3 Random forest regression tree models

Regression tree modelling is a multivariate data-driven
method and a special version of a decision tree tailored to
predict continuous variables. Regression trees are used to
predict a single variable based on multiple predictors by per-
forming recursive partitioning on the training data. Hereby,
the data set is partitioned into homogeneous groups, the so-
called branches, which are identified by a specific condition
and could be the occurrence of an El Niño event, which
would lead to lower streamflow, for example. By repeating
the partitioning process, a sequence of conditions based on
several predictors leads to small homogenous groups, the
so-called leaves. Regression trees are strict data-driven mul-
tivariate models able to map nonlinearity and interactions
between predictors. This is a promising feature particularly
for atmospheric and hydrological sciences, but up to now
the method is not common in these disciplines. Hall et al.
(2011) is one of the rare examples where the forecasting
performance of random forests and other observation-based
methods was evaluated. RFOR modelling fulfils several de-
sirable characteristics (Breiman, 2001), including ease of
parallelisation, robustness to outliers, fast calculation, inter-
nal estimates of error, strength and variable importance. The
method extends regression tree modelling by introducing a
tree model ensemble (here 500) which can be used to repre-
sent forecast uncertainty. Single-regression trees easily suf-
fer from overfitting, which is improved by RFOR by training
the trees in a bagging approach. Hereby, every tree is trained
with a different data set, created by sampling from the origi-
nal data set with replacement (in-bag samples). All observa-
tions not selected are referred to as “out-of-bag” and are used
for validation and estimation of variable importance, which
is described in Sect. 2.7. The random forest models are set up
with 500 regression trees that have a minimum final node size
of five observations. The implementation of the algorithm in
the R package “randomForest” by Liaw and Wiener (2002)
is applied. Although random forest provides an internal error
estimation, leave-one-out cross validation is also applied for
the random forest models for the sake of exact comparability
with the other approaches.
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2.6 Model and forecast validation

The wealth of potential predictors, some even showing a
weak correlation (e.g. ENSO-related predictors), increases
the risk for overfitting. Overfitting is the effect that a model
can start fitting the noise contained in the predictor data in-
stead of the signal. Robust statistical learning methods min-
imise the risk of overfitting. Every model learning algo-
rithm is facing a tradeoff between data fit and generalisation.
Model validation serves the purpose to identify the models
with the best generalisation properties. Comparison of the
models’ forecasting results is performed using the indepen-
dent forecasts resulting from a leave-one-out cross validation
(LOO-CV), which results in a more realistic estimation of
the real forecast uncertainty. The LOO-CV prediction time
series resembles a hindcast series. The deterministic forecast
performance of the models is assessed by the coefficient of
determination, which is equivalent to the Nash–Sutcliffe ef-
ficiency (NSE).

A drought-specific forecast verification was performed
with the receiver operating characteristic (ROC). The ROC
score assesses the forecasts’ skill to distinguish between
occurrence and non-occurrence of drought which required
probabilistic forecast transformation. A moderate level of
drought was tested following the definition of drought be-
low−0.5 (SSI<−0.5). In a ROC analysis, a diagram is con-
structed that presents the hit rate H in dependency of the
probability of detection (POD) for a range of early warning
thresholds. According to Wilks (2006), the first step in ROC
analysis is the calculation of 2× 2 contingency tables C(I)
for I warning thresholds with 0< I < 1. Applied to a prob-
abilistic drought hindcast series, the hit rate

H =
Ncorrect

Ndrought
(4)

is calculated from the number of correct forecasts Ncorrect
and the total number of occurred droughts Ndrought. Conse-
quently, the probability of false detection

POD=
Nfalse

Nnodrought
(5)

is calculated from the number of false alarms Nfalse and the
number of non-drought events Nnodrought (wet or normal).
The ROC score is the area under the curve and is used for
model comparison. A perfect forecast reaches a ROC score
of 1, while a score of 0.5 has no skill and is equivalent to
a random forecast. The score is calculated with the R pack-
age “verification” (NCAR, 2012). This package employs a
method by Mason (2008) who showed that the ROC score
can be estimated from the Mann–Whitney U statistic. In or-
der to estimate the uncertainty of the ROC score calculation,
ROC score confidence intervals (95 % level) are estimated by
100-fold bootstrapping of the hindcast series and subsequent
ROC score calculation.

In summary, all models are validated using the same leave-
one-out cross-validation scheme, the result of which is used
for skill assessment with the NSE and ROC scores. There-
fore, comparability of model skills is assured also between
different methods.

2.7 Analysis of predictor importance

Predictor importance is analysed for MLM and RFOR. The
MLM predictor importance is calculated with the “lmg”
method by Lindeman et al. (1980), which estimates a par-
tial coefficient of determination for every predictor. These
are affected by the order and combination of predictors in the
model. The lmg method minimizes these effects and gives a
robust estimate of the true coefficient. Due to the high num-
ber of potential predictors, the analysis is focussed on the
following predictor groups: Atlantic, Indian Ocean, ENSO,
DMI, NAO and streamflow.

Predictor importance in RFOR models is assessed differ-
ently. First of all, it is important to be aware that in regression
tree models the interdependency of variables is an essential
property of the method. The combinations of variables are of
higher interest than single-variable importance only, which
results in a different approach for importance analysis. Pre-
dictor importance for random forest models is based on the
out-of-bag classification errors. The out-of-bag samples are
randomised one variable after the other and the percentage
increase in the prediction error is calculated. The understand-
ing is that the more the randomisation of a predictor causes
an increase in prediction error, the more important it is.

Collinearity of predictors can affect the importance esti-
mation, since predictors might easily replace each other in
the regression trees if they have a similar predictive strength.
This can cause several effects. On the one hand, the impor-
tance per single predictor might be underestimated if it is not
located at an important position in all regression tree models.
On the other hand, in the presence of collinearity, there would
be multiple predictors with underestimated predictor impor-
tance. Therefore, the results of RFOR predictor importance
are summarised for comparison with the MLM partial coeffi-
cient of determination. Closely related predictors are merged
as relative group importance, calculated as

Ig =

∑m
i=1Ig, i∑p

i=1Ii
,

which estimates the importance of g predictor groups with
m group members and p total predictors. The relative im-
portance per group can be displayed in a similar manner as
the partial coefficients of determination available for MLM,
allowing for comparison of predictor importance between
the methods. When comparing the results, one has to con-
sider the method-specific differences between partial R2 and
RFOR predictor importance.
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Figure 4. Correlation of standardised streamflow (6-month scale) of station Chokwe and sea surface temperature anomalies; grey contours
indicate significance at 0.05.

3 Results and discussion

3.1 Identification of customised potential predictors

The list of potential predictors contains several well-
established climate indices. These cover climate anomalies
in the Atlantic, Indian and Pacific oceans but might not cap-
ture the effects in the proximity of southern Africa. There-
fore, complementary customised climate predictors are de-
duced from correlation and composite analysis of SSTs in
the southern Atlantic and Indian oceans for drought in the
Limpopo Basin. SST is correlated with SSIDJFMAM of sta-
tion Chokwe, which has the largest basin of the stations. The
Spearman correlation coefficient ranges from −0.36 to 0.26
with a median of−0.08 (Fig. 4). The correlations can be con-
sidered low but a large share of the correlations is still signif-
icant given a large sample size of 724 observations (months).
Negative correlations are found in the northern Indian Ocean
and the Atlantic from 10◦ N to 30◦ S. They indicate that
warm anomalies are related to drought in the Chokwe signal.
Correlations are strong in the Gulf of Guinea and the cen-
tral southern Atlantic. Positive correlations are located in the
southern ocean regions dominated by the circumpolar cur-
rent. South of Cape Horn, small-scale random patterns are
found. At the Namibian and Angolan shorelines, a relatively
thin zone exhibits positive correlations as well, which might
be attributed to upwelling cold water from the Benguela Cur-
rent in the region.

The composite analysis for conditions preceding
SSIDJFMAM drought shows more restricted regions with
significant anomalies (Fig. 5). Droughts are associated with
positive anomalies in the north-western Indian Ocean during
the preceding October and November. During June and
July, positive anomalies occur in the south-eastern region
south of Madagascar. In the Atlantic, positive anomalies
are significant in the Gulf of Guinea at longer lead times of
10–12 months. In October, positive anomalies also appear
south of the African continent. Similar to the correlation
analysis, these show a high small-scale variability. This

ocean region is characterised by a complex system of
currents with upwelling cold water of the Benguela Current
in the west and the Agulhas warm water current in the
east, which collides with the South Atlantic Current. The
anomalies in the mixing region of the South Atlantic Current
and the Agulhas Current are very small and might be related
to warm- or cold-water eddies (see Fig. 1), which form
under the special conditions of the two mixing currents
(Peterson and Stramma, 1991). Due to the small extent of
the anomalies and the chaotic nature of the eddy formation,
these anomalies are not included as predictors. Nevertheless,
the currents themselves are represented by customised
predictors based on other ocean regions in the Indian
Ocean (predictor named “Agu”) and the southern Atlantic
(predictors named “SWAtl”, “SEAtl” and “BC” in Fig. 6).

As a result of the correlation and composite analysis, in to-
tal, 10 ocean regions are defined (see Table 4 and Fig. 6) and
potential SST predictor indices are calculated with three ag-
gregation levels (1, 3, 6 months), resulting in 30 customised
SST indices. The total set of potential predictors comprises
55 variables. Of these, 16 are well-known climate indices,
of which 14 are related to El Niño and SOI. In addition to
NAO, the influence of the Atlantic region is represented by
18 customised predictors (6 regions by 3 aggregation levels).
The Indian Ocean, represented by the climate index DMI, is
complemented by 12 additional customised predictors (4 re-
gions and 3 aggregations levels). Furthermore, there are three
predictors representing the antecedent catchment conditions
in the form of current standardised streamflow at aggregation
levels of 1, 3 and 6 months.

3.2 Inter-model comparison of predictor selection and
importance

MLM and ANN models consist of specifically reduced pre-
dictors sets, whereas RFOR relies on the complete predictor
set. Therefore, predictor selection frequencies are presented
for MLM only. Predictor importance is compared for MLM
and RFOR, for which different estimators of predictor im-
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Figure 5. Composites: anomalies of sea surface temperature preceding drought during DJFMAM (significant anomalies presented only.)

Table 4. Potential customised predictors from ocean regions tele-
connected to drought in the Limpopo Basin. Region selection is
based on correlation and composite analysis. Coordinates indicate
extents of the polygons (minimum, maximum).

Ocean region Latitude Longitude Abbreviation

Atlantic Ocean

Benguela Current −34, −6 −12, 13 BC
Southern African coast −38, −20 8, 25 SACoast
South-western −48, −40 −40, −15 SWAtl
South-eastern −48, −40 −15, 15 SEAtl
Gulf of Guinea −5, 7 −25, 12 GuiGulf
Guinea coast 7, 20 −40, −10 GuiCoast

Indian Ocean

Eastern equatorial −18, 2 75, 120 eeqIO
Western equatorial −10, 5 40, 60 weqIO
Agulhas Current −35, −20 28, 45 Agu
South of Madagascar −37, −27 45, 60 SMad

Figure 6. Regions of customised SST indices. Predictor region ab-
breviations are listed in Table 4.

portance exist: partial coefficient of determination and RFOR
predictor importance.

The proportion of selection of the predictors in the MLM
models (Fig. 7) shows which predictors are frequently part of
the final MLM (and ANN) models. Antecedent streamflow is
selected with highest frequency (Fig. 7), followed by several
customised indices of the Atlantic and DMI. The first of the
El Niño-related parameters (ENSO1.2) is in seventh place.
Every ENSO-related predictor has a selection frequency of
less than 0.21, which is rather low given the relevance of
ENSO in the region. The indices are based on different SST
ocean regions (ENSO 1.2, 3, 3.4) or are calculated based
on SLP (SOI); however, they are correlated and the indexes
might easily replace each other in different selection runs. As
a result, the proportion of selection might be low for specific
ENSO indices but not for the ENSO anomaly altogether. Ad-
ditional ENSO-related predictors are tested originating from
two different data sets: ERSST and OISST. ERSST would be
the recommended data set for time series modelling due to
its greater length of record. On the other hand, the OISST
data set is a shorter data set with higher quality achieved
by the inclusion of new and improved types of SST obser-
vations such as satellite imagery. However, the results show
that the ERSST ENSO indices are selected more often than
the OISST ENSO indices.

Collinearity between predictors might have affected
ENSO predictors, but also other factors such as DMI and
Darwin SLP, which show some correlation with ENSO sig-
nals. Darwin SLP was found to be superior to ENSO for
drought prediction in Zimbabwe by Manatsa et al. (2007).
Due to the correlation of these signals, they cannot be dis-
tinguished by a linear model as used here. However, Darwin
SLP is only selected in 12 % of the models, which does not
support the finding by Manatsa et al. (2007), since ENSO
predictors were selected more frequently.
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tomised Indian Ocean (red), NAO (blue), current streamflow (or-
ange), interactions of selected predictors (grey).

In fact, over all stations and lead times, ENSO-related pre-
dictors form the most important group of SST predictors. The
group includes ENSO indices but also SOI, as well as Dar-
win and Tahiti SLP. Predictors from this group are selected
in 80 % of the linear models (Fig. 8). The ENSO predictors’
contribution to overall explained variability differs widely
between models but the median is rather high with 41.2 %.
However, in contrast to the majority of stations, the stations
Hartbeeshoek, Beestekraal and Doorndraai show only a weak
or even absent effect of ENSO predictors (Fig. 8).

The customised predictors for the Atlantic are incorpo-
rated in many linear models (73 %) and the median of the
relative partial coefficients of determination reaches 31.8 %,
which is only slightly below the contribution of the ENSO
indices. The contribution is particularly strong at the stations
Glen Alpine and Botswana. Besides El Niño and ocean re-
gions in the Indian Ocean, parts of the Atlantic are also de-
scribed as an important factor for southern African rainfall
by Reason et al. (2006). In their study, the predictability of
rainfall is attributed to the influence of the Benguela Current
and the SST of the south-eastern Atlantic, which is related to
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Figure 8. Relative partial R2 by the predictors in the MLMs sum-
marised as follows: antecedent streamflow conditions, Indian Ocean
dipole mode index (DMI), El Niño–Southern Oscillation (ENSO)
indices, North Atlantic Oscillation index (NAO) and the customised
indices of the southern hemispheric Atlantic (Atlantic) and the In-
dian Ocean (Indian Ocean). Parameter interactions are excluded
from the plot and account for the white gaps. Stations are ordered
by catchment area from small (top left) to large (bottom right).

the South Atlantic Current. In addition, our results indicate a
connection to the SST of the Gulf of Guinea (GuiGulf) and
equatorial Atlantic (GuiCoast) (customised indices in Fig. 7).
The NAO index is also included in the MLM models, but
only at a rate of 18 %. The contribution of NAO to the ex-
plained variance is 13 % (median).

Antecedent streamflow (SSI_NOW) is selected in 55 % of
the linear models and is very important for many of them. In
half of the models where antecedent streamflow is included,
the predictor contributes at least 42 % of the explained vari-
ance (median rel. part. R2). The importance of antecedent
catchment state is supported by van Dijk et al. (2013), who
found that initial conditions provided most skill as opposed
to meteorological forcing in a forecasting experiment with a
global ensemble streamflow prediction system. Antecedent
streamflow is particularly prominent in smaller catchments
(Fig. 8). In statistical models, antecedent streamflow is a
common predictor which exploits signal autocorrelation that
is caused by the delayed rainfall–runoff response in the hy-
drological system (Robertson and Wang, 2012). As a param-
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eter representing catchment memory and other autocorrela-
tion properties, it could be expected that the importance of
the predictor decreases with higher lead times. This effect is
observed at stations Hartbeeshoek, Doorndraai, Krokodilriv-
ier and Naauwpoort, but the decrease is not strong. The most
obvious effect is present for a lead time of 12 months, where
antecedent streamflow is selected only in 4 of 16 stations.

The dipole mode index (DMI) of the Indian Ocean is se-
lected less often. Of all models, 22 % include the index as
predictor and its median share in the models’ explained vari-
ance is 20.1 %. This is of particular interest given the se-
lection rate of the customised indices of the Indian Ocean,
which reached 30 % with a median relative partitioned R2 of
0.15. The Indian Ocean predictors are selected particularly at
longer lead times. In short, DMI is seldom selected, but has
a comparatively high importance in the models.

The predictor importance of the MLM models differs
strongly between lead times and stations. Several cases ex-
hibit very different parameter selections than foregoing lead
times (for example, a lead time of 9 months of station Ri-
etvallei). These cases result in an impression of randomness
in predictor selection which might indicate that these obser-
vations are statistical artefacts. One possible reason might
be that, on the one hand, these statistical artefacts could oc-
cur when selection is performed under non-ideal conditions,
e.g. collinearity. On the other hand, different predictor con-
figurations might lead to very similar AIC/BIC values, but
only the model with the highest value is chosen. As a result,
the estimated predictor importance for the MLM models is
highly specific to the selected models and can be inconsis-
tent between lead times. In addition, it has to be kept in mind
that most of these models only achieve a low R2 below 0.3.
Therefore, a predictor reaching 10 % in relative partitioned
R2 at a total explained variance of only 30 % still only ex-
plains about 3 % and has very low influence on the forecast.
Thus, one should try to find the overarching pattern and not
overinterpret specific contributions at certain lead times.

In contrast, the results of the RFOR models can provide
a more general picture, as they always include all predictors
and use a randomisation process to estimate predictor impor-
tance, shown in Fig. 9. For the ease of comparability, Fig. 9
is designed similarly to the relative partial R2 of the MLMs
presented in Fig. 8, but it is important to note that the impor-
tance measures are different (see Sect. 2.7). RFOR predictor
importance shows the sensitivity of the model error to the
individual predictors. RFOR produces a more even pattern
of predictor importance than MLM. This is caused by the
fact that RFOR encompasses all predictors. The randomised
RFOR ensembles are then compared to single MLM realisa-
tions, which are bound to one specific selection.

The RFOR predictor importance shows four main dif-
ferences and two confirming features in comparison to the
MLM results. First, the Atlantic has a more constant and
stronger importance. Second, in contrast to the MLM results,
a stronger effect by the lead time is observed, for example, at
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Figure 9. Relative importance of predictors in the RFOR mod-
els grouped as follows: antecedent streamflow conditions, Indian
Ocean dipole mode index (DMI), El Niño–Southern Oscillation
(ENSO) indices, North Atlantic Oscillation index (NAO) and the
customised indices of the southern hemispheric Atlantic (Atlantic)
and the Indian Ocean (Indian Ocean). Stations are ordered increas-
ingly by catchment area from small (top left) to large (bottom right).

station Doorndraai, where the importance of streamflow de-
creases with higher lead times (Fig. 9). At several stations the
importance of the Atlantic Ocean predictors increases from a
lead time of 0 to 6 months and drops thereafter, which is also
observed in the MLM models. Third, the predictors from the
Indian Ocean are more important at all stations and are more
constant over all lead times. Fourth, ENSO predictors are less
important compared to the MLM models, where they are the
dominant predictor group.

The RFOR results confirm the major relevance of an-
tecedent streamflow at different lead times, and produces a
very similar pattern compared to relative partial R2 of the
MLMs, where streamflow is a strong predictor at stations
with smaller catchment areas. Furthermore, the effect of de-
creasing importance of streamflow with longer lead times
was strongest at the stations Naauwpoort and Doorndraai.
The results also confirm the lower value of NAO and DMI.
Overall, the customised SST indices in the Indian Ocean are
more emphasized and more persistent for all stations and lead
times compared to the MLM results. This might be an ef-
fect of the forced selection of only a single final MLM that
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Figure 10. Hindcasted time series of DJFMAM forecast models at a lead time of 1 month (November forecast) of stations Chokwe with low
skill, Hartbeeshoek with good skill and Loskop Noord with medium skill. The presented time series are the cross-validated, thus independent,
results of the MLM (light blue), ANN (dark blue) and RFOR (green) models. Observed standardised streamflow is shown by the underlying
black line.

causes the Indian Ocean indices to be dropped from some
models. However, it might also indicate that indices in the In-
dian Ocean in particular have a conditional relationship with
other indices, which could only be represented by RFOR and
not MLM. The low forecasting skill achieved by RFOR does
not encourage further investigation in this matter.

In summary, the study shows that customised SST indices
can contribute substantially and even outperform global cli-
mate indices in predictor importance. It is well known that
ENSO has an impact on drought occurrence in southern
Africa, but the strength of the relationship has been ques-
tioned since other indices like the Darwin SLP or DMI also
exhibit a strong – and supposedly stronger – influence as
suggested by Manatsa et al. (2007). Distinguishing the im-
portance of these correlated predictors is difficult but our re-
sults do not strengthen that finding. In our study, DMI and
Darwin do not exceed the importance achieved by ENSO.
Instead, specifically customised indices in the Atlantic and
Indian oceans show good potential in statistical drought fore-
casting. There is no doubt about the strong effect of ENSO
on global circulation patterns. However, our study suggests
that predictability studies are advised to create customised
indices that refer to the drought-specific SST anomalies in
the region surrounding the area of interest to supplement the
global indices. By doing so, it is more likely to capture all
factors leading to drought events.

3.3 Forecast skill for drought early warning

The forecast skills vary widely between stations, models,
lead times and time periods. For example, the forecast of
the largest subcatchment (station Chokwe) achieves low skill
(see Fig. 10). A few drought events are forecasted well at a

lead time of 1 month (e.g. 1974), but often event magnitudes
are not met (after 2000) or overestimated (several events be-
tween 1977 and 2000). The forecast of Hartbeeshoek at the
same lead time presents a more promising picture, where
models are able to represent the long-term variability of the
streamflow but the inter-annual variation is overestimated by
the models. The forecast at the station Loskop Noord is of
medium skill where, for example, the dry period during the
mid-1990s is forecasted but several other extreme events are
not. These three examples give an impression of the range of
forecast results achieved by a lead time of 1 month.

The forecast skill can be assessed in many ways (Wilks,
2006), both deterministically and probabilistically. In this
study, the skill of the different forecast models is determin-
istically evaluated with the leave-one-out cross-validation
NSE, and probabilistically with the ROC score. The former
measures the accuracy in forecasting the exact deterministic
SSI value, whereas the latter assesses the discriminative skill
of a probabilistic drought forecast in early warning mode.

An analysis of the deterministic skill for all stations and
lead times, using LOO-CV NSE, reveals that MLM produces
the most robust forecasts and achieves the highest forecast
skills with a maximum of 0.73 and a median of 0.30 (Fig. 11).
The maximum skill reached by the ANN is a little bit lower
with 0.61 but the median is very low with 0.03 which is
caused by the absent skill at many stations. The ANN fore-
casts only achieved considerable skill at the stations Naauw-
poort, Hartbeeshoek, Krokodilrivier, and a few more cases.
The ANN models strongly suffer from overfitting. Regard-
less of the number of hidden neurons, the difference between
fit and cross-validated error is higher than for MLM (data not
shown). Employing ANN with the predictors selected for the
MLM does not lead to improved forecast skill in this study.
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Figure 11. Validation of DJFMAM drought forecasts with LOO-CV Nash–Sutcliffe model efficiency: MLMs (bright blue), ANNs (dark
blue) and RFORs (green). Stations are ordered increasingly by catchment area from small (top left) to large (bottom right).

At stations Naauwpoort and Hartbeeshoek the predictabil-
ity by all model systems is highest. The model skill shows
strong inter-station variability, which is not unusual in
streamflow forecasting (Robertson and Wang, 2012). While
MLM achieves skills like it does in Naauwpoort and Hart-
beeshoek at a few more stations, ANN and RFOR only rarely
reach that level. The skill is highest in the smaller sub-basins
(upper two rows of Fig. 11) and lowest in the bigger catch-
ments (lower two rows of Fig. 11).

The skill of the probabilistic drought forecasts is analysed
with the ROC score presented in Fig. 12. The forecasts have
more skill than a climatological forecast, i.e. ROC> 0.5, at
almost all stations and lead times. As in the deterministic
evaluation, skill levels vary strongly between stations. Pre-
diction skill decreases with higher lead times at most stations.
The reduction in skill is most pronounced for the longest lead
times of 9 and 12 months. Exceptions to this are the stations
Beestekraal and Hartbeeshoek having almost constant skill at
all lead times. The skill at stations Buffelspoort and Chokwe
is generally at a lower level and exhibits an unusual pattern
where longer lead times have higher skill.

The three statistical methods achieve different median
ROC scores. When models are ranked per station and lead
time, the majority of first ranks is achieved by MLM mod-
els, most second ranks are ANNs and most third ranks are
RFOR models (73, 63 and 63 % of the models per rank, re-
spectively). MLM often reaches the highest skill and is there-
fore ranked in first place, but it has to be noted that often the
differences are minor. Also, there are a few instances where
this pattern does not hold. For example, RFOR is much more
skilful in forecasting station Chokwe at lead times of 0, 1

and 2 months. These results are similar to the strong inter-
station variability found by Robertson and Wang (2012) in a
streamflow forecast study for Australian catchments.

Another interesting feature of the results is the variability
of the error bars associated to the ROC scores. The error bars
are derived by resampling the hindcast series and indicate the
influence of individual observations on the robustness of the
model predictions. It can be seen that for stations with gener-
ally good skill the errors are also small, while for the stations
with lower skill the errors tend to be larger. Large errors in-
dicate that a few observations have strong influence on the
forecast skill, implying that drought forecasts in these basins
are generally difficult with the presented models. A likely
explanation for this is the limited length of the observation
data time series. For stations with large errors, the observa-
tions might not be representative for the underlying real dis-
tribution of discharges; thus, robust forecast models cannot
be achieved.

Relating the ROC skill with the selected predictors reveals
that stations with high ROC scores coincide with a high in-
fluence of antecedent streamflow. This is an indication that
catchment conditions play an important role for both the de-
velopment and predictability of droughts. Interestingly, our
results show a much higher skill in forecasting droughts in
smaller catchments. This might be explained by the degree
of human interferences. A plausible hypothesis is that the
degree of human interference with streamflow is lower in
smaller catchments. The low prediction skill in large catch-
ments might be related to the complexity of the large catch-
ments, where many dams, irrigation schemes and ground-
water extractions interact and thus cause lower predictabil-
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Figure 12. Validation of DJFMAM drought forecasts with ROC scores: ANNs (dark blue), MLMs (bright blue) and RFORs (green). Bars
indicate median ROC scores, error bars show bootstrapped 0.95 confidence intervals of the scores. Stations are ordered increasingly by
catchment area from small (top left) to large (bottom right).

ity with the adopted methods. Another reason for the better
forecast skill for smaller catchments might be a regional bias,
since most of the smaller headwater catchments are located
in the south of the Limpopo Basin. A definite answer must
be left for further analyses focussing on the role of human
interferences in the Limpopo Basin.

In order to evaluate the forecast skill of the proposed mod-
els in relation to other approaches, a benchmark forecasting
system would be necessary, but is not available. However,
Dutra et al. (2013) published seasonal forecasts of SPI-6 for
the Limpopo (Chokwe sub-basin) but did not present ROC
scores specific for a SPIDJFMAM forecast in December and
earlier. The studies’ lead times correspond to lead times −1
to −5 according to the definition used here (see Table 3) and
result in forecasts issued in January–May. The forecast skill
(ROC scores) in Dutra et al. (2013) decreases strongly ap-
proaching 0.5 (no skill) at a lead time corresponding to Jan-
uary for the SPIDJFMAM forecast (Fig. 13). In comparison,
the results presented here for hydrological drought forecast-
ing exceed the skills of the highest presented lead time in
Dutra et al. (2013), as does station Chokwe, which covers
the same area. It has to be noted, though, that Dutra et al.
(2013) present continuous forecasts for all months of a year,
and intra-annual variation of predictability is not shown.

In summary, there is reason to regard the seasonal predic-
tion of hydrological droughts in the Limpopo Basin as chal-
lenging. For example, the resulting NSE is on a low level
at most stations. In addition, the achieved skill of the MLM
models sometimes appear random despite the thorough mod-

Figure 13. ROC scores of seasonal forecasts of SPI-6 of the
Limpopo Basin by Dutra et al. (2013). Lead times have been de-
fined differently in the following way: the lead time represents
the number of months before the last of the 6 months of SPI-6,
meaning a lead time of 0 months would correspond to a forecast
of SPIDJFMAM in May; hence, a lead time of 5 months would be
equivalent to a lead time of 0 months in this study. The lines indi-
cate different precipitation data sets. (Source: Fig. 11d from Dutra
et al., 2013.)

elling design. For example, the selected predictor combina-
tions can change completely from one lead time to the other.
Although this might be an artefact caused by the collinear-
ity of the predictors and the crisp selection of the predictors
(Sect. 3.2), these results indicate a generally low predictabil-
ity of SSIDJFMAM at the lead times presented here. The pre-
dictability as tested in this study can build on meteorologi-
cal influences, for example, sequences of weather patterns,
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represented by SST anomalies. The hydrological influences,
for example, catchment memory effects, are represented by
antecedent streamflow. The hydrological signal contained in
the streamflow series, however, is composed of many more
influencing factors than these (hydrological processes and
anthropogenic interference, in particular). Hence, only a mi-
nor part of the signal contained in the streamflow series is
predictable by the adopted methods. Therefore, the forecasts
exhibit a high uncertainty, a part of which is naturally high
given the long lead times and represents the aleatory part of
the uncertainty. Furthermore, streamflow observation in gen-
eral is subject to high uncertainty. Yet, a considerable part
of the uncertainty is epistemic, i.e. it is likely to be reduced
by model improvements or additional data. There are several
factors unaccounted for that could reduce the epistemic er-
ror. Examples are the introduction of anthropogenic interfer-
ence with streamflow (abstraction, storage) or the introduc-
tion of further hydrological and meteorological parameters.
These factors heavily influence the hydrology in some parts
of the Limpopo Basin, where massive abstractions take place
or where inter- and intra-basin water transfer schemes are fa-
cilitated. Considerable parts of these influences were increas-
ing over the last decades, adding to the non-stationarity of
the analysed streamflow signals. Therefore, despite all these
unaccounted factors and the generally low forecast skill, the
results represent respectable skill at high lead times at several
locations within the Limpopo Basin.

4 Conclusions

This study presents the predictability of hydrological
droughts in the Limpopo Basin, transferring methodologies
predominantly used in meteorology to hydrology. The re-
sults show that hydrological drought in the Limpopo can be
predicted based on climate indices, SST teleconnections and
antecedent streamflow, although the predictability varies be-
tween catchments and lead times. Seasonal forecasting is a
demanding task in a catchment with very high anthropogenic
interference with the hydrological processes. Nevertheless,
seasonal to annual predictability is still present in the stream-
flow signal, which is shown by forecasting skills that exceed
climatology. This study has four main findings.

First, although standardised indices are less common in
hydrology than in meteorology, we recommend their use
in hydrological drought studies. Our results show massive
inter-station differences in achieved skill, reaching up to 0.73
(NSE) at a 1-month lead time, which indicates that seasonal
forecasting standardised streamflow with statistical methods
can prove to be successful. At some stations skill is present
up to a 12-month lead time, but many stations (larger catch-
ments in particular) only achieve little skill. However, fore-
casting SSI enables a better identification of droughts using
a common drought definition in basins of different character-
istics and size.

Second, the most important climate predictors are ENSO-
related as well as customised drought predictors in the south-
ern Atlantic based on sea surface temperatures. In addition
to the climate indicators, antecedent streamflow as a proxy
for catchment state proves to be another important predictor.
Regarding antecedent catchment conditions, the catchments
are separated in two groups: one group with a strong im-
portance of antecedent streamflow and comparatively high
forecast skill and one with low (or absent) influence and
lower forecast skill. Most smaller catchments fell in the first
group. The reason for that pronounced effect could not be an-
swered in this study and must be left for future work. Possi-
ble causes are the degree of human interference in the catch-
ments, which is likely to be lower in smaller catchments, or
a regional bias in the predictability caused by climatology.
However, the importance of antecedent streamflow under-
lines the relevance of catchment conditions for hydrological
drought prediction.

Third, the best forecasting skill within this study is
achieved with multiple linear models. Based on the results
of the cross validation, linear relationships are more robust
than the nonlinear models derived by artificial neural net-
works and random forest methods. ANNs and RFORs are
likely to suffer from overfitting of the models, which is in
turn a consequence of the limited data set used for training.
These results are specific to this region and data set, but they
underline the necessity to benchmark more advanced meth-
ods with simple methods.

Fourth, in order to determine a forecast’s value for early
warning, a thorough forecast system verification is imper-
ative. Verification must incorporate both the deterministic
properties using, e.g. the NSE and the probabilistic proper-
ties using skill scores like ROCs. The deterministic forecast
skill shown by NSE is low at many stations, but the analysis
of the discrimination properties of the probabilistic forecast
shows that the forecasts still exceeds a pure climatological
forecast and therefore should not be neglected. Up to now,
climatology as a benchmark is adequate, since water man-
agement in the basin is typically relying on it instead of sea-
sonal forecasting as a basis for decision making.

This study shows that hydrological drought can be pre-
dicted using statistical methods and teleconnection indices
and catchment condition as parameters. The methods can
be applied in places with available observed streamflow. It
is useful when station-specific forecasts have value for wa-
ter management and decision makers. Its simplicity and low
computational demand make it even adoptable as a cus-
tomised forecast system at an end-user level for dam or sub-
basin management. Thus, it is suited for a bottom-up early
warning system at the local level, where decisions are set in
action.
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5 Data availability

The research data underlying this study are mostly publicly
accessible and free of charge for research purposes. However,
the authors do not have the right to redistribute the data.

Input runoff data and dam capacities of South Africa were
accessed directly from the data base of the department of wa-
ter affairs (DWAF) hydrology section. A reference publica-
tion could not be found but the data is available from this web
page: https://www.dwa.gov.za/hydrology/.

Further runoff data was acquired from the Global
Runoff Data Base by the Global Runoff Data Centre. In-
put runoff data of GRDC is freely available on request,
but cannot be downloaded directly, hence here is only
the link to the webpage, an official publication and doi
is not available: http://www.bafg.de/GRDC/EN/01_GRDC/
13_dtbse/database_node.html

The SST data set HadISST1.1 (Rayner et al., 2003),
which was used for the creating of customized SST in-
dexes, is available from http://hadobs.metoffice.com/hadisst/
data/download.html (doi:10.1029/2002JD002670).

Catchment outlines and were created using the data set
HYDROSHEDS, which is available from: http://hydrosheds.
cr.usgs.gov/dataavail.php. Various atmospheric indeces were
acquired from the National Oceanic and Atmospheric Ad-
ministration (NOAA).

Furthermore, several atmosheric indeces were collected
from the NOAA webpage and others.

This is the complete list including variable/data set and its
source.

– Southern Oscillation Index (SOI),
Climate Prediction Center of NOAA:
ftp://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/soi

– Darwin sea level pressure,
Climate Prediction Center of NOAA:
http://www.cpc.ncep.noaa.gov/data/indices/darwin

– Tahiti sea level pressure,
Climate Prediction Center of NOAA:
http://www.cpc.ncep.noaa.gov/data/indices/tahiti

– ENSO indices (ERSST),
Climate Prediction Center of NOAA:
http://www.cpc.ncep.noaa.gov/data/indices/

– ENSO indices (OISST),
Climate Prediction Center of NOAA:
http://www.cpc.ncep.noaa.gov/data/indices/

– North Atlantic Oscillation (NAO),
Climate Prediction Center of NOAA:
ftp://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/

– Indian Ocean Dipole Mode Index (DMI),
derived from NOAA OISST 2 by JAMSTEC:
http://www.jamstec.go.jp/frcgc/research/d1/iod/DATA/

– Oceanic Nino Index (ONI),
based on ERSST.v3b of Climate Prediction Center of
NOAA:
http://www.cpc.ncep.noaa.gov/products/analysis

– Trans Nino Index (TNI),
HadSST1.1 (until November 1981) and NCEP NOAA
OI:
http://www.esrl.noaa.gov/psd/gcos wgsp/Timeseries/

– NINO3.4 (HadSST),
Physical Sciences Division of NOAA:
http://www.esrl.noaa.gov/psd/gcos wgsp/Timeseries/
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