Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Volume 17, issue 4
Hydrol. Earth Syst. Sci., 17, 1401–1414, 2013
https://doi.org/10.5194/hess-17-1401-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 17, 1401–1414, 2013
https://doi.org/10.5194/hess-17-1401-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 12 Apr 2013

Research article | 12 Apr 2013

Flood-initiating catchment conditions: a spatio-temporal analysis of large-scale soil moisture patterns in the Elbe River basin

M. Nied, Y. Hundecha, and B. Merz M. Nied et al.
  • Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam, Germany

Abstract. Floods are the result of a complex interaction between meteorological event characteristics and pre-event catchment conditions. While the large-scale meteorological conditions have been classified and successfully linked to floods, this is lacking for the large-scale pre-event catchment conditions. Therefore, we propose classifying soil moisture as a key variable of pre-event catchment conditions and investigating the link between soil moisture patterns and flood occurrence in the Elbe River basin. Soil moisture is simulated using a semi-distributed conceptual rainfall-runoff model over the period 1951–2003. Principal component analysis (PCA) and cluster analysis are applied successively to identify days of similar soil moisture patterns. The results show that PCA considerably reduced the dimensionality of the soil moisture data. The first principal component (PC) explains 75.71% of the soil moisture variability and represents the large-scale seasonal wetting and drying. The successive PCs express spatially heterogeneous catchment processes. By clustering the leading PCs, we identify large-scale soil moisture patterns which frequently occur before the onset of floods. In winter, floods are initiated by overall high soil moisture content, whereas in summer the flood-initiating soil moisture patterns are diverse and less stable in time.

Publications Copernicus
Download
Citation