Articles | Volume 21, issue 3
https://doi.org/10.5194/hess-21-1527-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-21-1527-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Anthropogenic wetlands due to over-irrigation of desert areas: a challenging hydrogeological investigation with extensive geophysical input from TEM and MRS measurements
Ahmad Ali Behroozmand
CORRESPONDING AUTHOR
Department of Geophysics, Stanford University, Stanford, CA, USA
Pietro Teatini
Department of Civil, Environmental and Architectural Engineering,
University of Padua, Padua, Italy
Consorzio Universitario per la Ricerca Socioeconomica e per
l'Ambiente (CURSA), Rome, Italy
Jesper Bjergsted Pedersen
Department of Geoscience, Aarhus University, Aarhus, Denmark
Esben Auken
Department of Geoscience, Aarhus University, Aarhus, Denmark
Omar Tosatto
Mathematical Methods and Models for Engineering (M3E s.r.l.), Padua, Italy
Anders Vest Christiansen
Department of Geoscience, Aarhus University, Aarhus, Denmark
Related authors
No articles found.
Hafsa Mahmood, Ty P. A. Ferré, Raphael J. M. Schneider, Simon Stisen, Rasmus R. Frederiksen, and Anders V. Christiansen
EGUsphere, https://doi.org/10.5194/egusphere-2023-1872, https://doi.org/10.5194/egusphere-2023-1872, 2023
Preprint withdrawn
Short summary
Short summary
Temporal drain flow dynamics and understanding of their underlying controlling factors are important for water resource management in tile-drained agricultural areas. This study examine whether simpler, more efficient machine learning (ML) models can provide acceptable solutions compared to traditional physics based models. We predicted drain flow time series in multiple catchments subject to a range of climatic and landscape conditions.
Muhammad Rizwan Asif, Nikolaj Foged, Thue Bording, Jakob Juul Larsen, and Anders Vest Christiansen
Earth Syst. Sci. Data, 15, 1389–1401, https://doi.org/10.5194/essd-15-1389-2023, https://doi.org/10.5194/essd-15-1389-2023, 2023
Short summary
Short summary
To apply a deep learning (DL) algorithm to electromagnetic (EM) methods, subsurface resistivity models and/or the corresponding EM responses are often required. To date, there are no standardized EM datasets, which hinders the progress and evolution of DL methods due to data inconsistency. Therefore, we present a large-scale physics-driven model database of geologically plausible and EM-resolvable subsurface models to incorporate consistency and reliability into DL applications for EM methods.
Hilary A. Dugan, Peter T. Doran, Denys Grombacher, Esben Auken, Thue Bording, Nikolaj Foged, Neil Foley, Jill Mikucki, Ross A. Virginia, and Slawek Tulaczyk
The Cryosphere, 16, 4977–4983, https://doi.org/10.5194/tc-16-4977-2022, https://doi.org/10.5194/tc-16-4977-2022, 2022
Short summary
Short summary
In the McMurdo Dry Valleys of Antarctica, a deep groundwater system has been hypothesized to connect Don Juan Pond and Lake Vanda, both surface waterbodies that contain very high concentrations of salt. This is unusual, since permafrost in polar landscapes is thought to prevent subsurface hydrologic connectivity. We show results from an airborne geophysical survey that reveals widespread unfrozen brine in Wright Valley and points to the potential for deep valley-wide brine conduits.
Pradip Kumar Maurya, Frederik Ersted Christensen, Masson Andy Kass, Jesper B. Pedersen, Rasmus R. Frederiksen, Nikolaj Foged, Anders Vest Christiansen, and Esben Auken
Hydrol. Earth Syst. Sci., 26, 2813–2827, https://doi.org/10.5194/hess-26-2813-2022, https://doi.org/10.5194/hess-26-2813-2022, 2022
Short summary
Short summary
In this paper, we present an application of the electromagnetic method to image the subsurface below rivers, lakes, or any surface water body. The scanning of the subsurface is carried out by sailing an electromagnetic sensor called FloaTEM. Imaging results show a 3D distribution of different sediment types below the freshwater lakes. In the case of saline water, the system is capable of identifying the probable location of groundwater discharge into seawater.
M. Andy Kass, Esben Auken, Jakob Juul Larsen, and Anders Vest Christiansen
Geosci. Instrum. Method. Data Syst., 10, 313–323, https://doi.org/10.5194/gi-10-313-2021, https://doi.org/10.5194/gi-10-313-2021, 2021
Short summary
Short summary
We have developed a towed magnetic gradiometer system for rapid acquisition of magnetic and magnetic gradient maps. This high-resolution system is flexible and has applications to utility detection, archaeology, unexploded ordnance, or any other applications where high-resolution maps of the magnetic field or gradient are required. Processing of the data has been simplified as much as possible to facilitate rapid results and interpretations.
Krista F. Myers, Peter T. Doran, Slawek M. Tulaczyk, Neil T. Foley, Thue S. Bording, Esben Auken, Hilary A. Dugan, Jill A. Mikucki, Nikolaj Foged, Denys Grombacher, and Ross A. Virginia
The Cryosphere, 15, 3577–3593, https://doi.org/10.5194/tc-15-3577-2021, https://doi.org/10.5194/tc-15-3577-2021, 2021
Short summary
Short summary
Lake Fryxell, Antarctica, has undergone hundreds of meters of change in recent geologic history. However, there is disagreement on when lake levels were higher and by how much. This study uses resistivity data to map the subsurface conditions (frozen versus unfrozen ground) to map ancient shorelines. Our models indicate that Lake Fryxell was up to 60 m higher just 1500 to 4000 years ago. This amount of lake level change shows how sensitive these systems are to small changes in temperature.
Alexis Neven, Pradip Kumar Maurya, Anders Vest Christiansen, and Philippe Renard
Earth Syst. Sci. Data, 13, 2743–2752, https://doi.org/10.5194/essd-13-2743-2021, https://doi.org/10.5194/essd-13-2743-2021, 2021
Short summary
Short summary
The shallow underground is constituted of sediments that present high spatial variability. This upper layer is the most extensively used for resource exploitation (groundwater, geothermal heat, construction materials, etc.). Understanding and modeling the spatial variability of these deposits is crucial. We present a high-resolution electrical resistivity dataset that covers the upper Aare Valley in Switzerland. These data can help develop methods to characterize these geological formations.
Rasmus Bødker Madsen, Hyojin Kim, Anders Juhl Kallesøe, Peter B. E. Sandersen, Troels Norvin Vilhelmsen, Thomas Mejer Hansen, Anders Vest Christiansen, Ingelise Møller, and Birgitte Hansen
Hydrol. Earth Syst. Sci., 25, 2759–2787, https://doi.org/10.5194/hess-25-2759-2021, https://doi.org/10.5194/hess-25-2759-2021, 2021
Short summary
Short summary
The protection of subsurface aquifers from contamination is an ongoing environmental challenge. Some areas of the underground have a natural capacity for reducing contaminants. In this research these areas are mapped in 3D along with information about, e.g., sand and clay, which indicates whether contaminated water from the surface will travel through these areas. This mapping technique will be fundamental for more reliable risk assessment in water quality protection.
Jakob Juul Larsen, Stine Søgaard Pedersen, Nikolaj Foged, and Esben Auken
Geosci. Instrum. Method. Data Syst., 10, 81–90, https://doi.org/10.5194/gi-10-81-2021, https://doi.org/10.5194/gi-10-81-2021, 2021
Short summary
Short summary
The transient electromagnetic method (TEM) is widely used for mapping subsurface resistivity structures, but data are inevitably contaminated by noise from various sources including radio signals in the very low frequency (VLF) 3–30 kHz band. We present an approach where VLF noise is effectively suppressed with a new post-processing scheme where boxcar gates are combined into semi-tapered gates. The result is a 20 % increase in the depth of investigation for the presented test survey.
Huijun Li, Lin Zhu, Gaoxuan Guo, Yan Zhang, Zhenxue Dai, Xiaojuan Li, Linzhen Chang, and Pietro Teatini
Nat. Hazards Earth Syst. Sci., 21, 823–835, https://doi.org/10.5194/nhess-21-823-2021, https://doi.org/10.5194/nhess-21-823-2021, 2021
Short summary
Short summary
We propose a method that integrates fuzzy set theory and a weighted Bayesian model to evaluate the hazard probability of land subsidence based on Interferometric Synthetic Aperture Radar technology. The proposed model can represent the uncertainty and ambiguity in the evaluation process, and results can be compared to traditional qualitative methods.
Claudia Zoccarato, Torbjörn E. Törnqvist, Pietro Teatini, and Jonathan G. Bridgeman
Proc. IAHS, 382, 565–570, https://doi.org/10.5194/piahs-382-565-2020, https://doi.org/10.5194/piahs-382-565-2020, 2020
Roberto Tomás, José Luis Pastor, Marta Béjar-Pizarro, Roberta Bonì, Pablo Ezquerro, José Antonio Fernández-Merodo, Carolina Guardiola-Albert, Gerardo Herrera, Claudia Meisina, Pietro Teatini, Francesco Zucca, Claudia Zoccarato, and Andrea Franceschini
Proc. IAHS, 382, 353–359, https://doi.org/10.5194/piahs-382-353-2020, https://doi.org/10.5194/piahs-382-353-2020, 2020
Pietro Teatini, Cristina Da Lio, Luigi Tosi, Alessandro Bergamasco, Stefano Pasqual, Paolo Simonini, Veronica Girardi, Paolo Zorzan, Claudia Zoccarato, Massimiliano Ferronato, Marcella Roner, Marco Marani, Andrea D'Alpaos, Simonetta Cola, and Giuseppe Zambon
Proc. IAHS, 382, 345–351, https://doi.org/10.5194/piahs-382-345-2020, https://doi.org/10.5194/piahs-382-345-2020, 2020
Short summary
Short summary
An in-situ loading test was carried out in the Lazzaretto Nuovo salt-marsh in the Venice Lagoon, Italy. The test was aimed at characterizing the geotechnical properties of soils forming the marsh sedimentary body deposits. In fact porosity and compressibility are of paramount importance to quantify consolidation versus accretion and relative sea level rise. The fate of coastal marshlands in the next future will strongly depend of these processes.
Roberta Bonì, Claudia Meisina, Pietro Teatini, Francesco Zucca, Claudia Zoccarato, Andrea Franceschini, Pablo Ezquerro, Marta Béjar-Pizarro, José A. Fernández-Merodo, Carolina Guardiola-Albert, José L. Pastor, Roberto Tomás, and Gerardo Herrera
Proc. IAHS, 382, 409–414, https://doi.org/10.5194/piahs-382-409-2020, https://doi.org/10.5194/piahs-382-409-2020, 2020
Short summary
Short summary
The potential of the integrated use of A-DInSAR data and 3D groundwater flow and geomechanical models to capture and assess aquifer dynamics is performed. The approach has been applied to investigate the response during and after pumping of a portion of the Madrid aquifer. The short time delay (about one month) between the groundwater pumping and the system response (land displacements) are likely due to a minor role played by the clayey layers.
Laura Gazzola, Massimiliano Ferronato, Matteo Frigo, Pietro Teatini, Claudia Zoccarato, Anna Antonia Irene Corradi, Maria Carolina Dacome, Ernesto Della Rossa, Michela De Simoni, and Stefano Mantica
Proc. IAHS, 382, 457–462, https://doi.org/10.5194/piahs-382-457-2020, https://doi.org/10.5194/piahs-382-457-2020, 2020
Massimiliano Ferronato, Matteo Frigo, Laura Gazzola, Pietro Teatini, and Claudia Zoccarato
Proc. IAHS, 382, 83–87, https://doi.org/10.5194/piahs-382-83-2020, https://doi.org/10.5194/piahs-382-83-2020, 2020
Short summary
Short summary
The regular monitoring of radioactive marker positions along a vertical borehole can provide in-situ measurements of deep rock compaction. Developed in the ‘70s, in recent years the effectiveness of this technology has been often debated. The present communication analyses the state of the art of the radioactive marker technique and provides a critical review on the role that these measurements might play in the future evolution of land subsidence monitoring and modelling.
Luigi Bruno, Bruno Campo, Bianca Costagli, Esther Stouthamer, Pietro Teatini, Claudia Zoccarato, and Alessandro Amorosi
Proc. IAHS, 382, 285–290, https://doi.org/10.5194/piahs-382-285-2020, https://doi.org/10.5194/piahs-382-285-2020, 2020
Short summary
Short summary
The effects of land subsidence could be devastating on heavily settled coastal plains. In a scenario of sea-level rise, high costs are expected to protect coastal cities and touristic hotspots and to keep drained reclaimed lands. In this work, we calculated subsidence rates (SR) in the Po coastal plain, over the last 5.6 and 120 thousand years, providing information about land movements before human intervention became the main driver of subsidence, through water and gas withdrawal.
Luigi Tosi, Cristina Da Lio, Sandra Donnici, Tazio Strozzi, and Pietro Teatini
Proc. IAHS, 382, 689–695, https://doi.org/10.5194/piahs-382-689-2020, https://doi.org/10.5194/piahs-382-689-2020, 2020
Short summary
Short summary
The Venice coastland forms the major low-lying area in Italy and encompasses a variety of environments, such as farmlands, estuaries, deltas, lagoons and urbanized areas. Since most of the territory lies at a ground elevation below or slightly above the mean sea-level, also a few mm/yr of land subsidence can seriously impacts on the coastal system. In this study, we present an analysis of the vulnerability to relative sea-level rise (RSLR) considering an uneven land subsidence distribution.
Matteo Frigo, Massimiliano Ferronato, Laura Gazzola, Pietro Teatini, Claudia Zoccarato, Massimo Antonelli, Anna Antonia Irene Corradi, Maria Carolina Dacome, Michela De Simoni, and Stefano Mantica
Proc. IAHS, 382, 449–455, https://doi.org/10.5194/piahs-382-449-2020, https://doi.org/10.5194/piahs-382-449-2020, 2020
Short summary
Short summary
The numerical prediction of land subsidence above producing reservoirs can be affected by a number of uncertainties due to several factors. In this work, we use a Bayesian approach to reduce the initial uncertainties about the mechanical parameters in order to improve the reliability of land subsidence predictions.
The numerical results obtained in an experiment on a real-world gas field confirms that is a valuable and effective approach.
Giovanni Isotton, Pietro Teatini, Raffaele Stefanelli, Massimiliano Ferronato, Carlo Janna, Matteo Cerri, and Timur Gukov
Proc. IAHS, 382, 475–480, https://doi.org/10.5194/piahs-382-475-2020, https://doi.org/10.5194/piahs-382-475-2020, 2020
Mariano Cerca, Dora Carreón-Freyre, and Pietro Teatini
Proc. IAHS, 382, 433–436, https://doi.org/10.5194/piahs-382-433-2020, https://doi.org/10.5194/piahs-382-433-2020, 2020
Short summary
Short summary
This work reports results of experiments made in analogue materials reproducing the occurrence and propagation of fractures associated with land subsidence driven by groundwater pumping. We compare the physical experimental model results with a numerical model that tests the development of stresses above a bedrock ridge that forms the base of an aquifer.
Yueting Li, Matteo Frigo, Yan Zhang, Lin Zhu, Massimiliano Ferronato, Carlo Janna, Xulong Gong, Jun Yu, Pietro Teatini, and Shujun Ye
Proc. IAHS, 382, 511–514, https://doi.org/10.5194/piahs-382-511-2020, https://doi.org/10.5194/piahs-382-511-2020, 2020
Pietro Teatini, Claudia Zoccarato, Massimiliano Ferronato, Andrea Franceschini, Matteo Frigo, Carlo Janna, and Giovanni Isotton
Proc. IAHS, 382, 539–545, https://doi.org/10.5194/piahs-382-539-2020, https://doi.org/10.5194/piahs-382-539-2020, 2020
Short summary
Short summary
A critical issue concerning geomechanical safety for underground gas storage in compartmentalized reservoirs is fault reactivation. An in-depth modelling investigation was carried out for the typical UGS geological setting and operations in the Netherlands. The specific goals of the study are explaining the mechanisms responsible for seismic events unexpectedly recorded during UGS phases and understanding which are the critical factors that increase the probability of fault reactivation.
Lichao Liu, Denys Grombacher, Esben Auken, and Jakob Juul Larsen
Geosci. Instrum. Method. Data Syst., 8, 1–11, https://doi.org/10.5194/gi-8-1-2019, https://doi.org/10.5194/gi-8-1-2019, 2019
Short summary
Short summary
This paper introcudes the design workflow and test approaches of a surface-NMR receiver. But the method and technqiues, for instance, signal loop, acqusition board, GPS synchronization, and Wi-Fi network, could also be employed in other geophysical instruments.
Adrian A. S. Barfod, Troels N. Vilhelmsen, Flemming Jørgensen, Anders V. Christiansen, Anne-Sophie Høyer, Julien Straubhaar, and Ingelise Møller
Hydrol. Earth Syst. Sci., 22, 5485–5508, https://doi.org/10.5194/hess-22-5485-2018, https://doi.org/10.5194/hess-22-5485-2018, 2018
Short summary
Short summary
The focus of this study is on the uncertainty related to using multiple-point statistics (MPS) for stochastic modeling of the upper 200 m of the subsurface. The main research goal is to showcase how MPS methods can be used on real-world hydrogeophysical data and show how the uncertainty related to changing the underlying MPS setup propagates into the finalized 3-D subsurface models.
Adrian A. S. Barfod, Ingelise Møller, Anders V. Christiansen, Anne-Sophie Høyer, Júlio Hoffimann, Julien Straubhaar, and Jef Caers
Hydrol. Earth Syst. Sci., 22, 3351–3373, https://doi.org/10.5194/hess-22-3351-2018, https://doi.org/10.5194/hess-22-3351-2018, 2018
Short summary
Short summary
Three-dimensional geological models are important to securing and managing groundwater. Such models describe the geological architecture, which is used for modeling the flow of groundwater. Common geological modeling approaches result in one model, which does not quantify the architectural uncertainty of the geology.
We present a comparison of three different state-of-the-art stochastic multiple-point statistical methods for quantifying the geological uncertainty using real-world datasets.
Luigi Tosi, Cristina Da Lio, Pietro Teatini, Antonio Menghini, and Andrea Viezzoli
Proc. IAHS, 379, 387–392, https://doi.org/10.5194/piahs-379-387-2018, https://doi.org/10.5194/piahs-379-387-2018, 2018
Short summary
Short summary
We have depicted the continental and marine surficial water–groundwater interactions in a large portion of the coastland encompassing the southern Venice lagoon and the northern Po river delta. The saltwater-fresh water transition zone is very irregularly-shaped and mainly depends on the morphologic setting and the subsoil architecture. An over-consolidated Pleistocene clay layer and buried Holocene sandy paleo-channels and paleo-ridge systems controlled the
saltwater-fresh water exchanges.
Pietro Teatini, Giovanni Isotton, Stefano Nardean, Massimiliano Ferronato, Annamaria Mazzia, Cristina Da Lio, Luca Zaggia, Debora Bellafiore, Massimo Zecchin, Luca Baradello, Francisco Cellone, Fabiana Corami, Andrea Gambaro, Giovanni Libralato, Elisa Morabito, Annamaria Volpi Ghirardini, Riccardo Broglia, Stefano Zaghi, and Luigi Tosi
Hydrol. Earth Syst. Sci., 21, 5627–5646, https://doi.org/10.5194/hess-21-5627-2017, https://doi.org/10.5194/hess-21-5627-2017, 2017
Short summary
Short summary
We investigate the effects of digging a navigable canal on the hydrogeological system underlying a coastal lagoon. The research has been promoted by the Venice Water Authority, which is investigating different possibilities to avoid the passage of large cruise ships through the historic center of Venice, Italy. Numerical simulations supported by a proper hydrogeological characterization show that the exchange of water and contaminants from the subsurface and surface systems will be significant.
Lin Zhu, Huili Gong, Zhenxue Dai, Gaoxuan Guo, and Pietro Teatini
Hydrol. Earth Syst. Sci., 21, 721–733, https://doi.org/10.5194/hess-21-721-2017, https://doi.org/10.5194/hess-21-721-2017, 2017
Short summary
Short summary
We developed a method to characterize the distribution and variance of the hydraulic conductivity k in a multiple-zone alluvial fan by fusing multiple-source data. Consistently with the scales of the sedimentary transport energy, the k variance of the various facies decreases from the upper to the lower portion along the flow direction. The 3-D distribution of k is consistent with that of the facies. The potentialities of the proposed approach are tested on the Chaobai River megafan, China.
C. Zoccarato, D. Baù, F. Bottazzi, M. Ferronato, G. Gambolati, S. Mantica, and P. Teatini
Proc. IAHS, 372, 351–356, https://doi.org/10.5194/piahs-372-351-2015, https://doi.org/10.5194/piahs-372-351-2015, 2015
A. Franceschini, P. Teatini, C. Janna, M. Ferronato, G. Gambolati, S. Ye, and D. Carreón-Freyre
Proc. IAHS, 372, 63–68, https://doi.org/10.5194/piahs-372-63-2015, https://doi.org/10.5194/piahs-372-63-2015, 2015
Short summary
Short summary
The stress variation induced by overdraft of aquifers in sedimentary basins may cause ground rupture in the form of activation of pre-existing faults or earth fissure generation. The process is severely threatening many areas in China and Mexico. Ruptures yield discontinuity in the displacement and stress fields that classic finite element (FE) models cannot address. We proved how Lagrangian approach provides more stable solutions than Penalty approach.
L. Tosi, T. Strozzi, C. Da Lio, and P. Teatini
Proc. IAHS, 372, 199–205, https://doi.org/10.5194/piahs-372-199-2015, https://doi.org/10.5194/piahs-372-199-2015, 2015
Short summary
Short summary
Eighty regular TerraSAR-X acquisitions over the 2008-2011 period significantly improve the subsidence monitoring at the Venice coastland. Settlements of 30-35 mm/yr have been detected at the three lagoon inlets in correspondence of the MoSE works. The Venice and Chioggia historical centers show local sinking bowls up to 10 mm/yr connected with the construction of new large buildings or restoration works. In the city of Venice, the mean subsidence of 1.1±1.0 mm/yr confirms its general stability.
S. Ye, Y. Wang, J. Wu, P. Teatini, J. Yu, X. Gong, and G. Wang
Proc. IAHS, 372, 249–253, https://doi.org/10.5194/piahs-372-249-2015, https://doi.org/10.5194/piahs-372-249-2015, 2015
S. Ye, Y. Luo, J. Wu, P. Teatini, H. Wang, and X. Jiao
Proc. IAHS, 372, 443–448, https://doi.org/10.5194/piahs-372-443-2015, https://doi.org/10.5194/piahs-372-443-2015, 2015
G. Isotton, M. Ferronato, G. Gambolati, and P. Teatini
Proc. IAHS, 372, 519–523, https://doi.org/10.5194/piahs-372-519-2015, https://doi.org/10.5194/piahs-372-519-2015, 2015
N. Foged, P. A. Marker, A. V. Christansen, P. Bauer-Gottwein, F. Jørgensen, A.-S. Høyer, and E. Auken
Hydrol. Earth Syst. Sci., 18, 4349–4362, https://doi.org/10.5194/hess-18-4349-2014, https://doi.org/10.5194/hess-18-4349-2014, 2014
D. Herckenrath, G. Fiandaca, E. Auken, and P. Bauer-Gottwein
Hydrol. Earth Syst. Sci., 17, 4043–4060, https://doi.org/10.5194/hess-17-4043-2013, https://doi.org/10.5194/hess-17-4043-2013, 2013
L. Tosi, E. E. Kruse, F. Braga, E. S. Carol, S. C. Carretero, J. L. Pousa, F. Rizzetto, and P. Teatini
Nat. Hazards Earth Syst. Sci., 13, 523–534, https://doi.org/10.5194/nhess-13-523-2013, https://doi.org/10.5194/nhess-13-523-2013, 2013
Related subject area
Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
Short high-accuracy tritium data time series for assessing groundwater mean transit times in the vadose and saturated zones of the Luxembourg Sandstone aquifer
High-resolution long-term average groundwater recharge in Africa estimated using random forest regression and residual interpolation
Towards understanding the influence of seasons on low-groundwater periods based on explainable machine learning
Shannon entropy of transport self-organization due to dissolution–precipitation reaction at varying Peclet numbers in initially homogeneous porous media
A high-resolution map of diffuse groundwater recharge rates for Australia
Influence of bank slope on sinuosity-driven hyporheic exchange flow and residence time distribution during a dynamic flood event
Technical note: A model of chemical transport in a wellbore–aquifer system
Disentangling coastal groundwater level dynamics in a global dataset
Current and future roles of meltwater–groundwater dynamics in a proglacial Alpine outwash plain
On the challenges of global entity-aware deep learning models for groundwater level prediction
Incorporating interpretation uncertainties from deterministic 3D hydrostratigraphic models in groundwater models
Adjoint subordination to calculate backward travel time probability of pollutants in water with various velocity resolutions
On the optimal level of complexity for the representation of groundwater-dependent wetland systems in land surface models
Estimation of groundwater age distributions from hydrochemistry: comparison of two metamodelling algorithms in the Heretaunga Plains aquifer system, New Zealand
Technical note: Novel analytical solution for groundwater response to atmospheric tides
Performance assessment of geospatial and time series features on groundwater level forecasting with deep learning
Calibration of groundwater seepage against the spatial distribution of the stream network to assess catchment-scale hydraulic properties
Climate-warming-driven changes in the cryosphere and their impact on groundwater–surface-water interactions in the Heihe River basin
Comparison of artificial neural networks and reservoir models for simulating karst spring discharge on five test sites in the Alpine and Mediterranean regions
A general model of radial dispersion with wellbore mixing and skin effects
Estimation of hydraulic conductivity functions in karst regions by particle swarm optimization with application to Lake Vrana, Croatia
The origin of hydrological responses following earthquakes in a confined aquifer: insight from water level, flow rate, and temperature observations
Advance prediction of coastal groundwater levels with temporal convolutional and long short-term memory networks
Three-dimensional hydrogeological parametrization using sparse piezometric data
Machine-learning-based downscaling of modelled climate change impacts on groundwater table depth
Frequency domain water table fluctuations reveal impacts of intense rainfall and vadose zone thickness on groundwater recharge
Characterizing groundwater heat transport in a complex lowland aquifer using paleo-temperature reconstruction, satellite data, temperature–depth profiles, and numerical models
Karst spring recession and classification: efficient, automated methods for both fast- and slow-flow components
Exploring river–aquifer interactions and hydrological system response using baseflow separation, impulse response modeling, and time series analysis in three temperate lowland catchments
Experimental study of non-Darcy flow characteristics in permeable stones
Karst spring discharge modeling based on deep learning using spatially distributed input data
HESS Opinions: Chemical transport modeling in subsurface hydrological systems – space, time, and the “holy grail” of “upscaling”
Spatiotemporal variations in water sources and mixing spots in a riparian zone
Delineation of discrete conduit networks in karst aquifers via combined analysis of tracer tests and geophysical data
Reactive transport modeling for supporting climate resilience at groundwater contamination sites
Improved understanding of regional groundwater drought development through time series modelling: the 2018–2019 drought in the Netherlands
Simulation of long-term spatiotemporal variations in regional-scale groundwater recharge: contributions of a water budget approach in cold and humid climates
Feedback mechanisms between precipitation and dissolution reactions across randomly heterogeneous conductivity fields
Taking theory to the field: streamflow generation mechanisms in an intermittent Mediterranean catchment
Coupling saturated and unsaturated flow: comparing the iterative and the non-iterative approach
Time lags of nitrate, chloride, and tritium in streams assessed by dynamic groundwater flow tracking in a lowland landscape
Using Long Short-Term Memory networks to connect water table depth anomalies to precipitation anomalies over Europe
Estimation of groundwater recharge from groundwater levels using nonlinear transfer function noise models and comparison to lysimeter data
Early hypogenic carbonic acid speleogenesis in unconfined limestone aquifers by upwelling deep-seated waters with high CO2 concentration: a modelling approach
Impacts of climate change on groundwater flooding and ecohydrology in lowland karst
How daily groundwater table drawdown affects the diel rhythm of hyporheic exchange
Groundwater level forecasting with artificial neural networks: a comparison of long short-term memory (LSTM), convolutional neural networks (CNNs), and non-linear autoregressive networks with exogenous input (NARX)
Groundwater and baseflow drought responses to synthetic recharge stress tests
Determination of vadose zone and saturated zone nitrate lag times using long-term groundwater monitoring data and statistical machine learning
Modelling the hydrological interactions between a fissured granite aquifer and a valley mire in the Massif Central, France
Laurent Gourdol, Michael K. Stewart, Uwe Morgenstern, and Laurent Pfister
Hydrol. Earth Syst. Sci., 28, 3519–3547, https://doi.org/10.5194/hess-28-3519-2024, https://doi.org/10.5194/hess-28-3519-2024, 2024
Short summary
Short summary
Determining water transit times in aquifers is key to a better understanding of groundwater resources and their sustainable management. For our research, we used high-accuracy tritium data from 35 springs draining the Luxembourg Sandstone aquifer. We assessed the mean transit times of groundwater and found that water moves on average more than 10 times more slowly vertically in the vadose zone of the aquifer (~12 m yr-1) than horizontally in its saturated zone (~170 m yr-1).
Anna Pazola, Mohammad Shamsudduha, Jon French, Alan M. MacDonald, Tamiru Abiye, Ibrahim Baba Goni, and Richard G. Taylor
Hydrol. Earth Syst. Sci., 28, 2949–2967, https://doi.org/10.5194/hess-28-2949-2024, https://doi.org/10.5194/hess-28-2949-2024, 2024
Short summary
Short summary
This study advances groundwater research using a high-resolution random forest model, revealing new recharge areas and spatial variability, mainly in humid regions. Limited data in rainy zones is a constraint for the model. Our findings underscore the promise of machine learning for large-scale groundwater modelling while further emphasizing the importance of data collection for robust results.
Andreas Wunsch, Tanja Liesch, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 28, 2167–2178, https://doi.org/10.5194/hess-28-2167-2024, https://doi.org/10.5194/hess-28-2167-2024, 2024
Short summary
Short summary
Seasons have a strong influence on groundwater levels, but relationships are complex and partly unknown. Using data from wells in Germany and an explainable machine learning approach, we showed that summer precipitation is the key factor that controls the severeness of a low-water period in fall; high summer temperatures do not per se cause stronger decreases. Preceding winters have only a minor influence on such low-water periods in general.
Evgeny Shavelzon and Yaniv Edery
Hydrol. Earth Syst. Sci., 28, 1803–1826, https://doi.org/10.5194/hess-28-1803-2024, https://doi.org/10.5194/hess-28-1803-2024, 2024
Short summary
Short summary
We investigate the interaction of transport with dissolution–precipitation reactions in porous media using the concepts of entropy and work to quantify the emergence of preferential flow paths. We show that the preferential-flow-path phenomenon and the hydraulic power required to maintain the driving pressure drop intensify over time along with the heterogeneity due to the interaction between the transport and the reactive processes. This is more pronounced in diffusion-dominated flows.
Stephen Lee, Dylan J. Irvine, Clément Duvert, Gabriel C. Rau, and Ian Cartwright
Hydrol. Earth Syst. Sci., 28, 1771–1790, https://doi.org/10.5194/hess-28-1771-2024, https://doi.org/10.5194/hess-28-1771-2024, 2024
Short summary
Short summary
Global groundwater recharge studies collate recharge values estimated using different methods that apply to different timescales. We develop a recharge prediction model, based solely on chloride, to produce a recharge map for Australia. We reveal that climate and vegetation have the most significant influence on recharge variability in Australia. Our recharge rates were lower than other models due to the long timescale of chloride in groundwater. Our method can similarly be applied globally.
Yiming Li, Uwe Schneidewind, Zhang Wen, Stefan Krause, and Hui Liu
Hydrol. Earth Syst. Sci., 28, 1751–1769, https://doi.org/10.5194/hess-28-1751-2024, https://doi.org/10.5194/hess-28-1751-2024, 2024
Short summary
Short summary
Meandering rivers are an integral part of many landscapes around the world. Here we used a new modeling approach to look at how the slope of riverbanks influences water flow and solute transport from a meandering river channel through its bank and into/out of the connected groundwater compartment (aquifer). We found that the bank slope can be a significant factor to be considered, especially when bank slope angles are small, and riverbank and aquifer conditions only allow for slow water flow.
Yiqun Gan and Quanrong Wang
Hydrol. Earth Syst. Sci., 28, 1317–1323, https://doi.org/10.5194/hess-28-1317-2024, https://doi.org/10.5194/hess-28-1317-2024, 2024
Short summary
Short summary
1. A revised 3D model of solute transport is developed in the well–aquifer system. 2. The accuracy of the new model is tested against benchmark analytical solutions. 3. Previous models overestimate the concentration of solute in both aquifers and wellbores in the injection well test case. 4. Previous models underestimate the concentration in the extraction well test case.
Annika Nolte, Ezra Haaf, Benedikt Heudorfer, Steffen Bender, and Jens Hartmann
Hydrol. Earth Syst. Sci., 28, 1215–1249, https://doi.org/10.5194/hess-28-1215-2024, https://doi.org/10.5194/hess-28-1215-2024, 2024
Short summary
Short summary
This study examines about 8000 groundwater level (GWL) time series from five continents to explore similarities in groundwater systems at different scales. Statistical metrics and machine learning techniques are applied to identify common GWL dynamics patterns and analyze their controlling factors. The study also highlights the potential and limitations of this data-driven approach to improve our understanding of groundwater recharge and discharge processes.
Tom Müller, Matteo Roncoroni, Davide Mancini, Stuart N. Lane, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 28, 735–759, https://doi.org/10.5194/hess-28-735-2024, https://doi.org/10.5194/hess-28-735-2024, 2024
Short summary
Short summary
We investigate the role of a newly formed floodplain in an alpine glaciated catchment to store and release water. Based on field measurements, we built a numerical model to simulate the water fluxes and show that recharge occurs mainly due to the ice-melt-fed river. We identify three future floodplains, which could emerge from glacier retreat, and show that their combined storage leads to some additional groundwater storage but contributes little additional baseflow for the downstream river.
Benedikt Heudorfer, Tanja Liesch, and Stefan Broda
Hydrol. Earth Syst. Sci., 28, 525–543, https://doi.org/10.5194/hess-28-525-2024, https://doi.org/10.5194/hess-28-525-2024, 2024
Short summary
Short summary
We build a neural network to predict groundwater levels from monitoring wells. We predict all wells at the same time, by learning the differences between wells with static features, making it an entity-aware global model. This works, but we also test different static features and find that the model does not use them to learn exactly how the wells are different, but only to uniquely identify them. As this model class is not actually entity aware, we suggest further steps to make it so.
Trine Enemark, Rasmus Bødker Madsen, Torben O. Sonnenborg, Lærke Therese Andersen, Peter B. E. Sandersen, Jacob Kidmose, Ingelise Møller, Thomas Mejer Hansen, Karsten Høgh Jensen, and Anne-Sophie Høyer
Hydrol. Earth Syst. Sci., 28, 505–523, https://doi.org/10.5194/hess-28-505-2024, https://doi.org/10.5194/hess-28-505-2024, 2024
Short summary
Short summary
In this study, we demonstrate an approach to evaluate the interpretation uncertainty within a manually interpreted geological model in a groundwater model. Using qualitative estimates of uncertainties, several geological realizations are developed and implemented in groundwater models. We confirm existing evidence that if the conceptual model is well defined, interpretation uncertainties within the conceptual model have limited impact on groundwater model predictions.
Yong Zhang, Graham E. Fogg, HongGuang Sun, Donald M. Reeves, Roseanna M. Neupauer, and Wei Wei
Hydrol. Earth Syst. Sci., 28, 179–203, https://doi.org/10.5194/hess-28-179-2024, https://doi.org/10.5194/hess-28-179-2024, 2024
Short summary
Short summary
Pollutant release history and source identification are helpful for managing water resources, but it remains a challenge to reliably identify such information for real-world, complex transport processes in rivers and aquifers. In this study, we filled this knowledge gap by deriving a general backward governing equation and developing the efficient solver. Field applications showed that this model and solver are applicable for a broad range of flow systems, dimensions, and spatiotemporal scales.
Mennatullah T. Elrashidy, Andrew M. Ireson, and Saman Razavi
Hydrol. Earth Syst. Sci., 27, 4595–4608, https://doi.org/10.5194/hess-27-4595-2023, https://doi.org/10.5194/hess-27-4595-2023, 2023
Short summary
Short summary
Wetlands are important ecosystems that store carbon and play a vital role in the water cycle. However, hydrological computer models do not always represent wetlands and their interaction with groundwater accurately. We tested different possible ways to include groundwater–wetland interactions in these models. We found that the optimal method to include wetlands and groundwater in the models is reliant on the intended use of the models and the characteristics of the land and soil being studied.
Conny Tschritter, Christopher J. Daughney, Sapthala Karalliyadda, Brioch Hemmings, Uwe Morgenstern, and Catherine Moore
Hydrol. Earth Syst. Sci., 27, 4295–4316, https://doi.org/10.5194/hess-27-4295-2023, https://doi.org/10.5194/hess-27-4295-2023, 2023
Short summary
Short summary
Understanding groundwater travel time (groundwater age) is crucial for tracking flow and contaminants. While groundwater age is usually inferred from age tracers, this study utilised two machine learning techniques with common groundwater chemistry data. The results of both methods correspond to traditional approaches. They are useful where hydrochemistry data exist but age tracer data are limited. These methods could help enhance our knowledge, aiding in sustainable freshwater management.
Jose M. Bastias Espejo, Chris Turnadge, Russell S. Crosbie, Philipp Blum, and Gabriel C. Rau
Hydrol. Earth Syst. Sci., 27, 3447–3462, https://doi.org/10.5194/hess-27-3447-2023, https://doi.org/10.5194/hess-27-3447-2023, 2023
Short summary
Short summary
Analytical models estimate subsurface properties from subsurface–tidal load interactions. However, they have limited accuracy in representing subsurface physics and parameter estimation. We derived a new analytical solution which models flow to wells due to atmospheric tides. We applied it to field data and compared our findings with subsurface knowledge. Our results enhance understanding of subsurface systems, providing valuable information on their behavior.
Mariana Gomez, Maximilian Noelscher, Andreas Hartmann, and Stefan Broda
EGUsphere, https://doi.org/10.5194/egusphere-2023-1836, https://doi.org/10.5194/egusphere-2023-1836, 2023
Short summary
Short summary
To understand the affectations of external factors on the groundwater level modelling with deep learning. We trained, validated, and tuned individually a CNN model in 505 wells distributed throughout the state of Lower Saxony, Germany. Then evaluate the performance against available geospatial features and time series features. New insights are provided about the complexity of controlling factors on groundwater dynamics.
Ronan Abhervé, Clément Roques, Alexandre Gauvain, Laurent Longuevergne, Stéphane Louaisil, Luc Aquilina, and Jean-Raynald de Dreuzy
Hydrol. Earth Syst. Sci., 27, 3221–3239, https://doi.org/10.5194/hess-27-3221-2023, https://doi.org/10.5194/hess-27-3221-2023, 2023
Short summary
Short summary
We propose a model calibration method constraining groundwater seepage in the hydrographic network. The method assesses the hydraulic properties of aquifers in regions where perennial streams are directly fed by groundwater. The estimated hydraulic conductivity appear to be highly sensitive to the spatial extent and density of streams. Such an approach improving subsurface characterization from surface information is particularly interesting for ungauged basins.
Amanda Triplett and Laura E. Condon
Hydrol. Earth Syst. Sci., 27, 2763–2785, https://doi.org/10.5194/hess-27-2763-2023, https://doi.org/10.5194/hess-27-2763-2023, 2023
Short summary
Short summary
Accelerated melting in mountains is a global phenomenon. The Heihe River basin depends on upstream mountains for its water supply. We built a hydrologic model to examine how shifts in streamflow and warming will impact ground and surface water interactions. The results indicate that degrading permafrost has a larger effect than melting glaciers. Additionally, warming temperatures tend to have more impact than changes to streamflow. These results can inform other mountain–valley system studies.
Guillaume Cinkus, Andreas Wunsch, Naomi Mazzilli, Tanja Liesch, Zhao Chen, Nataša Ravbar, Joanna Doummar, Jaime Fernández-Ortega, Juan Antonio Barberá, Bartolomé Andreo, Nico Goldscheider, and Hervé Jourde
Hydrol. Earth Syst. Sci., 27, 1961–1985, https://doi.org/10.5194/hess-27-1961-2023, https://doi.org/10.5194/hess-27-1961-2023, 2023
Short summary
Short summary
Numerous modelling approaches can be used for studying karst water resources, which can make it difficult for a stakeholder or researcher to choose the appropriate method. We conduct a comparison of two widely used karst modelling approaches: artificial neural networks (ANNs) and reservoir models. Results show that ANN models are very flexible and seem great for reproducing high flows. Reservoir models can work with relatively short time series and seem to accurately reproduce low flows.
Wenguang Shi, Quanrong Wang, Hongbin Zhan, Renjie Zhou, and Haitao Yan
Hydrol. Earth Syst. Sci., 27, 1891–1908, https://doi.org/10.5194/hess-27-1891-2023, https://doi.org/10.5194/hess-27-1891-2023, 2023
Short summary
Short summary
The mechanism of radial dispersion is important for understanding reactive transport in the subsurface and for estimating aquifer parameters required in the optimization design of remediation strategies. A general model and associated analytical solutions are developed in this study. The new model represents the most recent advancement on radial dispersion studies and incorporates a host of important processes that are not taken into consideration in previous investigations.
Vanja Travaš, Luka Zaharija, Davor Stipanić, and Siniša Družeta
Hydrol. Earth Syst. Sci., 27, 1343–1359, https://doi.org/10.5194/hess-27-1343-2023, https://doi.org/10.5194/hess-27-1343-2023, 2023
Short summary
Short summary
In order to model groundwater flow in karst aquifers, it is necessary to approximate the influence of the unknown and irregular structure of the karst conduits. For this purpose, a procedure based on inverse modeling is adopted. Moreover, in order to reconstruct the functional dependencies related to groundwater flow, the particle swarm method was used, through which the optimal solution of unknown functions is found by imitating the movement of ants in search of food.
Shouchuan Zhang, Zheming Shi, Guangcai Wang, Zuochen Zhang, and Huaming Guo
Hydrol. Earth Syst. Sci., 27, 401–415, https://doi.org/10.5194/hess-27-401-2023, https://doi.org/10.5194/hess-27-401-2023, 2023
Short summary
Short summary
We documented the step-like increases of water level, flow rate, and water temperatures in a confined aquifer following multiple earthquakes. By employing tidal analysis and a coupled temperature and flow rate model, we find that post-seismic vertical permeability changes and recharge model could explain the co-seismic response. And co-seismic temperature changes are caused by mixing of different volumes of water, with the mixing ratio varying according to each earthquake.
Xiaoying Zhang, Fan Dong, Guangquan Chen, and Zhenxue Dai
Hydrol. Earth Syst. Sci., 27, 83–96, https://doi.org/10.5194/hess-27-83-2023, https://doi.org/10.5194/hess-27-83-2023, 2023
Short summary
Short summary
In a data-driven framework, groundwater levels can generally only be calculated 1 time step ahead. We discuss the advance prediction with longer forecast periods rather than single time steps by constructing a model based on a temporal convolutional network. Model accuracy and efficiency were further compared with an LSTM-based model. The two models derived in this study can help people cope with the uncertainty of what might occur in hydrological scenarios under the threat of climate change.
Dimitri Rambourg, Raphaël Di Chiara, and Philippe Ackerer
Hydrol. Earth Syst. Sci., 26, 6147–6162, https://doi.org/10.5194/hess-26-6147-2022, https://doi.org/10.5194/hess-26-6147-2022, 2022
Short summary
Short summary
The reproduction of flows and contaminations underground requires a good estimation of the parameters of the geological environment (mainly permeability and porosity), in three dimensions. While most researchers rely on geophysical methods, which are costly and difficult to implement in the field, this study proposes an alternative using data that are already widely available: piezometric records (monitoring of the water table) and the lithological description of the piezometric wells.
Raphael Schneider, Julian Koch, Lars Troldborg, Hans Jørgen Henriksen, and Simon Stisen
Hydrol. Earth Syst. Sci., 26, 5859–5877, https://doi.org/10.5194/hess-26-5859-2022, https://doi.org/10.5194/hess-26-5859-2022, 2022
Short summary
Short summary
Hydrological models at high spatial resolution are computationally expensive. However, outputs from such models, such as the depth of the groundwater table, are often desired in high resolution. We developed a downscaling algorithm based on machine learning that allows us to increase spatial resolution of hydrological model outputs, alleviating computational burden. We successfully applied the downscaling algorithm to the climate-change-induced impacts on the groundwater table across Denmark.
Luca Guillaumot, Laurent Longuevergne, Jean Marçais, Nicolas Lavenant, and Olivier Bour
Hydrol. Earth Syst. Sci., 26, 5697–5720, https://doi.org/10.5194/hess-26-5697-2022, https://doi.org/10.5194/hess-26-5697-2022, 2022
Short summary
Short summary
Recharge, defining the renewal rate of groundwater resources, is difficult to estimate at basin scale. Here, recharge variations are inferred from water table variations recorded in boreholes. First, results show that aquifer-scale properties controlling these variations can be inferred from boreholes. Second, groundwater is recharged by both intense and seasonal rainfall. Third, the short-term contribution appears overestimated in recharge models and depends on the unsaturated zone thickness.
Alberto Casillas-Trasvina, Bart Rogiers, Koen Beerten, Laurent Wouters, and Kristine Walraevens
Hydrol. Earth Syst. Sci., 26, 5577–5604, https://doi.org/10.5194/hess-26-5577-2022, https://doi.org/10.5194/hess-26-5577-2022, 2022
Short summary
Short summary
Heat in the subsurface can be used to characterize aquifer flow behaviour. The temperature data obtained can be useful for understanding the groundwater flow, which is of particular importance in waste disposal studies. Satellite images of surface temperature and a temperature–time curve were implemented in a heat transport model. Results indicate that conduction plays a major role in the aquifer and support the usefulness of temperature measurements.
Tunde Olarinoye, Tom Gleeson, and Andreas Hartmann
Hydrol. Earth Syst. Sci., 26, 5431–5447, https://doi.org/10.5194/hess-26-5431-2022, https://doi.org/10.5194/hess-26-5431-2022, 2022
Short summary
Short summary
Analysis of karst spring recession is essential for management of groundwater. In karst, recession is dominated by slow and fast components; separating these components is by manual and subjective approaches. In our study, we tested the applicability of automated streamflow recession extraction procedures for a karst spring. Results showed that, by simple modification, streamflow extraction methods can identify slow and fast components: derived recession parameters are within reasonable ranges.
Min Lu, Bart Rogiers, Koen Beerten, Matej Gedeon, and Marijke Huysmans
Hydrol. Earth Syst. Sci., 26, 3629–3649, https://doi.org/10.5194/hess-26-3629-2022, https://doi.org/10.5194/hess-26-3629-2022, 2022
Short summary
Short summary
Lowland rivers and shallow aquifers are closely coupled. We study their interactions here using a combination of impulse response modeling and hydrological data analysis. The results show that the lowland catchments are groundwater dominated and that the hydrological system from precipitation impulse to groundwater inflow response is a very fast response regime. This study also provides an alternative method to estimate groundwater inflow to rivers from the perspective of groundwater level.
Zhongxia Li, Junwei Wan, Tao Xiong, Hongbin Zhan, Linqing He, and Kun Huang
Hydrol. Earth Syst. Sci., 26, 3359–3375, https://doi.org/10.5194/hess-26-3359-2022, https://doi.org/10.5194/hess-26-3359-2022, 2022
Short summary
Short summary
Four permeable rocks with different pore sizes were considered to provide experimental evidence of Forchheimer flow and the transition between different flow regimes. The mercury injection technique was used to measure the pore size distribution, which is an essential factor for determining the flow regime, for four permeable stones. Finally, the influences of porosity and particle size on the Forchheimer coefficients were discussed.
Andreas Wunsch, Tanja Liesch, Guillaume Cinkus, Nataša Ravbar, Zhao Chen, Naomi Mazzilli, Hervé Jourde, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 26, 2405–2430, https://doi.org/10.5194/hess-26-2405-2022, https://doi.org/10.5194/hess-26-2405-2022, 2022
Short summary
Short summary
Modeling complex karst water resources is difficult enough, but often there are no or too few climate stations available within or close to the catchment to deliver input data for modeling purposes. We apply image recognition algorithms to time-distributed, spatially gridded meteorological data to simulate karst spring discharge. Our models can also learn the approximate catchment location of a spring independently.
Brian Berkowitz
Hydrol. Earth Syst. Sci., 26, 2161–2180, https://doi.org/10.5194/hess-26-2161-2022, https://doi.org/10.5194/hess-26-2161-2022, 2022
Short summary
Short summary
Extensive efforts have focused on quantifying conservative chemical transport in geological formations. We assert that an explicit accounting of temporal information, under uncertainty, in addition to spatial information, is fundamental to an effective modeling formulation. We further assert that efforts to apply chemical transport equations at large length scales, based on measurements and model parameter values relevant to significantly smaller length scales, are an unattainable
holy grail.
Guilherme E. H. Nogueira, Christian Schmidt, Daniel Partington, Philip Brunner, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 26, 1883–1905, https://doi.org/10.5194/hess-26-1883-2022, https://doi.org/10.5194/hess-26-1883-2022, 2022
Short summary
Short summary
In near-stream aquifers, mixing between stream water and ambient groundwater can lead to dilution and the removal of substances that can be harmful to the water ecosystem at high concentrations. We used a numerical model to track the spatiotemporal evolution of different water sources and their mixing around a stream, which are rather difficult in the field. Results show that mixing mainly develops as narrow spots, varying In time and space, and is affected by magnitudes of discharge events.
Jacques Bodin, Gilles Porel, Benoît Nauleau, and Denis Paquet
Hydrol. Earth Syst. Sci., 26, 1713–1726, https://doi.org/10.5194/hess-26-1713-2022, https://doi.org/10.5194/hess-26-1713-2022, 2022
Short summary
Short summary
Assessment of the karst network geometry is an important challenge in the accurate modeling of karst aquifers. In this study, we propose an approach for the identification of effective three-dimensional discrete karst conduit networks conditioned on tracer tests and geophysical data. The applicability of the proposed approach is illustrated through a case study at the Hydrogeological Experimental Site in Poitiers, France.
Zexuan Xu, Rebecca Serata, Haruko Wainwright, Miles Denham, Sergi Molins, Hansell Gonzalez-Raymat, Konstantin Lipnikov, J. David Moulton, and Carol Eddy-Dilek
Hydrol. Earth Syst. Sci., 26, 755–773, https://doi.org/10.5194/hess-26-755-2022, https://doi.org/10.5194/hess-26-755-2022, 2022
Short summary
Short summary
Climate change could change the groundwater system and threaten water supply. To quantitatively evaluate its impact on water quality, numerical simulations with chemical and reaction processes are required. With the climate projection dataset, we used the newly developed hydrological and chemical model to investigate the movement of contaminants and assist the management of contamination sites.
Esther Brakkee, Marjolein H. J. van Huijgevoort, and Ruud P. Bartholomeus
Hydrol. Earth Syst. Sci., 26, 551–569, https://doi.org/10.5194/hess-26-551-2022, https://doi.org/10.5194/hess-26-551-2022, 2022
Short summary
Short summary
Periods of drought often lead to groundwater shortages in large regions, which cause damage to nature and the economy. To take measures, we need a good understanding of where and when groundwater shortage occurs. In this study, we have tested a method that can combine large amounts of groundwater measurements in an automated way and provide detailed maps of how groundwater shortages develop during a drought period. This information can help water managers to limit future groundwater shortages.
Emmanuel Dubois, Marie Larocque, Sylvain Gagné, and Guillaume Meyzonnat
Hydrol. Earth Syst. Sci., 25, 6567–6589, https://doi.org/10.5194/hess-25-6567-2021, https://doi.org/10.5194/hess-25-6567-2021, 2021
Short summary
Short summary
This work demonstrates the relevance of using a water budget model to understand long-term transient and regional-scale groundwater recharge (GWR) in cold and humid climates where groundwater observations are scarce. Monthly GWR is simulated for 57 years on 500 m x 500 m cells in Canada (36 000 km2 area) with limited uncertainty due to a robust automatic calibration method. The increases in precipitation and temperature since the 1960s have not yet produced significant changes in annual GWR.
Yaniv Edery, Martin Stolar, Giovanni Porta, and Alberto Guadagnini
Hydrol. Earth Syst. Sci., 25, 5905–5915, https://doi.org/10.5194/hess-25-5905-2021, https://doi.org/10.5194/hess-25-5905-2021, 2021
Short summary
Short summary
The interplay between dissolution, precipitation and transport is widely encountered in porous media, from CO2 storage to cave formation in carbonate rocks. We show that dissolution occurs along preferential flow paths with high hydraulic conductivity, while precipitation occurs at locations close to yet separated from these flow paths, thus further funneling the flow and changing the probability density function of the transport, as measured on the altered conductivity field at various times.
Karina Y. Gutierrez-Jurado, Daniel Partington, and Margaret Shanafield
Hydrol. Earth Syst. Sci., 25, 4299–4317, https://doi.org/10.5194/hess-25-4299-2021, https://doi.org/10.5194/hess-25-4299-2021, 2021
Short summary
Short summary
Understanding the hydrologic cycle in semi-arid landscapes includes knowing the physical processes that govern where and why rivers flow and dry within a given catchment. To gain this understanding, we put together a conceptual model of what processes we think are important and then tested that model with numerical analysis. The results broadly confirmed our hypothesis that there are three distinct regions in our study catchment that contribute to streamflow generation in quite different ways.
Natascha Brandhorst, Daniel Erdal, and Insa Neuweiler
Hydrol. Earth Syst. Sci., 25, 4041–4059, https://doi.org/10.5194/hess-25-4041-2021, https://doi.org/10.5194/hess-25-4041-2021, 2021
Short summary
Short summary
We compare two approaches for coupling a 2D groundwater model with multiple 1D models for the unsaturated zone. One is non-iterative and very fast. The other one is iterative and involves a new way of treating the specific yield, which is crucial for obtaining a consistent solution in both model compartments. Tested on different scenarios, this new method turns out to be slower than the non-iterative approach but more accurate and still very efficient compared to fully integrated 3D model runs.
Vince P. Kaandorp, Hans Peter Broers, Ype van der Velde, Joachim Rozemeijer, and Perry G. B. de Louw
Hydrol. Earth Syst. Sci., 25, 3691–3711, https://doi.org/10.5194/hess-25-3691-2021, https://doi.org/10.5194/hess-25-3691-2021, 2021
Short summary
Short summary
We reconstructed historical and present-day tritium, chloride, and nitrate concentrations in stream water of a catchment using
land-use-based input curves and calculated travel times of groundwater. Parameters such as the unsaturated zone thickness, mean travel time, and input patterns determine time lags between inputs and in-stream concentrations. The timescale of the breakthrough of pollutants in streams is dependent on the location of pollution in a catchment.
Yueling Ma, Carsten Montzka, Bagher Bayat, and Stefan Kollet
Hydrol. Earth Syst. Sci., 25, 3555–3575, https://doi.org/10.5194/hess-25-3555-2021, https://doi.org/10.5194/hess-25-3555-2021, 2021
Short summary
Short summary
This study utilized spatiotemporally continuous precipitation anomaly (pra) and water table depth anomaly (wtda) data from integrated hydrologic simulation results over Europe in combination with Long Short-Term Memory (LSTM) networks to capture the time-varying and time-lagged relationship between pra and wtda in order to obtain reliable models to estimate wtda at the individual pixel level.
Raoul A. Collenteur, Mark Bakker, Gernot Klammler, and Steffen Birk
Hydrol. Earth Syst. Sci., 25, 2931–2949, https://doi.org/10.5194/hess-25-2931-2021, https://doi.org/10.5194/hess-25-2931-2021, 2021
Short summary
Short summary
This study explores the use of nonlinear transfer function noise (TFN) models to simulate groundwater levels and estimate groundwater recharge from observed groundwater levels. A nonlinear recharge model is implemented in a TFN model to compute the recharge. The estimated recharge rates are shown to be in good agreement with the recharge observed with a lysimeter present at the case study site in Austria. The method can be used to obtain groundwater recharge rates at
sub-yearly timescales.
Franci Gabrovšek and Wolfgang Dreybrodt
Hydrol. Earth Syst. Sci., 25, 2895–2913, https://doi.org/10.5194/hess-25-2895-2021, https://doi.org/10.5194/hess-25-2895-2021, 2021
Short summary
Short summary
The evolution of karst aquifers is often governed by solutions gaining their aggressiveness in depth. Although the principles of
hypogene speleogenesisare known, modelling studies based on reactive flow in fracture networks are missing. We present a model where dissolution at depth is triggered by the mixing of waters of different origin and chemistry. We show how the initial position of the mixing zone and flow instabilities therein determine the position and shape of the final conduits.
Patrick Morrissey, Paul Nolan, Ted McCormack, Paul Johnston, Owen Naughton, Saheba Bhatnagar, and Laurence Gill
Hydrol. Earth Syst. Sci., 25, 1923–1941, https://doi.org/10.5194/hess-25-1923-2021, https://doi.org/10.5194/hess-25-1923-2021, 2021
Short summary
Short summary
Lowland karst aquifers provide important wetland habitat resulting from seasonal flooding on the land surface. This flooding is controlled by surcharging of the karst system, which is very sensitive to changes in rainfall. This study investigates the predicted impacts of climate change on a lowland karst catchment in Ireland and highlights the relative vulnerability to future changing climate conditions of karst systems and any associated wetland habitats.
Liwen Wu, Jesus D. Gomez-Velez, Stefan Krause, Anders Wörman, Tanu Singh, Gunnar Nützmann, and Jörg Lewandowski
Hydrol. Earth Syst. Sci., 25, 1905–1921, https://doi.org/10.5194/hess-25-1905-2021, https://doi.org/10.5194/hess-25-1905-2021, 2021
Short summary
Short summary
With a physically based model that couples flow and heat transport in hyporheic zones, the present study provides the first insights into the dynamics of hyporheic responses to the impacts of daily groundwater withdrawal and river temperature fluctuations, allowing for a better understanding of transient hyporheic exchange processes and hence an improved pumping operational scheme.
Andreas Wunsch, Tanja Liesch, and Stefan Broda
Hydrol. Earth Syst. Sci., 25, 1671–1687, https://doi.org/10.5194/hess-25-1671-2021, https://doi.org/10.5194/hess-25-1671-2021, 2021
Jost Hellwig, Michael Stoelzle, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 25, 1053–1068, https://doi.org/10.5194/hess-25-1053-2021, https://doi.org/10.5194/hess-25-1053-2021, 2021
Short summary
Short summary
Potential future groundwater and baseflow drought hazards depend on systems' sensitivity to altered recharge conditions. With three generic scenarios, we found different sensitivities across Germany driven by hydrogeology. While changes in drought hazard due to seasonal recharge shifts will be rather low, a lengthening of dry spells could cause stronger responses in regions with slow groundwater response to precipitation, urging local water management to prepare for more severe droughts.
Martin J. Wells, Troy E. Gilmore, Natalie Nelson, Aaron Mittelstet, and John K. Böhlke
Hydrol. Earth Syst. Sci., 25, 811–829, https://doi.org/10.5194/hess-25-811-2021, https://doi.org/10.5194/hess-25-811-2021, 2021
Short summary
Short summary
Groundwater in many agricultural areas contains high levels of nitrate, which is a concern for drinking water supplies. The rate at which nitrate moves through the subsurface is a critical piece of information for predicting how quickly groundwater nitrate levels may improve after agricultural producers change their approach to managing crop water and fertilizers. In this study, we explored a new statistical modeling approach to determine rates at which nitrate moves into and through an aquifer.
Arnaud Duranel, Julian R. Thompson, Helene Burningham, Philippe Durepaire, Stéphane Garambois, Robert Wyns, and Hervé Cubizolle
Hydrol. Earth Syst. Sci., 25, 291–319, https://doi.org/10.5194/hess-25-291-2021, https://doi.org/10.5194/hess-25-291-2021, 2021
Short summary
Short summary
Peat-forming wetlands (mires) provide multiple ecosystem services, which depend on peat remaining waterlogged. Using hydrological modelling, we show that, contrary to a common assumption, groundwater inflow can be a quantitatively important and functionally critical element of the water balance of mires in hard-rock upland and mountain areas. This influence is such that patterns of groundwater upwelling and seepage explain the spatial distribution of mires in the landscape.
Cited articles
Adriansen, H. K.: Land reclamation in Egypt: A study of life in the new lands, Geoforum, 40, 664–674, https://doi.org/10.1016/j.geoforum.2009.05.006, 2009.
Ammar, A. I.: Estimating the groundwater storage from the electrical resistivity measurements in Wadi El-Natrun area, Western Desert, Egyp, J. Am. Sci., 6, 492–502, 2010.
Arnous, M. O. and Green, D. R.: Monitoring and assessing waterlogged and salt-affected areas in the Eastern Nile Delta region, Egypt, using remotely sensed multi-temporal data and GIS, J. Coast. Conserv., 19, 369–391, https://doi.org/10.1007/s11852-015-0397-5, 2015.
Ashley, G. M., Maitima Mworia, J., Muasya, A. M., Owen, R. B., Driese, S. G., Hover, V. C., Renaut, R. W., Goman, M. F., Mathai, S., and Blatt, S. H.: Sedimentation and recent history of a freshwater wetland in a semi-arid environment: Loboi Swamp, Kenya, East Africa, Sedimentology, 51, 1301–1321, https://doi.org/10.1111/j.1365-3091.2004.00671.x, 2004.
Atwia, M. G., Hassan, A. A., and Ibrahim, S. A.: Hydrogeology, log analysis, and hydrochemistry of unconsolidated aquifers south of El-Sadat city, Egypt, Hydrogeol. J., 5, 27–38, https://doi.org/10.1007/s100400050108, 2012.
Auken, E., Jørgensen, F., and Sørensen, K.: Large-scale TEM investigation for groundwater, Explor. Geophys., 34, 188–194, https://doi.org/10.1071/EG03188, 2003.
Auken, E., Christiansen, A. V., Kirkegaard, C., Fiandaca, G., Schamper, C., Behroozmand, A. A., Binley, A., Nielsen, E., Effersø, F., Christensen, N. B., Sørensen, K., Foged, N., and Vignoli, G.: An overview of a highly versatile forward and stable inverse algorithm for airborne, ground-based and borehole electromagnetic and electric data, Explor. Geophys., 46, 223–235, https://doi.org/10.1071/EG13097, 2015.
Behroozmand, A. A., Auken, E., Fiandaca, G., Christiansen, A. V., and Christensen, N. B.: Efficient full decay inversion of MRS data with a stretched-exponential approximation of the T2∗ distribution, Geophys. J. Int., 190, 900–912, https://doi.org/10.1111/j.1365-246X.2012.05558.x, 2012a.
Behroozmand, A. A., Auken, E., Fiandaca, G., and Christiansen, A.: Improvement in MRS parameter estimation by joint and laterally constrained inversion of MRS and TEM data, Geophysics, 77, WB191–WB200, https://doi.org/10.1190/geo2011-0404.1, 2012b.
Behroozmand, A. A., Dalgaard, E., Christiansen, A. V., and Auken, E.: A comprehensive study of parameter determination in a joint MRS and TEM data analysis scheme, Surf. Geophys., 11, 557–567, https://doi.org/10.3997/1873-0604.2013040, 2013.
Behroozmand, A. A., Keating, K., and Auken, E.: A review of the principles and applications of the NMR technique for near-surface characterization, Surv. Geophys., 36, 27–85, https://doi.org/10.1007/s10712-014-9304-0, 2015.
Binley, A., Hubbard, S. S., Huisman, J. A., Revil, A., Robinson, D. A., Singha, K., and Slater, L. D.: The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales, Water Resour. Res., 51, 3837–3866, https://doi.org/10.1002/2015WR017016, 2015.
Boucher, M., Favreau, G., Vouillamoz, J. M., Nazoumou, Y., and Legchenko, A.: Estimating specific yield and transmissivity with magnetic resonance sounding in an unconfined sandstone aquifer (Niger), Hydrogeol. J., 17, 1805–1815, https://doi.org/10.1007/s10040-009-0447-x, 2009.
Bouwer, H.: Artificial recharge of groundwater: hydrogeology and engineering, Hydrogeol. J., 10, 121–142, https://doi.org/10.1007/s10040-001-0182-4, 2002.
Busch, S., Weihermüller, L., Huisman, J. A., Steelman, C. M., Endres, A. L., Vereecken, H., and van der Kruk, J.: Coupled hydrogeophysical inversion of time-lapse surface GPR data to estimate hydraulic properties of a layered subsurface, Water Resour. Res., 49, 8480–8494, https://doi.org/10.1002/2013WR013992, 2013.
Camporese, M., Paniconi, C., Putti, M., and Orlandini, S.: Surface-subsurface flow modeling with path-based runoff routing, boundary condition-based coupling, and assimilation of multisource observation data, Water Resour. Res., 46, W02512, https://doi.org/10.1029/2008WR007536, 2010.
Chalikakis, K., Nielsen, M. R., and Legchenko, A.: MRS applicability for a study of glacial sedimentary aquifers in Central Jutland, Denmark, J. Appl. Geophys., 66, 176–187, https://doi.org/10.1016/j.jappgeo.2007.11.005, 2008.
Choubey, V. K.: Detection and delineation of waterlogging by remote sensing techniques, J. Indian Soc. Remote Sens., 25, 123–135, https://doi.org/10.1007/BF03025910, 1997.
Christiansen, A. V. and Auken, E.: A global measure for depth of investigation, Geophysics, 77, WB171–WB177, https://doi.org/10.1190/geo2011-0393.1, 2012.
Christiansen, A. V., Auken, E., and Sørensen, K. I.: The transient electromagnetic method, in Groundwater geophysics: a tool for hydrogeology, 179–225, Springer, Berlin, 2006.
Comte, J.-C., Banton, O., Join, J.-L., and Cabioch, G.: Evaluation of effective groundwater recharge of freshwater lens in small islands by the combined modeling of geoelectrical data and water heads, Water Resour. Res., 46, W06601, https://doi.org/10.1029/2009WR008058, 2010.
Dalgaard, E., Auken, E., and Larsen, J. J.: Adaptive noise cancelling of multichannel magnetic resonance sounding signals, Geophys. J. Int., 191, 88–100, https://doi.org/10.1111/j.1365-246X.2012.05618.x, 2012.
Danielsen, J. E., Auken, E., Jørgensen, F., Søndergaard, V., and Sørensen, K. I.: The application of the transient electromagnetic method in hydrogeophysical surveys, J. Appl. Geophys., 53, 181–198, https://doi.org/10.1016/j.jappgeo.2003.08.004, 2003.
Dawe, L. L. and Penrose, W. R.: “Bactericidal” property of seawater: death or debilitation?, Appl. Environ. Microbiol., 35, 829–833, 1978.
Dawoud, M. A., Darwish, M. M., and El-Kady, M. M.: GIS-based groundwater management model for western Nile delta, Water Resour. Manag., 19, 585–604, https://doi.org/10.1007/s11269-005-5603-z, 2005.
Dickson, N. E. M., Comte, J.-C., McKinley, J., and Ofterdinger, U.: Coupling ground and airborne geophysical data with upscaling techniques for regional groundwater modeling of heterogeneous aquifers: Case study of a sedimentary aquifer intruded by volcanic dykes in Northern Ireland, Water Resour. Res., 50, 7984–8001, https://doi.org/10.1002/2014WR015320, 2014.
El Abd, E. S. A. and El Osta, M. M.: Waterlogging in the new reclaimed areas northeast El Fayoum, Western Desert, Egypt, reasons and solutions, J. Water Resour. Prot., 6, 1631–1645, https://doi.org/10.4236/jwarp.2014.618147, 2014.
El Bastawesy, M., Ramadan Ali, R., Faid, A., and El Osta, M.: Assessment of waterlogging in agricultural megaprojects in the closed drainage basins of the Western Desert of Egypt, Hydrol. Earth Syst. Sci., 17, 1493–1501, https://doi.org/10.5194/hess-17-1493-2013, 2013.
El Molla, A. M., Dawoud, M. A., Hassan, M. S., Sayed Ahmed, H. A., and Mohamed, R. F.: Integrated management of water resources in western Nile Delta. 1. Building and calibrating the groundwater model, 4th Int. Symp. on Environmental Hydrology, ASCE-EG Publ., Cairo, Egypt, 1–12, 2005.
El-Sayed, S. A., Atta, E. R., and Al-Ashri, K. M.: Groundwater table rise in northwest Nile Delta: Problems and Recommendations, J. Radiat. Res. Appl. Sci., 5, 141–171, 2012.
Fadlelmawla, A.: Limited Scope Hydrogeological Investigation at Nubariah Area, Egypt, IMPROWARE Proj. Rep., 28 pp., 2014.
Foged, N., Auken, E., Christiansen, A., and Sørensen, K.: Test-site calibration and validation of airborne and ground-based TEM systems, Geophysics, 78, E95–E106, https://doi.org/10.1190/geo2012-0244.1, 2013.
Foged, N., Marker, P. A., Christansen, A. V., Bauer-Gottwein, P., Jørgensen, F., Høyer, A.-S., and Auken, E.: Large-scale 3-D modeling by integration of resistivity models and borehole data through inversion, Hydrol. Earth Syst. Sci., 18, 4349–4362, https://doi.org/10.5194/hess-18-4349-2014, 2014.
Gates, T. K., Burkhalter, J. P., Labadie, J. W., Valliant, J. C., and Broner, I.: Monitoring and modeling flow and salt transport in a salinity-threatened irrigated Valley, J. Irrig. Drain. Eng., 128, 87–99, https://doi.org/10.1061/(ASCE)0733-9437(2002)128:2(87), 2002.
Gelhar, L. W., Welty, C., and Rehfeldt, K. R.: A critical review of data on field-scale dispersion in aquifers, Water Resour. Res., 28, 1955–1974, https://doi.org/10.1029/92WR00607, 1992.
Günther, T. and Müller-Petke, M.: Hydraulic properties at the North Sea island of Borkum derived from joint inversion of magnetic resonance and electrical resistivity soundings, Hydrol. Earth Syst. Sci., 16, 3279–3291, https://doi.org/10.5194/hess-16-3279-2012, 2012.
Hassan, S. M., Steel, R. J., El Barkooky, A., Hamdan, M., Olariu, C., and Helper, M. A.: Stacked, Lower Miocene tide-dominated estuary deposits in a transgressive succession, Western Desert, Egypt, Sediment. Geol., 282, 241–255, https://doi.org/10.1016/j.sedgeo.2012.09.013, 2012.
Herckenrath, D., Auken, E., Christiansen, L., Behroozmand, A. A., and Bauer-Gottwein, P.: Coupled hydrogeophysical inversion using time-lapse magnetic resonance sounding and time-lapse gravity data for hydraulic aquifer testing: Will it work in practice?, Water Resour. Res., 48, W01539, https://doi.org/10.1029/2011WR010411, 2012.
Idelovitch, E., Icekson-Tal, N., Avraham, O., and Michail, M.: The long-term performance of Soil Aquifer Treatment (SAT) for effluent reuse, available at: http://www.iwaponline.com/ws/00304/ws003040239.htm (last access: 24 September 2015), 2003.
Khalil, M. A. and Santos, F. A. M.: 2D and 3-D resistivity inversion of Schlumberger vertical electrical soundings in Wadi El Natrun, Egypt: A case study, J. Appl. Geophys., 89, 116–124, https://doi.org/10.1016/j.jappgeo.2012.11.014, 2013.
Knight, R., Grunewald, E., Irons, T., Dlubac, K., Song, Y., Bachman, H. N., Grau, B., Walsh, D., Abraham, J. D., and Cannia, J.: Field experiment provides ground truth for surface nuclear magnetic resonance measurement, Geophys. Res. Lett., 39, L03304, https://doi.org/10.1029/2011GL050167, 2012.
Kopchynski, T., Fox, P., Alsmadi, B., and Berner, M.: The effects of soil type and effluent pre-treatment on soil aquifer treatment, available at: http://www.iwaponline.com/wst/03411/wst034110235.htm (last access: 24 September 2015), 1996.
Larsen, J. J., Dalgaard, E., and Auken, E.: Noise cancelling of MRS signals combining model-based removal of powerline harmonics and multichannel Wiener filtering, Geophys. J. Int., 196, 828–836, https://doi.org/10.1093/gji/ggt422, 2013.
Leaney, F. W., Herczeg, A. l., and Walker, G. R.: Salinization of a fresh palaeo-ground water resource by enhanced recharge, Ground Water, 41, 84–92, https://doi.org/10.1111/j.1745-6584.2003.tb02571.x, 2003.
Legchenko, A., Baltassat, J.-M., Bobachev, A., Martin, C., Robain, H., and Vouillamoz, J.-M.: Magnetic resonance sounding applied to aquifer characterization, Ground Water, 42, 363–373, https://doi.org/10.1111/j.1745-6584.2004.tb02684.x, 2004.
Lemly, A. D., Finger, S. E., and Nelson, M. K.: Sources and impacts of irrigation drainwater contaminants in arid wetlands, Environ. Toxicol. Chem., 12, 2265–2279, https://doi.org/10.1002/etc.5620121209, 1993.
Li, H., Yi, J., Zhang, J., Zhao, Y., Si, B., Hill, R. L., Cui, L., and Liu, X.: Modeling of soil water and salt dynamics and Its effects on root water uptake in Heihe arid wetland, Gansu, China, Water, 7, 2382–2401, https://doi.org/10.3390/w7052382, 2015.
Mabrouk, M. B., Jonoski, A., Solomatine, D., and Uhlenbrook, S.: A review of seawater intrusion in the Nile Delta groundwater system – the basis for assessing impacts due to climate changes and water resources development, Hydrol. Earth Syst. Sci. Discuss., 10, 10873–10911, https://doi.org/10.5194/hessd-10-10873-2013, 2013.
Marker, P. A., Foged, N., He, X., Christiansen, A. V., Refsgaard, J. C., Auken, E., and Bauer-Gottwein, P.: Performance evaluation of groundwater model hydrostratigraphy from airborne electromagnetic data and lithological borehole logs, Hydrol. Earth Syst. Sci., 19, 3875–3890, https://doi.org/10.5194/hess-19-3875-2015, 2015.
Masoud, A. A.: Groundwater quality assessment of the shallow aquifers west of the Nile Delta (Egypt) using multivariate statistical and geostatistical techniques, J. Afr. Earth Sci., 95, 123–137, https://doi.org/10.1016/j.jafrearsci.2014.03.006, 2014.
Minckley, T. A., Turner, D. S., and Weinstein, S. R.: The relevance of wetland conservation in arid regions: A re-examination of vanishing communities in the American Southwest, J. Arid Environ., 88, 213–221, https://doi.org/10.1016/j.jaridenv.2012.09.001, 2013.
Monteiro Santos, F. A. and Sultan, S. A.: On the 3-D inversion of vertical electrical soundings: Application to the South Ismailia area – Cairo desert road, Cairo, Egypt, J. Appl. Geophys., 65, 97–110, https://doi.org/10.1016/j.jappgeo.2008.06.001, 2008.
Nyboe, N. S., Jørgensen, F., and Sørensen, K.: Integrated inversion of TEM and seismic data facilitated by high penetration depths of a segmented receiver setup, Surf. Geophys., 8, 1750, https://doi.org/10.3997/1873-0604.2010026, 2010.
Pérez-Paricio, A. and Carrera, J.: Validity and sensitivity analysis of a new comprehensive clogging model, in: Calibration and Reliability in Groundwater Modelling, edited by: Stauffer, F., Kinzelbach, W., Kovar, K., and Hoehn, E., 47–53, IAHS Publ., 265, 47–53, 2000.
Plata, J. L. and Rubio, F. M.: The use of MRS in the determination of hydraulic transmissivity: The case of alluvial aquifers, J. Appl. Geophys., 66, 128–139, https://doi.org/10.1016/j.jappgeo.2008.04.001, 2008.
RIGW and IWACO: Monitoring and Control Groundwater Pollution in the Nile Delta and Adjacent Desert Areas, El Kanater El Khairia, Egypt, Technical Report TN 77.01300-91-12, 1991.
Rossi, M., Manoli, G., Pasetto, D., Deiana, R., Ferraris, S., Strobbia, C., Putti, M., and Cassiani, G.: Coupled inverse modeling of a controlled irrigation experiment using multiple hydro-geophysical data, Adv. Water Resour., 82, 150–165, https://doi.org/10.1016/j.advwatres.2015.03.008, 2015.
Scanlon, B. R., Jolly, I., Sophocleous, M., and Zhang, L.: Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality, Water Resour. Res., 43, W03437, https://doi.org/10.1029/2006WR005486, 2007.
Schaap, M. G., Leij, F. J., and van Genuchten, M. T.: Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions, J. Hydrol., 251, 163–176, https://doi.org/10.1016/S0022-1694(01)00466-8, 2001.
Sharaky, A. M., Atta, S. A., El Hassanein, A. S., and Khallaf, K. M. A.: Hydrogeochemistry of groundwater in the Western Nile delta aquifers, Egypt, ISESCO J. Sci. Technol. Vis., 4, 60–74, 2008.
Sharma, K. D.: Indira Gandhi Nahar Pariyojana – lessons learnt from past management practices in the Indian arid zone, IAHS-AISH P., 268, 49–55, 2001.
Sheng, F. and Xiuling, C.: Rationally utilizing water resources to control soil salinity in irrigation districts, in: Sustaining the Global Farm – Selected papers from the 10th International Soil Conservation Organization Meeting, 24–29 May 1999, West Lafayette, Indiana, 1134–1138, Publ. International Soil Conservation Organization in cooperation with the USDA and Purdue University, 2001.
Siemon, B., Christiansen, A. V., and Auken, E.: A review of helicopter-borne electromagnetic methods for groundwater exploration, Surf. Geophys., 7, 1303, https://doi.org/10.3997/1873-0604.2009043, 2009.
Tachikawa, T., Hato, M., Kaku, M., and Iwasaki, A.: Characteristics of ASTER GDEM version 2, in: Geoscience and Remote Sensing Symposium (IGARSS), 24–29 July 2011 IEEE International, 3657–3660, 2011.
Teatini, P., Tosi, L., Viezzoli, A., de Franco, R., Biella, G., and Tang, C.: Driving the modeling of saltwater intrusion at the Venice coastland (Italy) by ground-based, water-, and air-borne geophysical investigations, American Society of Civil Engineers, 1146–1155, 2010.
Tsang, C.-F.: Is current hydrogeologic research addressing long-term predictions?, Ground Water, 43, 296–300, https://doi.org/10.1111/j.1745-6584.2005.0023.x, 2005.
United States Agency for International Development – USAID: Integrated Water Resource Management II – Feasibility of Wastewater Reuse, Report No. 14, 2010.
Vilhelmsen, T. N., Behroozmand, A. A., Christensen, S., and Nielsen, T. H.: Joint inversion of aquifer test, MRS, and TEM data, Water Resour. Res., 50, 3956–3975, https://doi.org/10.1002/2013WR014679, 2014.
Vilhelmsen, T. N., Christensen, S., and Auken, E.: On determining uncertainties of magnetic resonance sounding estimated transmissivities for groundwater modeling, Geophysics, 81, WB63–WB73, https://doi.org/10.1190/geo2015-0494.1, 2016.
Voss, C. I. and Provost, A. M.: SUTRA: A model for saturated-unsaturated variable-density ground-water flow with solute or energy transport, Water-Resources Investigations Report 02-4231, US Geological Survey, Reston, VA, 2002.
Vouillamoz, J. M., Sokheng, S., Bruyere, O., Caron, D., and Arnout, L.: Towards a better estimate of storage properties of aquifer with magnetic resonance sounding, J. Hydrol., 458–459, 51–58, https://doi.org/10.1016/j.jhydrol.2012.06.044, 2012.
Vouillamoz, J. M., Lawson, F. M. A., Yalo, N., and Descloitres, M.: Groundwater in hard rocks of Benin: Regional storage and buffer capacity in the face of change, J. Hydrol., 520, 379–386, https://doi.org/10.1016/j.jhydrol.2014.11.024, 2015.
Short summary
Within the framework of the EU project IMPROWARE, our goal was to investigate a Mediterranean coastal aquifer in Egypt and develop scenarios for artificial aquifer remediation and recharge. The results of an extensive hydrogeophysical investigation were successfully used as an input in regional and local hydrological models to understand the hydrological evolution of the area. The research outcomes clearly highlight the effectiveness of using advanced geophysical and modeling methodologies.
Within the framework of the EU project IMPROWARE, our goal was to investigate a Mediterranean...