Articles | Volume 20, issue 6
https://doi.org/10.5194/hess-20-2207-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-20-2207-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Representation of spatial and temporal variability in large-domain hydrological models: case study for a mesoscale pre-Alpine basin
Hydrology and Quantitative Water Management Group, Wageningen
University, Wageningen, the Netherlands
Adriaan Teuling
Hydrology and Quantitative Water Management Group, Wageningen
University, Wageningen, the Netherlands
Paul Torfs
Hydrology and Quantitative Water Management Group, Wageningen
University, Wageningen, the Netherlands
Massimiliano Zappa
Swiss Federal Research
Institute (WSL), Birmensdorf, Switzerland
Naoki Mizukami
National Center for
Atmospheric Research (NCAR), Boulder, CO, USA
Martyn Clark
National Center for
Atmospheric Research (NCAR), Boulder, CO, USA
Remko Uijlenhoet
Hydrology and Quantitative Water Management Group, Wageningen
University, Wageningen, the Netherlands
Related authors
Germano G. Ribeiro Neto, Sarra Kchouk, Lieke A. Melsen, Louise Cavalcante, David W. Walker, Art Dewulf, Alexandre C. Costa, Eduardo S. P. R. Martins, and Pieter R. van Oel
Hydrol. Earth Syst. Sci., 27, 4217–4225, https://doi.org/10.5194/hess-27-4217-2023, https://doi.org/10.5194/hess-27-4217-2023, 2023
Short summary
Short summary
People induce and modify droughts. However, we do not know exactly how relevant human and natural processes interact nor how to evaluate the co-evolution of people and water. Prospect theory can help us to explain the emergence of drought impacts leading to failed welfare expectations (“prospects”) due to water shortage. Our approach helps to explain socio-hydrological phenomena, such as reservoir effects, and can contribute to integrated drought management considering the local context.
Sarra Kchouk, Louise Cavalcante, Lieke A. Melsen, David W. Walker, Germano Ribeiro Neto, Rubens Gondim, Wouter J. Smolenaars, and Pieter R. van Oel
EGUsphere, https://doi.org/10.5194/egusphere-2023-2726, https://doi.org/10.5194/egusphere-2023-2726, 2023
Short summary
Short summary
Droughts impact water and people, yet monitoring often overlooks impacts on people. In Northeast Brazil, we assess official data against local experiences, finding data mismatches and blindspots. Mismatches occur due to the data's broad scope missing finer details. Blindspots arise from ignoring diverse community responses and vulnerabilities to droughts. We suggest enhanced monitoring by technical extension officers for both severe and mild droughts.
Awad M. Ali, Lieke A. Melsen, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 27, 4057–4086, https://doi.org/10.5194/hess-27-4057-2023, https://doi.org/10.5194/hess-27-4057-2023, 2023
Short summary
Short summary
Using a new approach based on a combination of modeling and Earth observation, useful information about the filling of the Grand Ethiopian Renaissance Dam can be obtained with limited data and proper rainfall selection. While the monthly streamflow into Sudan has decreased significantly (1.2 × 109–5 × 109 m3) with respect to the non-dam scenario, the negative impact has been masked due to higher-than-average rainfall. We reveal that the dam will need 3–5 more years to complete filling.
Sarra Kchouk, Lieke A. Melsen, David W. Walker, and Pieter R. van Oel
Nat. Hazards Earth Syst. Sci., 22, 323–344, https://doi.org/10.5194/nhess-22-323-2022, https://doi.org/10.5194/nhess-22-323-2022, 2022
Short summary
Short summary
The aim of our study was to question the validity of the assumed direct linkage between drivers of drought and its impacts on water and food securities, mainly found in the frameworks of drought early warning systems (DEWSs). We analysed more than 5000 scientific studies leading us to the conclusion that the local context can contribute to drought drivers resulting in these drought impacts. Our research aims to increase the relevance and utility of the information provided by DEWSs.
Peter T. La Follette, Adriaan J. Teuling, Nans Addor, Martyn Clark, Koen Jansen, and Lieke A. Melsen
Hydrol. Earth Syst. Sci., 25, 5425–5446, https://doi.org/10.5194/hess-25-5425-2021, https://doi.org/10.5194/hess-25-5425-2021, 2021
Short summary
Short summary
Hydrological models are useful tools that allow us to predict distributions and movement of water. A variety of numerical methods are used by these models. We demonstrate which numerical methods yield large errors when subject to extreme precipitation. As the climate is changing such that extreme precipitation is more common, we find that some numerical methods are better suited for use in hydrological models. Also, we find that many current hydrological models use relatively inaccurate methods.
Joost Buitink, Lieke A. Melsen, and Adriaan J. Teuling
Earth Syst. Dynam., 12, 387–400, https://doi.org/10.5194/esd-12-387-2021, https://doi.org/10.5194/esd-12-387-2021, 2021
Short summary
Short summary
Higher temperatures influence both evaporation and snow processes. These two processes have a large effect on discharge but have distinct roles during different seasons. In this study, we study how higher temperatures affect the discharge via changed evaporation and snow dynamics. Higher temperatures lead to enhanced evaporation but increased melt from glaciers, overall lowering the discharge. During the snowmelt season, discharge was reduced further due to the earlier depletion of snow.
Lieke Anna Melsen and Björn Guse
Hydrol. Earth Syst. Sci., 25, 1307–1332, https://doi.org/10.5194/hess-25-1307-2021, https://doi.org/10.5194/hess-25-1307-2021, 2021
Short summary
Short summary
Certain hydrological processes become more or less relevant when the climate changes. This should also be visible in the models that are used for long-term predictions of river flow as a consequence of climate change. We investigated this using three different models. The change in relevance should be reflected in how the parameters of the models are determined. In the different models, different processes become more relevant in the future: they disagree with each other.
Gijs van Kempen, Karin van der Wiel, and Lieke Anna Melsen
Nat. Hazards Earth Syst. Sci., 21, 961–976, https://doi.org/10.5194/nhess-21-961-2021, https://doi.org/10.5194/nhess-21-961-2021, 2021
Short summary
Short summary
In this study, we combine climate model results with a hydrological model to investigate uncertainties in flood and drought risk. With the climate model, 2000 years of
current climatewas created. The hydrological model consisted of several building blocks that we could adapt. In this way, we could investigate the effect of these hydrological building blocks on high- and low-flow risk in four different climate zones with return periods of up to 500 years.
Laurène J. E. Bouaziz, Fabrizio Fenicia, Guillaume Thirel, Tanja de Boer-Euser, Joost Buitink, Claudia C. Brauer, Jan De Niel, Benjamin J. Dewals, Gilles Drogue, Benjamin Grelier, Lieke A. Melsen, Sotirios Moustakas, Jiri Nossent, Fernando Pereira, Eric Sprokkereef, Jasper Stam, Albrecht H. Weerts, Patrick Willems, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 25, 1069–1095, https://doi.org/10.5194/hess-25-1069-2021, https://doi.org/10.5194/hess-25-1069-2021, 2021
Short summary
Short summary
We quantify the differences in internal states and fluxes of 12 process-based models with similar streamflow performance and assess their plausibility using remotely sensed estimates of evaporation, snow cover, soil moisture and total storage anomalies. The dissimilarities in internal process representation imply that these models cannot all simultaneously be close to reality. Therefore, we invite modelers to evaluate their models using multiple variables and to rely on multi-model studies.
Manuela I. Brunner, Lieke A. Melsen, Andrew W. Wood, Oldrich Rakovec, Naoki Mizukami, Wouter J. M. Knoben, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 25, 105–119, https://doi.org/10.5194/hess-25-105-2021, https://doi.org/10.5194/hess-25-105-2021, 2021
Short summary
Short summary
Assessments of current, local, and regional flood hazards and their future changes often involve the use of hydrologic models. A reliable model ideally reproduces both local flood characteristics and regional aspects of flooding. In this paper we investigate how such characteristics are represented by hydrologic models. Our results show that both the modeling of local and regional flood characteristics are challenging, especially under changing climate conditions.
Joost Buitink, Lieke A. Melsen, James W. Kirchner, and Adriaan J. Teuling
Geosci. Model Dev., 13, 6093–6110, https://doi.org/10.5194/gmd-13-6093-2020, https://doi.org/10.5194/gmd-13-6093-2020, 2020
Short summary
Short summary
This paper presents a new distributed hydrological model: the distributed simple dynamical systems (dS2) model. The model is built with a focus on computational efficiency and is therefore able to simulate basins at high spatial and temporal resolution at a low computational cost. Despite the simplicity of the model concept, it is able to correctly simulate discharge in both small and mesoscale basins.
Caspar T. J. Roebroek, Lieke A. Melsen, Anne J. Hoek van Dijke, Ying Fan, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 24, 4625–4639, https://doi.org/10.5194/hess-24-4625-2020, https://doi.org/10.5194/hess-24-4625-2020, 2020
Short summary
Short summary
Vegetation is a principal component in the Earth system models that are used for weather, climate and other environmental predictions. Water is one of the main drivers of vegetation; however, the global distribution of how water influences vegetation is not well understood. This study looks at spatial patterns of photosynthesis and water sources (rain and groundwater) to obtain a first understanding of water access and limitations for the growth of global forests (proxy for natural vegetation).
Manuela I. Brunner, Lieke A. Melsen, Andrew J. Newman, Andrew W. Wood, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 24, 3951–3966, https://doi.org/10.5194/hess-24-3951-2020, https://doi.org/10.5194/hess-24-3951-2020, 2020
Short summary
Short summary
Streamflow seasonality is changing and expected to further change under the influence of climate change. We here assess how annual streamflow hydrographs will change in future by using a newly developed classification scheme. Our comparison of future with current annual hydrograph classes shows that robust changes are expected only for currently melt-influenced regions in the Rocky Mountains. These upstream changes may require the adaptation of management strategies in downstream regions.
Lieke A. Melsen, Nans Addor, Naoki Mizukami, Andrew J. Newman, Paul J. J. F. Torfs, Martyn P. Clark, Remko Uijlenhoet, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 22, 1775–1791, https://doi.org/10.5194/hess-22-1775-2018, https://doi.org/10.5194/hess-22-1775-2018, 2018
Short summary
Short summary
Long-term hydrological predictions are important for water management planning, but are also prone to uncertainty. This study investigates three sources of uncertainty for long-term hydrological predictions in the US: climate models, hydrological models, and hydrological model parameters. Mapping the results revealed spatial patterns in the three sources of uncertainty: different sources of uncertainty dominate in different regions.
Kerstin Stahl, Irene Kohn, Veit Blauhut, Julia Urquijo, Lucia De Stefano, Vanda Acácio, Susana Dias, James H. Stagge, Lena M. Tallaksen, Eleni Kampragou, Anne F. Van Loon, Lucy J. Barker, Lieke A. Melsen, Carlo Bifulco, Dario Musolino, Alessandro de Carli, Antonio Massarutto, Dionysis Assimacopoulos, and Henny A. J. Van Lanen
Nat. Hazards Earth Syst. Sci., 16, 801–819, https://doi.org/10.5194/nhess-16-801-2016, https://doi.org/10.5194/nhess-16-801-2016, 2016
Short summary
Short summary
Based on the European Drought Impact report Inventory (EDII), the study presents an assessment of the occurrence and diversity of drought impacts across Europe. A unique research database has collected close to 5000 textual drought impact reports from 33 European countries. Consistently, reported impacts have been dominated in number by agriculture and water supply, but were very diverse across other sectors. Data and assessment may help drought policy planning at the international level.
Lieke A. Melsen, Adriaan J. Teuling, Paul J. J. F. Torfs, Remko Uijlenhoet, Naoki Mizukami, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 20, 1069–1079, https://doi.org/10.5194/hess-20-1069-2016, https://doi.org/10.5194/hess-20-1069-2016, 2016
Short summary
Short summary
A meta-analysis on 192 peer-reviewed articles reporting applications of a land surface model in a distributed way reveals that the spatial resolution at which the model is applied has increased over the years, while the calibration and validation time interval has remained unchanged. We argue that the calibration and validation time interval should keep pace with the increase in spatial resolution in order to resolve the processes that are relevant at the applied spatial resolution.
Germano G. Ribeiro Neto, Sarra Kchouk, Lieke A. Melsen, Louise Cavalcante, David W. Walker, Art Dewulf, Alexandre C. Costa, Eduardo S. P. R. Martins, and Pieter R. van Oel
Hydrol. Earth Syst. Sci., 27, 4217–4225, https://doi.org/10.5194/hess-27-4217-2023, https://doi.org/10.5194/hess-27-4217-2023, 2023
Short summary
Short summary
People induce and modify droughts. However, we do not know exactly how relevant human and natural processes interact nor how to evaluate the co-evolution of people and water. Prospect theory can help us to explain the emergence of drought impacts leading to failed welfare expectations (“prospects”) due to water shortage. Our approach helps to explain socio-hydrological phenomena, such as reservoir effects, and can contribute to integrated drought management considering the local context.
Charles Nduhiu Wamucii, Pieter R. van Oel, Adriaan J. Teuling, Arend Ligtenberg, John Mwangi Gathenya, Gert Jan Hofstede, Meine van Noordwijk, and Erika N. Speelman
EGUsphere, https://doi.org/10.5194/egusphere-2023-2459, https://doi.org/10.5194/egusphere-2023-2459, 2023
Short summary
Short summary
The study explored the role of serious gaming in strengthening stakeholder engagement in addressing human-water challenges. The gaming approach guided community discussions toward implementable decisions. The results showed increasing active participation, knowledge gain, and use of plural pronouns. We observed decreasing individual interests and conflicts among game participants. The study presents important implications for creating a collective basis for water resources management.
Sarra Kchouk, Louise Cavalcante, Lieke A. Melsen, David W. Walker, Germano Ribeiro Neto, Rubens Gondim, Wouter J. Smolenaars, and Pieter R. van Oel
EGUsphere, https://doi.org/10.5194/egusphere-2023-2726, https://doi.org/10.5194/egusphere-2023-2726, 2023
Short summary
Short summary
Droughts impact water and people, yet monitoring often overlooks impacts on people. In Northeast Brazil, we assess official data against local experiences, finding data mismatches and blindspots. Mismatches occur due to the data's broad scope missing finer details. Blindspots arise from ignoring diverse community responses and vulnerabilities to droughts. We suggest enhanced monitoring by technical extension officers for both severe and mild droughts.
Athanasios Tsiokanos, Martine Rutten, Ruud J. van der Ent, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-263, https://doi.org/10.5194/hess-2023-263, 2023
Preprint under review for HESS
Short summary
Short summary
We focus on past high-flow events to identify flood drivers in the Geul catchment. We also explore flood drivers’ trends across various times and develop a new method to detect the main direction of a trend. Our results show that extreme 24-hour precipitation cannot solely lead to floods. The combination of long heavy rainfall and wet initial conditions determines the chances of flooding. Precipitation that leads to floods increases during winter, while no consistent trends are found in summer.
Awad M. Ali, Lieke A. Melsen, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 27, 4057–4086, https://doi.org/10.5194/hess-27-4057-2023, https://doi.org/10.5194/hess-27-4057-2023, 2023
Short summary
Short summary
Using a new approach based on a combination of modeling and Earth observation, useful information about the filling of the Grand Ethiopian Renaissance Dam can be obtained with limited data and proper rainfall selection. While the monthly streamflow into Sudan has decreased significantly (1.2 × 109–5 × 109 m3) with respect to the non-dam scenario, the negative impact has been masked due to higher-than-average rainfall. We reveal that the dam will need 3–5 more years to complete filling.
Nicolás Cortés-Salazar, Nicolás Vásquez, Naoki Mizukami, Pablo A. Mendoza, and Ximena Vargas
Hydrol. Earth Syst. Sci., 27, 3505–3524, https://doi.org/10.5194/hess-27-3505-2023, https://doi.org/10.5194/hess-27-3505-2023, 2023
Short summary
Short summary
This paper shows how important river models can be for water resource applications that involve hydrological models and, in particular, parameter calibration. To this end, we conduct numerical experiments in a pilot basin using a combination of hydrologic model simulations obtained from a large sample of parameter sets and different routing methods. We find that routing can affect streamflow simulations, even at monthly time steps; the choice of parameters; and relevant streamflow metrics.
Luuk D. van der Valk, Miriam Coenders-Gerrits, Rolf W. Hut, Aart Overeem, Bas Walraven, and Remko Uijlenhoet
EGUsphere, https://doi.org/10.5194/egusphere-2023-1971, https://doi.org/10.5194/egusphere-2023-1971, 2023
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Microwave links, often part of mobile phone networks, can be used to measure rainfall along the link path by determining the signal loss caused by rainfall. We use high-frequency data of multiple microwave links to recreate commonly used sampling strategies. For time intervals up to 1 min, the influence of sampling strategies on estimated rainfall intensities is relatively little, while for intervals longer than 5–15 min, the sampling strategy can have significant influences on the estimates.
Marleen R. Lam, Alessia Matanó, Anne F. Van Loon, Rhoda A. Odongo, Aklilu D. Teklesadik, Charles N. Wamucii, Marc J. C. van den Homberg, Shamton Waruru, and Adriaan J. Teuling
Nat. Hazards Earth Syst. Sci., 23, 2915–2936, https://doi.org/10.5194/nhess-23-2915-2023, https://doi.org/10.5194/nhess-23-2915-2023, 2023
Short summary
Short summary
There is still no full understanding of the relation between drought impacts and drought indices in the Horn of Africa where water scarcity and arid regions are also present. This study assesses their relation in Kenya. A random forest model reveals that each region, aggregated by aridity, has its own set of predictors for every impact category. Water scarcity was not found to be related to aridity. Understanding these relations contributes to the development of drought early warning systems.
Jasper M.C. Denissen, Adriaan J. Teuling, Sujan Koirala, Markus Reichstein, Gianpaolo Balsamo, Martha M. Vogel, Xin Yu, and Rene Orth
EGUsphere, https://doi.org/10.5194/egusphere-2023-1925, https://doi.org/10.5194/egusphere-2023-1925, 2023
Short summary
Short summary
Heat extremes have severe implications for human health and ecosystems. Heat extremes are mostly introduced by large-scale atmospheric circulation but can be modulated by vegetation: Vegetation with access to water uses solar energy to evaporate water into the atmosphere. Under dry conditions, water may not be available, suppressing evaporation and heating the atmosphere. Using climate projections, we show that regionally less water is available for vegetation, intensifying future heat extremes.
Abbas El Hachem, Jochen Seidel, Tess O'Hara, Roberto Villalobos Herrera, Aart Overeem, Remko Uijlenhoet, András Bárdossy, and Lotte de Vos
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-195, https://doi.org/10.5194/hess-2023-195, 2023
Preprint under review for HESS
Short summary
Short summary
This study presents an overview of open-source quality control (QC) algorithms for rainfall data from personal weather stations (PWS). The methodology and useability for every QG algorithm are described. All QC algorithms were applied in a case study using a PWS data from the Amsterdam region in the Netherlands. The results highlight the necessity for adequate data filtering and show the advantages and disadvantages of each QC algorithm.
Linda Bogerd, Hidde Leijnse, Aart Overeem, and Remko Uijlenhoet
EGUsphere, https://doi.org/10.5194/egusphere-2023-1258, https://doi.org/10.5194/egusphere-2023-1258, 2023
Short summary
Short summary
Accurate and uniformly distributed precipitation estimates are crucial for applications like weather forecasts and flood early water systems. Ground-based observations are reliable but have limited spatial coverage and representation. Sensors aboard satellites are able to overcome this limitation, but are not as accurate as those derived from ground-based sensors. We studied the performance of space-based precipitation estimates to highlight in which situations improvements are needed.
Adrià Fontrodona-Bach, Bettina Schaefli, Ross Woods, Adriaan J. Teuling, and Joshua R. Larsen
Earth Syst. Sci. Data, 15, 2577–2599, https://doi.org/10.5194/essd-15-2577-2023, https://doi.org/10.5194/essd-15-2577-2023, 2023
Short summary
Short summary
We provide a dataset of snow water equivalent, the depth of liquid water that results from melting a given depth of snow. The dataset contains 11 071 sites over the Northern Hemisphere, spans the period 1950–2022, and is based on daily observations of snow depth on the ground and a model. The dataset fills a lack of accessible historical ground snow data, and it can be used for a variety of applications such as the impact of climate change on global and regional snow and water resources.
Marvin Höge, Martina Kauzlaric, Rosi Siber, Ursula Schönenberger, Pascal Horton, Jan Schwanbeck, Marius Günter Floriancic, Daniel Viviroli, Sibylle Wilhelm, Anna E. Sikorska-Senoner, Nans Addor, Manuela Brunner, Sandra Pool, Massimiliano Zappa, and Fabrizio Fenicia
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-127, https://doi.org/10.5194/essd-2023-127, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
CAMELS-CH is a large-sample hydro-meteorological data set for hydrological Switzerland that enables hydrologic and climatic research at catchment level, spanning 40 years of data between 1st January 1981 and 31st December 2020. It comprises daily time series of stream flow, water levels, meteorological variables (precipitation, air temperature, etc.) and snow water equivalent data; annual time series of land cover change and glacier data; and static catchment attributes of various categories.
Louise J. Slater, Louise Arnal, Marie-Amélie Boucher, Annie Y.-Y. Chang, Simon Moulds, Conor Murphy, Grey Nearing, Guy Shalev, Chaopeng Shen, Linda Speight, Gabriele Villarini, Robert L. Wilby, Andrew Wood, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 27, 1865–1889, https://doi.org/10.5194/hess-27-1865-2023, https://doi.org/10.5194/hess-27-1865-2023, 2023
Short summary
Short summary
Hybrid forecasting systems combine data-driven methods with physics-based weather and climate models to improve the accuracy of predictions for meteorological and hydroclimatic events such as rainfall, temperature, streamflow, floods, droughts, tropical cyclones, or atmospheric rivers. We review recent developments in hybrid forecasting and outline key challenges and opportunities in the field.
Bich Ngoc Tran, Johannes van der Kwast, Solomon Seyoum, Remko Uijlenhoet, Graham Jewitt, and Marloes Mul
EGUsphere, https://doi.org/10.5194/egusphere-2023-725, https://doi.org/10.5194/egusphere-2023-725, 2023
Short summary
Short summary
Satellite data are increasingly used to estimate evapotranspiration, or the amount of water lost from plants and soil, over large areas. However, uncertainties from various sources can affect the accuracy of these estimates. This study reviews the current methods used to assess the uncertainties of these estimates and identifies specific recommendations to provide a comprehensive interpretation that assists the potential uses of these estimates for research, monitoring, and management.
Luuk D. van der Valk, Adriaan J. Teuling, Luc Girod, Norbert Pirk, Robin Stoffer, and Chiel C. van Heerwaarden
The Cryosphere, 16, 4319–4341, https://doi.org/10.5194/tc-16-4319-2022, https://doi.org/10.5194/tc-16-4319-2022, 2022
Short summary
Short summary
Most large-scale hydrological and climate models struggle to capture the spatially highly variable wind-driven melt of patchy snow cover. In the field, we find that 60 %–80 % of the total melt is wind driven at the upwind edge of a snow patch, while it does not contribute at the downwind edge. Our idealized simulations show that the variation is due to a patch-size-independent air-temperature reduction over snow patches and also allow us to study the role of wind-driven snowmelt on larger scales.
Zhi Li, Shang Gao, Mengye Chen, Jonathan Gourley, Naoki Mizukami, and Yang Hong
Geosci. Model Dev., 15, 6181–6196, https://doi.org/10.5194/gmd-15-6181-2022, https://doi.org/10.5194/gmd-15-6181-2022, 2022
Short summary
Short summary
Operational streamflow prediction at a continental scale is critical for national water resources management. However, limited computational resources often impede such processes, with streamflow routing being one of the most time-consuming parts. This study presents a recent development of a hydrologic system that incorporates a vector-based routing scheme with a lake module that markedly speeds up streamflow prediction. Moreover, accuracy is improved and flood false alarms are mitigated.
Ulises M. Sepúlveda, Pablo A. Mendoza, Naoki Mizukami, and Andrew J. Newman
Hydrol. Earth Syst. Sci., 26, 3419–3445, https://doi.org/10.5194/hess-26-3419-2022, https://doi.org/10.5194/hess-26-3419-2022, 2022
Short summary
Short summary
This paper characterizes parameter sensitivities across more than 5500 grid cells for a commonly used macroscale hydrological model, including a suite of eight performance metrics and 43 soil, vegetation and snow parameters. The results show that the model is highly overparameterized and, more importantly, help to provide guidance on the most relevant parameters for specific target processes across diverse climatic types.
Alessandro Montemagno, Christophe Hissler, Victor Bense, Adriaan J. Teuling, Johanna Ziebel, and Laurent Pfister
Biogeosciences, 19, 3111–3129, https://doi.org/10.5194/bg-19-3111-2022, https://doi.org/10.5194/bg-19-3111-2022, 2022
Short summary
Short summary
We investigated the biogeochemical processes that dominate the release and retention of elements (nutrients and potentially toxic elements) during litter degradation. Our results show that toxic elements are retained in the litter, while nutrients are released in solution during the first stages of degradation. This seems linked to the capability of trees to distribute the elements between degradation-resistant and non-degradation-resistant compounds of leaves according to their chemical nature.
Linqi Zhang, Yi Liu, Liliang Ren, Adriaan J. Teuling, Ye Zhu, Linyong Wei, Linyan Zhang, Shanhu Jiang, Xiaoli Yang, Xiuqin Fang, and Hang Yin
Hydrol. Earth Syst. Sci., 26, 3241–3261, https://doi.org/10.5194/hess-26-3241-2022, https://doi.org/10.5194/hess-26-3241-2022, 2022
Short summary
Short summary
In this study, three machine learning methods displayed a good detection capacity of flash droughts. The RF model was recommended to estimate the depletion rate of soil moisture and simulate flash drought by considering the multiple meteorological variable anomalies in the adjacent time to drought onset. The anomalies of precipitation and potential evapotranspiration exhibited a stronger synergistic but asymmetrical effect on flash droughts compared to slowly developing droughts.
Femke A. Jansen, Remko Uijlenhoet, Cor M. J. Jacobs, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 26, 2875–2898, https://doi.org/10.5194/hess-26-2875-2022, https://doi.org/10.5194/hess-26-2875-2022, 2022
Short summary
Short summary
We studied the controls on open water evaporation with a focus on Lake IJssel, the Netherlands, by analysing eddy covariance observations over two summer periods at two locations at the borders of the lake. Wind speed and the vertical vapour pressure gradient can explain most of the variation in observed evaporation, which is in agreement with Dalton's model. We argue that the distinct characteristics of inland waterbodies need to be taken into account when parameterizing their evaporation.
Inne Vanderkelen, Shervan Gharari, Naoki Mizukami, Martyn P. Clark, David M. Lawrence, Sean Swenson, Yadu Pokhrel, Naota Hanasaki, Ann van Griensven, and Wim Thiery
Geosci. Model Dev., 15, 4163–4192, https://doi.org/10.5194/gmd-15-4163-2022, https://doi.org/10.5194/gmd-15-4163-2022, 2022
Short summary
Short summary
Human-controlled reservoirs have a large influence on the global water cycle. However, dam operations are rarely represented in Earth system models. We implement and evaluate a widely used reservoir parametrization in a global river-routing model. Using observations of individual reservoirs, the reservoir scheme outperforms the natural lake scheme. However, both schemes show a similar performance due to biases in runoff timing and magnitude when using simulated runoff.
Sarra Kchouk, Lieke A. Melsen, David W. Walker, and Pieter R. van Oel
Nat. Hazards Earth Syst. Sci., 22, 323–344, https://doi.org/10.5194/nhess-22-323-2022, https://doi.org/10.5194/nhess-22-323-2022, 2022
Short summary
Short summary
The aim of our study was to question the validity of the assumed direct linkage between drivers of drought and its impacts on water and food securities, mainly found in the frameworks of drought early warning systems (DEWSs). We analysed more than 5000 scientific studies leading us to the conclusion that the local context can contribute to drought drivers resulting in these drought impacts. Our research aims to increase the relevance and utility of the information provided by DEWSs.
Wagner Wolff, Aart Overeem, Hidde Leijnse, and Remko Uijlenhoet
Atmos. Meas. Tech., 15, 485–502, https://doi.org/10.5194/amt-15-485-2022, https://doi.org/10.5194/amt-15-485-2022, 2022
Short summary
Short summary
The existing infrastructure for cellular communication is promising for ground-based rainfall remote sensing. Rain-induced signal attenuation is used in dedicated algorithms for retrieving rainfall depth along commercial microwave links (CMLs) between cell phone towers. This processing is a source of many uncertainties about input data, algorithm structures, parameters, CML network, and local climate. Application of a stochastic optimization method leads to improved CML rainfall estimates.
Charles Nduhiu Wamucii, Pieter R. van Oel, Arend Ligtenberg, John Mwangi Gathenya, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 25, 5641–5665, https://doi.org/10.5194/hess-25-5641-2021, https://doi.org/10.5194/hess-25-5641-2021, 2021
Short summary
Short summary
East African water towers (WTs) are under pressure from human influences within and without, but the water yield (WY) is more sensitive to climate changes from within. Land use changes have greater impacts on WY in the surrounding lowlands. The WTs have seen a strong shift towards wetter conditions while, at the same time, the potential evapotranspiration is gradually increasing. The WTs were identified as non-resilient, and future WY may experience more extreme variations.
Peter T. La Follette, Adriaan J. Teuling, Nans Addor, Martyn Clark, Koen Jansen, and Lieke A. Melsen
Hydrol. Earth Syst. Sci., 25, 5425–5446, https://doi.org/10.5194/hess-25-5425-2021, https://doi.org/10.5194/hess-25-5425-2021, 2021
Short summary
Short summary
Hydrological models are useful tools that allow us to predict distributions and movement of water. A variety of numerical methods are used by these models. We demonstrate which numerical methods yield large errors when subject to extreme precipitation. As the climate is changing such that extreme precipitation is more common, we find that some numerical methods are better suited for use in hydrological models. Also, we find that many current hydrological models use relatively inaccurate methods.
Ruben Imhoff, Claudia Brauer, Klaas-Jan van Heeringen, Hidde Leijnse, Aart Overeem, Albrecht Weerts, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 25, 4061–4080, https://doi.org/10.5194/hess-25-4061-2021, https://doi.org/10.5194/hess-25-4061-2021, 2021
Short summary
Short summary
Significant biases in real-time radar rainfall products limit the use for hydrometeorological forecasting. We introduce CARROTS (Climatology-based Adjustments for Radar Rainfall in an OperaTional Setting), a set of fixed bias reduction factors to correct radar rainfall products and to benchmark other correction algorithms. When tested for 12 Dutch basins, estimated rainfall and simulated discharges with CARROTS generally outperform those using the operational mean field bias adjustments.
Simone Gelsinari, Valentijn R. N. Pauwels, Edoardo Daly, Jos van Dam, Remko Uijlenhoet, Nicholas Fewster-Young, and Rebecca Doble
Hydrol. Earth Syst. Sci., 25, 2261–2277, https://doi.org/10.5194/hess-25-2261-2021, https://doi.org/10.5194/hess-25-2261-2021, 2021
Short summary
Short summary
Estimates of recharge to groundwater are often driven by biophysical processes occurring in the soil column and, particularly in remote areas, are also always affected by uncertainty. Using data assimilation techniques to merge remotely sensed observations with outputs of numerical models is one way to reduce this uncertainty. Here, we show the benefits of using such a technique with satellite evapotranspiration rates and coupled hydrogeological models applied to a semi-arid site in Australia.
Joost Buitink, Lieke A. Melsen, and Adriaan J. Teuling
Earth Syst. Dynam., 12, 387–400, https://doi.org/10.5194/esd-12-387-2021, https://doi.org/10.5194/esd-12-387-2021, 2021
Short summary
Short summary
Higher temperatures influence both evaporation and snow processes. These two processes have a large effect on discharge but have distinct roles during different seasons. In this study, we study how higher temperatures affect the discharge via changed evaporation and snow dynamics. Higher temperatures lead to enhanced evaporation but increased melt from glaciers, overall lowering the discharge. During the snowmelt season, discharge was reduced further due to the earlier depletion of snow.
Lieke Anna Melsen and Björn Guse
Hydrol. Earth Syst. Sci., 25, 1307–1332, https://doi.org/10.5194/hess-25-1307-2021, https://doi.org/10.5194/hess-25-1307-2021, 2021
Short summary
Short summary
Certain hydrological processes become more or less relevant when the climate changes. This should also be visible in the models that are used for long-term predictions of river flow as a consequence of climate change. We investigated this using three different models. The change in relevance should be reflected in how the parameters of the models are determined. In the different models, different processes become more relevant in the future: they disagree with each other.
Gijs van Kempen, Karin van der Wiel, and Lieke Anna Melsen
Nat. Hazards Earth Syst. Sci., 21, 961–976, https://doi.org/10.5194/nhess-21-961-2021, https://doi.org/10.5194/nhess-21-961-2021, 2021
Short summary
Short summary
In this study, we combine climate model results with a hydrological model to investigate uncertainties in flood and drought risk. With the climate model, 2000 years of
current climatewas created. The hydrological model consisted of several building blocks that we could adapt. In this way, we could investigate the effect of these hydrological building blocks on high- and low-flow risk in four different climate zones with return periods of up to 500 years.
Laurène J. E. Bouaziz, Fabrizio Fenicia, Guillaume Thirel, Tanja de Boer-Euser, Joost Buitink, Claudia C. Brauer, Jan De Niel, Benjamin J. Dewals, Gilles Drogue, Benjamin Grelier, Lieke A. Melsen, Sotirios Moustakas, Jiri Nossent, Fernando Pereira, Eric Sprokkereef, Jasper Stam, Albrecht H. Weerts, Patrick Willems, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 25, 1069–1095, https://doi.org/10.5194/hess-25-1069-2021, https://doi.org/10.5194/hess-25-1069-2021, 2021
Short summary
Short summary
We quantify the differences in internal states and fluxes of 12 process-based models with similar streamflow performance and assess their plausibility using remotely sensed estimates of evaporation, snow cover, soil moisture and total storage anomalies. The dissimilarities in internal process representation imply that these models cannot all simultaneously be close to reality. Therefore, we invite modelers to evaluate their models using multiple variables and to rely on multi-model studies.
Jolijn van Engelenburg, Erik van Slobbe, Adriaan J. Teuling, Remko Uijlenhoet, and Petra Hellegers
Drink. Water Eng. Sci., 14, 1–43, https://doi.org/10.5194/dwes-14-1-2021, https://doi.org/10.5194/dwes-14-1-2021, 2021
Short summary
Short summary
This study analysed the impact of extreme weather events, water quality deterioration, and a growing drinking water demand on the sustainability of drinking water supply in the Netherlands. The results of the case studies were compared to sustainability issues for drinking water supply that are experienced worldwide. This resulted in a set of sustainability characteristics describing drinking water supply on a local scale in terms of hydrological, technical, and socio-economic characteristics.
Manuela I. Brunner, Lieke A. Melsen, Andrew W. Wood, Oldrich Rakovec, Naoki Mizukami, Wouter J. M. Knoben, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 25, 105–119, https://doi.org/10.5194/hess-25-105-2021, https://doi.org/10.5194/hess-25-105-2021, 2021
Short summary
Short summary
Assessments of current, local, and regional flood hazards and their future changes often involve the use of hydrologic models. A reliable model ideally reproduces both local flood characteristics and regional aspects of flooding. In this paper we investigate how such characteristics are represented by hydrologic models. Our results show that both the modeling of local and regional flood characteristics are challenging, especially under changing climate conditions.
Theresa C. van Hateren, Marco Chini, Patrick Matgen, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-583, https://doi.org/10.5194/hess-2020-583, 2020
Manuscript not accepted for further review
Short summary
Short summary
Agricultural droughts occur when the water content of the soil diminishes to such a level that vegetation is negatively impacted. Here we show that, although they are classified as the same type of drought, substantial differences between soil moisture and vegetation droughts exist. This duality is not included in the term agricultural drought, and thus is a potential issue in drought research. We argue that a distinction should be made between soil moisture and vegetation drought events.
Joost Buitink, Anne M. Swank, Martine van der Ploeg, Naomi E. Smith, Harm-Jan F. Benninga, Frank van der Bolt, Coleen D. U. Carranza, Gerbrand Koren, Rogier van der Velde, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 24, 6021–6031, https://doi.org/10.5194/hess-24-6021-2020, https://doi.org/10.5194/hess-24-6021-2020, 2020
Short summary
Short summary
The amount of water stored in the soil is critical for the productivity of plants. Plant productivity is either limited by the available water or by the available energy. In this study, we infer this transition point by comparing local observations of water stored in the soil with satellite observations of vegetation productivity. We show that the transition point is not constant with soil depth, indicating that plants use water from deeper layers when the soil gets drier.
Shervan Gharari, Martyn P. Clark, Naoki Mizukami, Wouter J. M. Knoben, Jefferson S. Wong, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 24, 5953–5971, https://doi.org/10.5194/hess-24-5953-2020, https://doi.org/10.5194/hess-24-5953-2020, 2020
Short summary
Short summary
This work explores the trade-off between the accuracy of the representation of geospatial data, such as land cover, soil type, and elevation zones, in a land (surface) model and its performance in the context of modeling. We used a vector-based setup instead of the commonly used grid-based setup to identify this trade-off. We also assessed the often neglected parameter uncertainty and its impact on the land model simulations.
Joost Buitink, Lieke A. Melsen, James W. Kirchner, and Adriaan J. Teuling
Geosci. Model Dev., 13, 6093–6110, https://doi.org/10.5194/gmd-13-6093-2020, https://doi.org/10.5194/gmd-13-6093-2020, 2020
Short summary
Short summary
This paper presents a new distributed hydrological model: the distributed simple dynamical systems (dS2) model. The model is built with a focus on computational efficiency and is therefore able to simulate basins at high spatial and temporal resolution at a low computational cost. Despite the simplicity of the model concept, it is able to correctly simulate discharge in both small and mesoscale basins.
Elham Rouholahnejad Freund, Massimiliano Zappa, and James W. Kirchner
Hydrol. Earth Syst. Sci., 24, 5015–5025, https://doi.org/10.5194/hess-24-5015-2020, https://doi.org/10.5194/hess-24-5015-2020, 2020
Short summary
Short summary
Evapotranspiration (ET) is the largest flux from the land to the atmosphere and thus contributes to Earth's energy and water balance. Due to its impact on atmospheric dynamics, ET is a key driver of droughts and heatwaves. In this paper, we demonstrate how averaging over land surface heterogeneity contributes to substantial overestimates of ET fluxes. We also demonstrate how one can correct for the effects of small-scale heterogeneity without explicitly representing it in land surface models.
Jasper Foets, Carlos E. Wetzel, Núria Martínez-Carreras, Adriaan J. Teuling, Jean-François Iffly, and Laurent Pfister
Hydrol. Earth Syst. Sci., 24, 4709–4725, https://doi.org/10.5194/hess-24-4709-2020, https://doi.org/10.5194/hess-24-4709-2020, 2020
Short summary
Short summary
Diatoms (microscopic algae) are regarded as useful tracers in catchment hydrology. However, diatom analysis is labour-intensive; therefore, only a limited number of samples can be analysed. To reduce this number, we explored the potential for a time-integrated mass-flux sampler to provide a representative sample of the diatom assemblage for a whole storm run-off event. Our results indicate that the Phillips sampler did indeed sample representative communities during two of the three events.
Caspar T. J. Roebroek, Lieke A. Melsen, Anne J. Hoek van Dijke, Ying Fan, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 24, 4625–4639, https://doi.org/10.5194/hess-24-4625-2020, https://doi.org/10.5194/hess-24-4625-2020, 2020
Short summary
Short summary
Vegetation is a principal component in the Earth system models that are used for weather, climate and other environmental predictions. Water is one of the main drivers of vegetation; however, the global distribution of how water influences vegetation is not well understood. This study looks at spatial patterns of photosynthesis and water sources (rain and groundwater) to obtain a first understanding of water access and limitations for the growth of global forests (proxy for natural vegetation).
Anne J. Hoek van Dijke, Kaniska Mallick, Martin Schlerf, Miriam Machwitz, Martin Herold, and Adriaan J. Teuling
Biogeosciences, 17, 4443–4457, https://doi.org/10.5194/bg-17-4443-2020, https://doi.org/10.5194/bg-17-4443-2020, 2020
Short summary
Short summary
We investigated the link between the vegetation leaf area index (LAI) and the land–atmosphere exchange of water, energy, and carbon fluxes. We show that the correlation between the LAI and water and energy fluxes depends on the vegetation type and aridity. For carbon fluxes, however, the correlation with the LAI was strong and independent of vegetation and aridity. This study provides insight into when the vegetation LAI can be used to model or extrapolate land–atmosphere fluxes.
Manuela I. Brunner, Lieke A. Melsen, Andrew J. Newman, Andrew W. Wood, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 24, 3951–3966, https://doi.org/10.5194/hess-24-3951-2020, https://doi.org/10.5194/hess-24-3951-2020, 2020
Short summary
Short summary
Streamflow seasonality is changing and expected to further change under the influence of climate change. We here assess how annual streamflow hydrographs will change in future by using a newly developed classification scheme. Our comparison of future with current annual hydrograph classes shows that robust changes are expected only for currently melt-influenced regions in the Rocky Mountains. These upstream changes may require the adaptation of management strategies in downstream regions.
Thomas C. van Leth, Hidde Leijnse, Aart Overeem, and Remko Uijlenhoet
Atmos. Meas. Tech., 13, 1797–1815, https://doi.org/10.5194/amt-13-1797-2020, https://doi.org/10.5194/amt-13-1797-2020, 2020
Short summary
Short summary
We present a method of using collocated microwave link instruments to estimate the average size distribution of raindrops along a path of several kilometers. Our method is validated using simulated fields as well as five laser disdrometers installed along a path. We also present preliminary results from an experimental setup measuring at 26 and 38 GHz along a 2.2 km path. We show that a retrieval on the basis of microwave links can be highly accurate, provided the base power level is stable.
Marco Dal Molin, Mario Schirmer, Massimiliano Zappa, and Fabrizio Fenicia
Hydrol. Earth Syst. Sci., 24, 1319–1345, https://doi.org/10.5194/hess-24-1319-2020, https://doi.org/10.5194/hess-24-1319-2020, 2020
Femke A. Jansen and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 24, 1055–1072, https://doi.org/10.5194/hess-24-1055-2020, https://doi.org/10.5194/hess-24-1055-2020, 2020
Short summary
Short summary
We characterized the (dis)agreement between six evaporation methods from hourly to decadal timescales, focussing on the IJsselmeer region in the Netherlands. The projected changes in mean yearly water losses through evaporation between the years 2000 and 2100 range from 4 mm to 94 mm among the methods. We therefore stress that the choice of method is of great importance for water managers in their decision making.
Matthias J. R. Speich, Massimiliano Zappa, Marc Scherstjanoi, and Heike Lischke
Geosci. Model Dev., 13, 537–564, https://doi.org/10.5194/gmd-13-537-2020, https://doi.org/10.5194/gmd-13-537-2020, 2020
Short summary
Short summary
Climate change is expected to substantially affect natural processes, and simulation models are a valuable tool to anticipate these changes. In this study, we combine two existing models that each describe one aspect of the environment: forest dynamics and the terrestrial water cycle. The coupled model better described observed patterns in vegetation structure. We also found that including the effect of water availability on tree height and rooting depth improved the model.
Adrien Guyot, Jayaram Pudashine, Alain Protat, Remko Uijlenhoet, Valentijn R. N. Pauwels, Alan Seed, and Jeffrey P. Walker
Hydrol. Earth Syst. Sci., 23, 4737–4761, https://doi.org/10.5194/hess-23-4737-2019, https://doi.org/10.5194/hess-23-4737-2019, 2019
Short summary
Short summary
We characterised for the first time the rainfall microphysics for Southern Hemisphere temperate latitudes. Co-located instruments were deployed to provide information on the sampling effect and spatio-temporal variabilities at micro scales. Substantial differences were found across the instruments, increasing with increasing values of the rain rate. Specific relations for reflectivity–rainfall are presented together with related uncertainties for drizzle and stratiform and convective rainfall.
Manuela I. Brunner, Daniel Farinotti, Harry Zekollari, Matthias Huss, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 23, 4471–4489, https://doi.org/10.5194/hess-23-4471-2019, https://doi.org/10.5194/hess-23-4471-2019, 2019
Short summary
Short summary
River flow regimes are expected to change and so are extreme flow regimes. We propose two methods for estimating extreme flow regimes and show on a data set from Switzerland how these extreme regimes are expected to change. Our results show that changes in low- and high-flow regimes are distinct for rainfall- and melt-dominated regions. Our findings provide guidance in water resource planning and management.
Manuela I. Brunner, Katharina Liechti, and Massimiliano Zappa
Nat. Hazards Earth Syst. Sci., 19, 2311–2323, https://doi.org/10.5194/nhess-19-2311-2019, https://doi.org/10.5194/nhess-19-2311-2019, 2019
Short summary
Short summary
The 2018 drought event had severe ecological, economic, and social impacts. How extreme was it in Switzerland? We addressed this question by looking at different types of drought, including meteorological, hydrological, agricultural, and groundwater drought, and at the two characteristics deficit and deficit duration. The return period estimates depended on the region, variable, and return period considered.
Adriaan J. Teuling, Emile A. G. de Badts, Femke A. Jansen, Richard Fuchs, Joost Buitink, Anne J. Hoek van Dijke, and Shannon M. Sterling
Hydrol. Earth Syst. Sci., 23, 3631–3652, https://doi.org/10.5194/hess-23-3631-2019, https://doi.org/10.5194/hess-23-3631-2019, 2019
Short summary
Short summary
Over the past decades, changes in land use and climate over Europe have impacted the average flow of water flowing through rivers and reservoirs (the so-called
water yield). We quantify these changes using a simple but widely tested modelling approach constrained by observations of lysimeters across Europe. Results show that the contribution of land use to changes in water yield are of the same order as changes in climate, showing that impacts of land use changes cannot be neglected.
Sven Boese, Martin Jung, Nuno Carvalhais, Adriaan J. Teuling, and Markus Reichstein
Biogeosciences, 16, 2557–2572, https://doi.org/10.5194/bg-16-2557-2019, https://doi.org/10.5194/bg-16-2557-2019, 2019
Short summary
Short summary
This study examines how limited water availability during droughts affects water-use efficiency. This metric describes how much carbon an ecosystem can assimilate for each unit of water lost by transpiration. We test how well different water-use efficiency models can capture the dynamics of transpiration decrease due to increased soil-water limitation. Accounting for the interacting effects of radiation and water limitation is necessary to accurately predict transpiration during these periods.
Naoki Mizukami, Oldrich Rakovec, Andrew J. Newman, Martyn P. Clark, Andrew W. Wood, Hoshin V. Gupta, and Rohini Kumar
Hydrol. Earth Syst. Sci., 23, 2601–2614, https://doi.org/10.5194/hess-23-2601-2019, https://doi.org/10.5194/hess-23-2601-2019, 2019
Short summary
Short summary
We find that Nash–Sutcliffe (NSE)-based model calibrations result in poor reproduction of high-flow events, such as the annual peak flows that are used for flood frequency estimation. The use of Kling–Gupta efficiency (KGE) results in annual peak flow estimates that are better than from NSE, with only a slight degradation in performance with respect to other related metrics.
Hendrik Wouters, Irina Y. Petrova, Chiel C. van Heerwaarden, Jordi Vilà-Guerau de Arellano, Adriaan J. Teuling, Vicky Meulenberg, Joseph A. Santanello, and Diego G. Miralles
Geosci. Model Dev., 12, 2139–2153, https://doi.org/10.5194/gmd-12-2139-2019, https://doi.org/10.5194/gmd-12-2139-2019, 2019
Short summary
Short summary
The free software CLASS4GL (http://class4gl.eu) is designed to investigate the dynamic atmospheric boundary layer (ABL) with weather balloons. It mines observational data from global radio soundings, satellite and reanalysis data from the last 40 years to constrain and initialize an ABL model and automizes multiple experiments in parallel. CLASS4GL aims at fostering a better understanding of land–atmosphere feedbacks and the drivers of extreme weather.
Anne J. Hoek van Dijke, Kaniska Mallick, Adriaan J. Teuling, Martin Schlerf, Miriam Machwitz, Sibylle K. Hassler, Theresa Blume, and Martin Herold
Hydrol. Earth Syst. Sci., 23, 2077–2091, https://doi.org/10.5194/hess-23-2077-2019, https://doi.org/10.5194/hess-23-2077-2019, 2019
Short summary
Short summary
Satellite images are often used to estimate land water fluxes over a larger area. In this study, we investigate the link between a well-known vegetation index derived from satellite data and sap velocity, in a temperate forest in Luxembourg. We show that the link between the vegetation index and transpiration is not constant. Therefore we suggest that the use of vegetation indices to predict transpiration should be limited to ecosystems and scales where the link has been confirmed.
Joost Buitink, Remko Uijlenhoet, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 23, 1593–1609, https://doi.org/10.5194/hess-23-1593-2019, https://doi.org/10.5194/hess-23-1593-2019, 2019
Short summary
Short summary
This study describes how the spatial resolution of hydrological models affects the model results. The high-resolution model allowed for more spatial variability than the low-resolution model. As a result, the low-resolution model failed to capture most variability that was simulated with the high-resolution model. This has implications for the interpretation of results carried out at coarse resolutions, as they may fail to represent the local small-scale variability.
Bart van Osnabrugge, Remko Uijlenhoet, and Albrecht Weerts
Hydrol. Earth Syst. Sci., 23, 1453–1467, https://doi.org/10.5194/hess-23-1453-2019, https://doi.org/10.5194/hess-23-1453-2019, 2019
Short summary
Short summary
A correct estimate of the amount of future precipitation is the most important factor in making a good streamflow forecast, but evaporation is also an important component that determines the discharge of a river. However, in this study for the Rhine River we found that evaporation forecasts only give an almost negligible improvement compared to methods that use statistical information on climatology for a 10-day streamflow forecast. This is important to guide research on low flow forecasts.
Samuel Monhart, Massimiliano Zappa, Christoph Spirig, Christoph Schär, and Konrad Bogner
Hydrol. Earth Syst. Sci., 23, 493–513, https://doi.org/10.5194/hess-23-493-2019, https://doi.org/10.5194/hess-23-493-2019, 2019
Short summary
Short summary
Subseasonal streamflow forecasts have received increasing attention during the past decade, but their performance in alpine catchments is still largely unknown. We analyse the effect of a statistical correction technique applied to the driving meteorological forecasts on the performance of the resulting streamflow forecasts. The study shows the benefits of such hydrometeorological ensemble prediction systems and highlights the importance of snow-related processes for subseasonal predictions.
Manuel Antonetti, Christoph Horat, Ioannis V. Sideris, and Massimiliano Zappa
Nat. Hazards Earth Syst. Sci., 19, 19–40, https://doi.org/10.5194/nhess-19-19-2019, https://doi.org/10.5194/nhess-19-19-2019, 2019
Short summary
Short summary
To predict timing and magnitude peak run-off, meteorological and calibrated hydrological models are commonly coupled. A flash-flood forecasting chain is presented based on a process-based run-off generation module with no need for calibration. This chain has been evaluated using data for the Emme catchment (Switzerland). The outcomes of this study show that operational flash predictions in ungauged basins can benefit from the use of information on run-off processes.
Nevil Quinn, Günter Blöschl, András Bárdossy, Attilio Castellarin, Martyn Clark, Christophe Cudennec, Demetris Koutsoyiannis, Upmanu Lall, Lubomir Lichner, Juraj Parajka, Christa D. Peters-Lidard, Graham Sander, Hubert Savenije, Keith Smettem, Harry Vereecken, Alberto Viglione, Patrick Willems, Andy Wood, Ross Woods, Chong-Yu Xu, and Erwin Zehe
Proc. IAHS, 380, 3–8, https://doi.org/10.5194/piahs-380-3-2018, https://doi.org/10.5194/piahs-380-3-2018, 2018
Gerhard Krinner, Chris Derksen, Richard Essery, Mark Flanner, Stefan Hagemann, Martyn Clark, Alex Hall, Helmut Rott, Claire Brutel-Vuilmet, Hyungjun Kim, Cécile B. Ménard, Lawrence Mudryk, Chad Thackeray, Libo Wang, Gabriele Arduini, Gianpaolo Balsamo, Paul Bartlett, Julia Boike, Aaron Boone, Frédérique Chéruy, Jeanne Colin, Matthias Cuntz, Yongjiu Dai, Bertrand Decharme, Jeff Derry, Agnès Ducharne, Emanuel Dutra, Xing Fang, Charles Fierz, Josephine Ghattas, Yeugeniy Gusev, Vanessa Haverd, Anna Kontu, Matthieu Lafaysse, Rachel Law, Dave Lawrence, Weiping Li, Thomas Marke, Danny Marks, Martin Ménégoz, Olga Nasonova, Tomoko Nitta, Masashi Niwano, John Pomeroy, Mark S. Raleigh, Gerd Schaedler, Vladimir Semenov, Tanya G. Smirnova, Tobias Stacke, Ulrich Strasser, Sean Svenson, Dmitry Turkov, Tao Wang, Nander Wever, Hua Yuan, Wenyan Zhou, and Dan Zhu
Geosci. Model Dev., 11, 5027–5049, https://doi.org/10.5194/gmd-11-5027-2018, https://doi.org/10.5194/gmd-11-5027-2018, 2018
Short summary
Short summary
This paper provides an overview of a coordinated international experiment to determine the strengths and weaknesses in how climate models treat snow. The models will be assessed at point locations using high-quality reference measurements and globally using satellite-derived datasets. How well climate models simulate snow-related processes is important because changing snow cover is an important part of the global climate system and provides an important freshwater resource for human use.
Nevil Quinn, Günter Blöschl, András Bárdossy, Attilio Castellarin, Martyn Clark, Christophe Cudennec, Demetris Koutsoyiannis, Upmanu Lall, Lubomir Lichner, Juraj Parajka, Christa D. Peters-Lidard, Graham Sander, Hubert Savenije, Keith Smettem, Harry Vereecken, Alberto Viglione, Patrick Willems, Andy Wood, Ross Woods, Chong-Yu Xu, and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 5735–5739, https://doi.org/10.5194/hess-22-5735-2018, https://doi.org/10.5194/hess-22-5735-2018, 2018
Tjitske J. Geertsema, Adriaan J. Teuling, Remko Uijlenhoet, Paul J. J. F. Torfs, and Antonius J. F. Hoitink
Hydrol. Earth Syst. Sci., 22, 5599–5613, https://doi.org/10.5194/hess-22-5599-2018, https://doi.org/10.5194/hess-22-5599-2018, 2018
Short summary
Short summary
This study investigate the processes and effects of simultaneous flood peaks at a lowland confluence. The flood peaks are analyzed with the relatively new dynamic time warping method, which offers a robust means of tracing flood waves in discharge time series at confluences. The time lag between discharge peaks in the main river and its lowland tributaries is small compared to the wave duration; therefore the exact timing of discharge peaks may be little relevant to flood risk.
Peter Stucki, Moritz Bandhauer, Ulla Heikkilä, Ole Rössler, Massimiliano Zappa, Lucas Pfister, Melanie Salvisberg, Paul Froidevaux, Olivia Martius, Luca Panziera, and Stefan Brönnimann
Nat. Hazards Earth Syst. Sci., 18, 2717–2739, https://doi.org/10.5194/nhess-18-2717-2018, https://doi.org/10.5194/nhess-18-2717-2018, 2018
Short summary
Short summary
A catastrophic flood south of the Alps in 1868 is assessed using documents and the earliest example of high-resolution weather simulation. Simulated weather dynamics agree well with observations and damage reports. Simulated peak water levels are biased. Low forest cover did not cause the flood, but such a paradigm was used to justify afforestation. Supported by historical methods, such numerical simulations allow weather events from past centuries to be used for modern hazard and risk analyses.
Manuel Antonetti and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 22, 4425–4447, https://doi.org/10.5194/hess-22-4425-2018, https://doi.org/10.5194/hess-22-4425-2018, 2018
Short summary
Short summary
We developed 60 modelling chain combinations based on either experimentalists' (bottom-up) or modellers' (top-down) thinking and forced them with data of increasing accuracy. Results showed that the differences in performance arising from the forcing data were due to compensation effects. We also found that modellers' and experimentalists' concept of
model realismdiffers, and the level of detail a model should have to reproduce the processes expected must be agreed in advance.
Thomas C. van Leth, Aart Overeem, Hidde Leijnse, and Remko Uijlenhoet
Atmos. Meas. Tech., 11, 4645–4669, https://doi.org/10.5194/amt-11-4645-2018, https://doi.org/10.5194/amt-11-4645-2018, 2018
Short summary
Short summary
We present a campaign to address several error sources associated with rainfall estimates from microwave links in cellular communication networks. The set-up consists of three co-located links, complemented with reference instruments. We investigate events covering different attenuating phenomena: Rainfall, solid precipitation, temperature, fog, antenna wetting due to rain or dew, and clutter.
Matthias J. R. Speich, Heike Lischke, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 22, 4097–4124, https://doi.org/10.5194/hess-22-4097-2018, https://doi.org/10.5194/hess-22-4097-2018, 2018
Short summary
Short summary
To simulate the water balance of, e.g., a forest plot, it is important to estimate the maximum volume of water available to plants. This depends on soil properties and the average depth of roots. Rooting depth has proven challenging to estimate. Here, we applied a model assuming that plants dimension their roots to optimize their carbon budget. We compared its results with values obtained by calibrating a dynamic water balance model. In most cases, there is good agreement between both methods.
Manuel F. Rios Gaona, Aart Overeem, Timothy H. Raupach, Hidde Leijnse, and Remko Uijlenhoet
Atmos. Meas. Tech., 11, 4465–4476, https://doi.org/10.5194/amt-11-4465-2018, https://doi.org/10.5194/amt-11-4465-2018, 2018
Short summary
Short summary
Rainfall estimates from commercial microwave links were obtained for the city of Sao Paulo (Brazil). The results show the potential of such networks as complementary rainfall measurements for more robust networks (e.g. radars, gauges, satellites).
Christoph Horat, Manuel Antonetti, Katharina Liechti, Pirmin Kaufmann, and Massimiliano Zappa
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-119, https://doi.org/10.5194/nhess-2018-119, 2018
Publication in NHESS not foreseen
Short summary
Short summary
Two forecasting chains are forced by information from numerical weather predictions. The framework presented in the companion paper by Antonetti et al. has been set up for the Swiss Verzasca basin. The forecasts obtained with the uncalibrated RGM-PRO model are compared to forecasts yielded by the calibrated PREVAH-HRU model. Results shows that the uncalibrated model is able to compete with the calibrated operational prediction system and was consistently superior for
high-flow situations.
Coleen D. U. Carranza, Martine J. van der Ploeg, and Paul J. J. F. Torfs
Hydrol. Earth Syst. Sci., 22, 2255–2267, https://doi.org/10.5194/hess-22-2255-2018, https://doi.org/10.5194/hess-22-2255-2018, 2018
Short summary
Short summary
Remote sensing has been popular for mapping surface soil moisture. However, estimating subsurface values using surface soil moisture remains a challenge, as decoupling can occur. Depth-integrated soil moisture values used in hydrological models are affected by vertical variability. Using statistical methods, we investigate vertical variability between the surface (5 cm) and subsurface (40 cm) to quantify decoupling. We also discuss potential controls for decoupling during wet and dry conditions.
Lieke A. Melsen, Nans Addor, Naoki Mizukami, Andrew J. Newman, Paul J. J. F. Torfs, Martyn P. Clark, Remko Uijlenhoet, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 22, 1775–1791, https://doi.org/10.5194/hess-22-1775-2018, https://doi.org/10.5194/hess-22-1775-2018, 2018
Short summary
Short summary
Long-term hydrological predictions are important for water management planning, but are also prone to uncertainty. This study investigates three sources of uncertainty for long-term hydrological predictions in the US: climate models, hydrological models, and hydrological model parameters. Mapping the results revealed spatial patterns in the three sources of uncertainty: different sources of uncertainty dominate in different regions.
Marit Van Tiel, Adriaan J. Teuling, Niko Wanders, Marc J. P. Vis, Kerstin Stahl, and Anne F. Van Loon
Hydrol. Earth Syst. Sci., 22, 463–485, https://doi.org/10.5194/hess-22-463-2018, https://doi.org/10.5194/hess-22-463-2018, 2018
Short summary
Short summary
Glaciers are important hydrological reservoirs. Short-term variability in glacier melt and also glacier retreat can cause droughts in streamflow. In this study, we analyse the effect of glacier changes and different drought threshold approaches on future projections of streamflow droughts in glacierised catchments. We show that these different methodological options result in different drought projections and that these options can be used to study different aspects of streamflow droughts.
Love Råman Vinnå, Alfred Wüest, Massimiliano Zappa, Gabriel Fink, and Damien Bouffard
Hydrol. Earth Syst. Sci., 22, 31–51, https://doi.org/10.5194/hess-22-31-2018, https://doi.org/10.5194/hess-22-31-2018, 2018
Short summary
Short summary
Responses of inland waters to climate change vary on global and regional scales. Shifts in river discharge regimes act as positive and negative feedbacks in influencing water temperature. The extent of this effect on warming is controlled by the change in river discharge and lake hydraulic residence time. A shift of deep penetrating river intrusions from summer towards winter can potentially counteract the otherwise negative climate effects on deep-water oxygen content.
Cameron Wobus, Ethan Gutmann, Russell Jones, Matthew Rissing, Naoki Mizukami, Mark Lorie, Hardee Mahoney, Andrew W. Wood, David Mills, and Jeremy Martinich
Nat. Hazards Earth Syst. Sci., 17, 2199–2211, https://doi.org/10.5194/nhess-17-2199-2017, https://doi.org/10.5194/nhess-17-2199-2017, 2017
Short summary
Short summary
We linked modeled changes in the frequency of historical 100-year flood events to a national inventory of built assets within mapped floodplains of the United States. This allowed us to project changes in inland flooding damages nationwide under two alternative greenhouse gas (GHG) emissions scenarios. Our results suggest that more aggressive GHG reductions could reduce the projected monetary damages from inland flooding, potentially saving billions of dollars annually by the end of the century.
Joost Buitink, Remko Uijlenhoet, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-629, https://doi.org/10.5194/hess-2017-629, 2017
Revised manuscript not accepted
Short summary
Short summary
We compared the hydrological response simulated at two different spatial resolutions. The low resolution model was not able to simulate the complex response as was simulated with the high resolution model. The low resolution model underestimated the anomalies when compared with the high resolution model. This has implications on the interpretation of global scale impact studies (low resolution) on local or regional scales (high resolution).
Konrad Bogner, Katharina Liechti, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 21, 5493–5502, https://doi.org/10.5194/hess-21-5493-2017, https://doi.org/10.5194/hess-21-5493-2017, 2017
Short summary
Short summary
The enhanced availability of many different weather prediction systems nowadays makes it very difficult for flood and water resource managers to choose the most reliable and accurate forecast. In order to circumvent this problem of choice, different approaches for combining this information have been applied at the Sihl River (CH) and the results have been verified. The outcome of this study highlights the importance of forecast combination in order to improve the quality of forecast systems.
Nans Addor, Andrew J. Newman, Naoki Mizukami, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, https://doi.org/10.5194/hess-21-5293-2017, 2017
Short summary
Short summary
We introduce a data set describing the landscape of 671 catchments in the contiguous USA: we synthesized various data sources to characterize the topography, climate, streamflow, land cover, soil, and geology of each catchment. This extends the daily time series of meteorological forcing and discharge provided by an earlier study. The diversity of these catchments will help to improve our understanding and modeling of how the interplay between catchment attributes shapes hydrological processes.
Markus Hrachowitz and Martyn P. Clark
Hydrol. Earth Syst. Sci., 21, 3953–3973, https://doi.org/10.5194/hess-21-3953-2017, https://doi.org/10.5194/hess-21-3953-2017, 2017
Short summary
Short summary
Physically based and conceptual models in hydrology are the two endpoints in the spectrum of modelling strategies, mostly differing in their degree of detail in resolving the model domain. Given the limitations both modelling strategies face, we believe that to achieve progress in hydrological modelling, a convergence of these methods is necessary. This would allow us to exploit the respective advantages of the bottom-up and top-down models while limiting their respective uncertainties.
Pablo A. Mendoza, Andrew W. Wood, Elizabeth Clark, Eric Rothwell, Martyn P. Clark, Bart Nijssen, Levi D. Brekke, and Jeffrey R. Arnold
Hydrol. Earth Syst. Sci., 21, 3915–3935, https://doi.org/10.5194/hess-21-3915-2017, https://doi.org/10.5194/hess-21-3915-2017, 2017
Short summary
Short summary
Water supply forecasts are critical to support water resources operations and planning. The skill of such forecasts depends on our knowledge of (i) future meteorological conditions and (ii) the amount of water stored in a basin. We address this problem by testing several approaches that make use of these sources of predictability, either separately or in a combined fashion. The main goal is to understand the marginal benefits of both information and methodological complexity in forecast skill.
Matthew F. McCabe, Matthew Rodell, Douglas E. Alsdorf, Diego G. Miralles, Remko Uijlenhoet, Wolfgang Wagner, Arko Lucieer, Rasmus Houborg, Niko E. C. Verhoest, Trenton E. Franz, Jiancheng Shi, Huilin Gao, and Eric F. Wood
Hydrol. Earth Syst. Sci., 21, 3879–3914, https://doi.org/10.5194/hess-21-3879-2017, https://doi.org/10.5194/hess-21-3879-2017, 2017
Short summary
Short summary
We examine the opportunities and challenges that technological advances in Earth observation will present to the hydrological community. From advanced space-based sensors to unmanned aerial vehicles and ground-based distributed networks, these emergent systems are set to revolutionize our understanding and interpretation of hydrological and related processes.
Christa D. Peters-Lidard, Martyn Clark, Luis Samaniego, Niko E. C. Verhoest, Tim van Emmerik, Remko Uijlenhoet, Kevin Achieng, Trenton E. Franz, and Ross Woods
Hydrol. Earth Syst. Sci., 21, 3701–3713, https://doi.org/10.5194/hess-21-3701-2017, https://doi.org/10.5194/hess-21-3701-2017, 2017
Short summary
Short summary
In this synthesis of hydrologic scaling and similarity, we assert that it is time for hydrology to embrace a fourth paradigm of data-intensive science. Advances in information-based hydrologic science, coupled with an explosion of hydrologic data and advances in parameter estimation and modeling, have laid the foundation for a data-driven framework for scrutinizing hydrological hypotheses. We call upon the community to develop a focused effort towards a fourth paradigm for hydrology.
Martyn P. Clark, Marc F. P. Bierkens, Luis Samaniego, Ross A. Woods, Remko Uijlenhoet, Katrina E. Bennett, Valentijn R. N. Pauwels, Xitian Cai, Andrew W. Wood, and Christa D. Peters-Lidard
Hydrol. Earth Syst. Sci., 21, 3427–3440, https://doi.org/10.5194/hess-21-3427-2017, https://doi.org/10.5194/hess-21-3427-2017, 2017
Short summary
Short summary
The diversity in hydrologic models has led to controversy surrounding the “correct” approach to hydrologic modeling. In this paper we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, summarize modeling advances that address these challenges, and define outstanding research needs.
Hidayat Hidayat, Adriaan J. Teuling, Bart Vermeulen, Muh Taufik, Karl Kastner, Tjitske J. Geertsema, Dinja C. C. Bol, Dirk H. Hoekman, Gadis Sri Haryani, Henny A. J. Van Lanen, Robert M. Delinom, Roel Dijksma, Gusti Z. Anshari, Nining S. Ningsih, Remko Uijlenhoet, and Antonius J. F. Hoitink
Hydrol. Earth Syst. Sci., 21, 2579–2594, https://doi.org/10.5194/hess-21-2579-2017, https://doi.org/10.5194/hess-21-2579-2017, 2017
Short summary
Short summary
Hydrological prediction is crucial but in tropical lowland it is difficult, considering data scarcity and river system complexity. This study offers a view of the hydrology of two tropical lowlands in Indonesia. Both lowlands exhibit the important role of upstream wetlands in regulating the flow downstream. We expect that this work facilitates a better prediction of fire-prone conditions in these regions.
Guillaume Nord, Brice Boudevillain, Alexis Berne, Flora Branger, Isabelle Braud, Guillaume Dramais, Simon Gérard, Jérôme Le Coz, Cédric Legoût, Gilles Molinié, Joel Van Baelen, Jean-Pierre Vandervaere, Julien Andrieu, Coralie Aubert, Martin Calianno, Guy Delrieu, Jacopo Grazioli, Sahar Hachani, Ivan Horner, Jessica Huza, Raphaël Le Boursicaud, Timothy H. Raupach, Adriaan J. Teuling, Magdalena Uber, Béatrice Vincendon, and Annette Wijbrans
Earth Syst. Sci. Data, 9, 221–249, https://doi.org/10.5194/essd-9-221-2017, https://doi.org/10.5194/essd-9-221-2017, 2017
Short summary
Short summary
A high space–time resolution dataset linking hydrometeorological forcing and hydro-sedimentary response in a mesoscale catchment (Auzon, 116 km2) of the Ardèche region (France) is presented. This region is subject to precipitating systems of Mediterranean origin, which can result in significant rainfall amount. The data presented cover a period of 4 years (2011–2014) and aim at improving the understanding of processes triggering flash floods.
Lotte de Vos, Hidde Leijnse, Aart Overeem, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 21, 765–777, https://doi.org/10.5194/hess-21-765-2017, https://doi.org/10.5194/hess-21-765-2017, 2017
Short summary
Short summary
Recent developments have made it possible to easily crowdsource meteorological measurements from automatic personal weather stations worldwide. This has offered free access to rainfall ground measurements at spatial and temporal resolutions far exceeding those of national operational sensor networks, especially in cities. This paper is the first step to make optimal use of this promising source of rainfall measurements and identify challenges for future implementation for urban applications.
Chengcheng Huang, Andrew J. Newman, Martyn P. Clark, Andrew W. Wood, and Xiaogu Zheng
Hydrol. Earth Syst. Sci., 21, 635–650, https://doi.org/10.5194/hess-21-635-2017, https://doi.org/10.5194/hess-21-635-2017, 2017
Short summary
Short summary
This study examined the potential of snow water equivalent data assimilation to improve seasonal streamflow predictions. We examined aspects of the data assimilation system over basins with varying climates across the western US. We found that varying how the data assimilation system is implemented impacts forecast performance, and basins with good initial calibrations see less benefit. This implies that basin-specific configurations and benefits should be expected given this modeling system.
Steven L. Markstrom, Lauren E. Hay, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 20, 4655–4671, https://doi.org/10.5194/hess-20-4655-2016, https://doi.org/10.5194/hess-20-4655-2016, 2016
Short summary
Short summary
Results of this study indicate that it is possible to identify the influence of different hydrologic processes when simulating with a distributed-parameter hydrology model on the basis of parameter sensitivity analysis. Identification of these processes allows the modeler to focus on the more important aspects of the model input and output, which can simplify all facets of the hydrologic modeling application.
Anne F. Van Loon, Kerstin Stahl, Giuliano Di Baldassarre, Julian Clark, Sally Rangecroft, Niko Wanders, Tom Gleeson, Albert I. J. M. Van Dijk, Lena M. Tallaksen, Jamie Hannaford, Remko Uijlenhoet, Adriaan J. Teuling, David M. Hannah, Justin Sheffield, Mark Svoboda, Boud Verbeiren, Thorsten Wagener, and Henny A. J. Van Lanen
Hydrol. Earth Syst. Sci., 20, 3631–3650, https://doi.org/10.5194/hess-20-3631-2016, https://doi.org/10.5194/hess-20-3631-2016, 2016
Short summary
Short summary
In the Anthropocene, drought cannot be viewed as a natural hazard independent of people. Drought can be alleviated or made worse by human activities and drought impacts are dependent on a myriad of factors. In this paper, we identify research gaps and suggest a framework that will allow us to adequately analyse and manage drought in the Anthropocene. We need to focus on attribution of drought to different drivers, linking drought to its impacts, and feedbacks between drought and society.
C. Z. van de Beek, H. Leijnse, P. Hazenberg, and R. Uijlenhoet
Atmos. Meas. Tech., 9, 3837–3850, https://doi.org/10.5194/amt-9-3837-2016, https://doi.org/10.5194/amt-9-3837-2016, 2016
Short summary
Short summary
Quantitative precipitation estimation using weather radar is affected by many sources of error. This study is an attempt to separate and quantify sources of error very close to the radar. A 3-day event is analyzed using radar, rain gauge and disdrometer data. Without correction, the radar severely underestimates the total rain amount by more than 50 %. After correction for the errors, a good match with rain gauge measurements is found, with 5 to 8 % difference.
Manuel Antonetti, Rahel Buss, Simon Scherrer, Michael Margreth, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 20, 2929–2945, https://doi.org/10.5194/hess-20-2929-2016, https://doi.org/10.5194/hess-20-2929-2016, 2016
Short summary
Short summary
We evaluated three automatic mapping approaches of dominant runoff processes (DRPs) with different complexity using similarity measures and synthetic runoff simulations. The most complex DRP maps were the most similar to the reference maps. Runoff simulations derived from the simpler DRP maps were more uncertain due to inaccuracies in the input data and rather coarse simplifications in the mapping criteria. It would thus be worthwhile trying to obtain DRP maps that are as realistic as possible.
Naoki Mizukami, Martyn P. Clark, Kevin Sampson, Bart Nijssen, Yixin Mao, Hilary McMillan, Roland J. Viger, Steve L. Markstrom, Lauren E. Hay, Ross Woods, Jeffrey R. Arnold, and Levi D. Brekke
Geosci. Model Dev., 9, 2223–2238, https://doi.org/10.5194/gmd-9-2223-2016, https://doi.org/10.5194/gmd-9-2223-2016, 2016
Short summary
Short summary
mizuRoute version 1 is a stand-alone runoff routing tool that post-processes runoff outputs from any distributed hydrologic models to produce streamflow estimates in large-scale river network. mizuRoute is flexible to river network representation and includes two different river routing schemes. This paper demonstrates mizuRoute's capability of multi-decadal streamflow estimations in the river networks over the entire contiguous Unites States, which contains over 54 000 river segments.
Aart Overeem, Hidde Leijnse, and Remko Uijlenhoet
Atmos. Meas. Tech., 9, 2425–2444, https://doi.org/10.5194/amt-9-2425-2016, https://doi.org/10.5194/amt-9-2425-2016, 2016
Short summary
Short summary
Microwave links in commercial cellular communication networks hold a promise for areal rainfall monitoring and could complement rainfall estimates from ground-based weather radars, rain gauges, and satellites. It has been shown that country-wide rainfall maps can be derived from the signal attenuations of microwave links in such a network. Here we give a detailed description of the employed rainfall retrieval algorithm and the corresponding code, which is freely provided at GitHub.
Kerstin Stahl, Irene Kohn, Veit Blauhut, Julia Urquijo, Lucia De Stefano, Vanda Acácio, Susana Dias, James H. Stagge, Lena M. Tallaksen, Eleni Kampragou, Anne F. Van Loon, Lucy J. Barker, Lieke A. Melsen, Carlo Bifulco, Dario Musolino, Alessandro de Carli, Antonio Massarutto, Dionysis Assimacopoulos, and Henny A. J. Van Lanen
Nat. Hazards Earth Syst. Sci., 16, 801–819, https://doi.org/10.5194/nhess-16-801-2016, https://doi.org/10.5194/nhess-16-801-2016, 2016
Short summary
Short summary
Based on the European Drought Impact report Inventory (EDII), the study presents an assessment of the occurrence and diversity of drought impacts across Europe. A unique research database has collected close to 5000 textual drought impact reports from 33 European countries. Consistently, reported impacts have been dominated in number by agriculture and water supply, but were very diverse across other sectors. Data and assessment may help drought policy planning at the international level.
Rohini Kumar, Jude L. Musuuza, Anne F. Van Loon, Adriaan J. Teuling, Roland Barthel, Jurriaan Ten Broek, Juliane Mai, Luis Samaniego, and Sabine Attinger
Hydrol. Earth Syst. Sci., 20, 1117–1131, https://doi.org/10.5194/hess-20-1117-2016, https://doi.org/10.5194/hess-20-1117-2016, 2016
Short summary
Short summary
In a maiden attempt, we performed a multiscale evaluation of the widely used SPI to characterize local- and regional-scale groundwater (GW) droughts using observations at 2040 groundwater wells in Germany and the Netherlands. From this data-based exploratory analysis, we provide sufficient evidence regarding the inability of the SPI to characterize GW drought events, and stress the need for more GW observations and accounting for regional hydrogeological characteristics in GW drought monitoring.
Lieke A. Melsen, Adriaan J. Teuling, Paul J. J. F. Torfs, Remko Uijlenhoet, Naoki Mizukami, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 20, 1069–1079, https://doi.org/10.5194/hess-20-1069-2016, https://doi.org/10.5194/hess-20-1069-2016, 2016
Short summary
Short summary
A meta-analysis on 192 peer-reviewed articles reporting applications of a land surface model in a distributed way reveals that the spatial resolution at which the model is applied has increased over the years, while the calibration and validation time interval has remained unchanged. We argue that the calibration and validation time interval should keep pace with the increase in spatial resolution in order to resolve the processes that are relevant at the applied spatial resolution.
Michal Jenicek, Jan Seibert, Massimiliano Zappa, Maria Staudinger, and Tobias Jonas
Hydrol. Earth Syst. Sci., 20, 859–874, https://doi.org/10.5194/hess-20-859-2016, https://doi.org/10.5194/hess-20-859-2016, 2016
Short summary
Short summary
We quantified how long snowmelt affects runoff, and we estimated the sensitivity of catchments to changes in snowpack. This is relevant as the increase of air temperature might cause decreased snow storage. We used time series from 14 catchments in Switzerland. On average, a decrease of maximum snow storage by 10 % caused a decrease of minimum discharge in July by 2 to 9 %. The results showed a higher sensitivity of summer low flow to snow in alpine catchments compared to pre-alpine catchments.
M. F. Rios Gaona, A. Overeem, H. Leijnse, and R. Uijlenhoet
Hydrol. Earth Syst. Sci., 19, 3571–3584, https://doi.org/10.5194/hess-19-3571-2015, https://doi.org/10.5194/hess-19-3571-2015, 2015
Short summary
Short summary
Commercial cellular networks are built for telecommunication purposes. These kinds of networks have lately been used to obtain rainfall maps at country-wide scales. From previous studies, we now quantify the uncertainties associated with such maps. To do so, we divided the sources or error into two categories: from microwave link measurements and from mapping. It was found that the former is the source that contributes the most to the overall error in rainfall maps from microwave link network.
A. I. Stegehuis, R. Vautard, P. Ciais, A. J. Teuling, D. G. Miralles, and M. Wild
Geosci. Model Dev., 8, 2285–2298, https://doi.org/10.5194/gmd-8-2285-2015, https://doi.org/10.5194/gmd-8-2285-2015, 2015
Short summary
Short summary
Many climate models have difficulties in properly reproducing climate extremes such as heat wave conditions. We use a regional climate model with different atmospheric physics schemes to simulate the heat wave events of 2003 in western Europe and 2010 in Russia. The five best-performing and diverse physics scheme combinations may be used in the future to perform heat wave analysis and to investigate the impact of climate change in summer in Europe.
M. S. Raleigh, J. D. Lundquist, and M. P. Clark
Hydrol. Earth Syst. Sci., 19, 3153–3179, https://doi.org/10.5194/hess-19-3153-2015, https://doi.org/10.5194/hess-19-3153-2015, 2015
Short summary
Short summary
A sensitivity analysis is used to examine how error characteristics (type, distributions, and magnitudes) in meteorological forcing data impact outputs from a physics-based snow model in four climates. Bias and error magnitudes were key factors in model sensitivity and precipitation bias often dominated. However, the relative importance of forcings depended somewhat on the selected model output. Forcing uncertainty was comparable to model structural uncertainty as found in other studies.
O. Rakovec, A. H. Weerts, J. Sumihar, and R. Uijlenhoet
Hydrol. Earth Syst. Sci., 19, 2911–2924, https://doi.org/10.5194/hess-19-2911-2015, https://doi.org/10.5194/hess-19-2911-2015, 2015
Short summary
Short summary
This is the first analysis of the asynchronous ensemble Kalman filter in hydrological forecasting. The results of discharge assimilation into a hydrological model for the catchment show that including past predictions and observations in the filter improves model forecasts. Additionally, we show that elimination of the strongly non-linear relation between soil moisture and assimilated discharge observations from the model update becomes beneficial for improved operational forecasting.
M. Zappa, N. Andres, P. Kienzler, D. Näf-Huber, C. Marti, and M. Oplatka
Proc. IAHS, 370, 235–242, https://doi.org/10.5194/piahs-370-235-2015, https://doi.org/10.5194/piahs-370-235-2015, 2015
Short summary
Short summary
The most severe threat for the city of Zürich (Switzerland) are flash-floods from the small Sihl river. An assessment using a rainfall-runoff model evaluated more than 40000 extreme flood scenarios. These scenarios identified deficits for the safety of Zürich. The combination of different structural and flood management measures can lead to an optimal safety also in case of unfavorable initial conditions. Pending questions concern the costs, political decisions and the environmental matters.
M. Zappa, T. Vitvar, A. Rücker, G. Melikadze, L. Bernhard, V. David, M. Jans-Singh, N. Zhukova, and M. Sanda
Proc. IAHS, 369, 25–30, https://doi.org/10.5194/piahs-369-25-2015, https://doi.org/10.5194/piahs-369-25-2015, 2015
Short summary
Short summary
A research effort involving Switzerland, Georgia and the Czech Republic has been launched to evaluate the relation between snowpack and summer low flows. Two rainfall-runoff models will simulate over 10 years of snow hydrology and runoff in nested streams. Processes involved will be also evaluated by mean by means of high frequency sampling of the environmental isotopes 18O and 2H. The paper presents first analysis of available datasets of 18O, 2H, discharge, snowpack and modelling experiments.
P. Ronco, M. Bullo, S. Torresan, A. Critto, R. Olschewski, M. Zappa, and A. Marcomini
Hydrol. Earth Syst. Sci., 19, 1561–1576, https://doi.org/10.5194/hess-19-1561-2015, https://doi.org/10.5194/hess-19-1561-2015, 2015
Short summary
Short summary
The aim of the paper is the application of the KULTURisk regional risk assessment (KR-RRA) methodology, presented in the companion paper (Part 1), to the Sihl River basin, in northern Switzerland. Flood-related risks have been assessed for different receptors lying in the Sihl river valley including the city of Zurich, which represents a typical case of river flooding in an urban area, by means of a calibration process of the methodology to the site-specific context and features.
A. J. Newman, M. P. Clark, K. Sampson, A. Wood, L. E. Hay, A. Bock, R. J. Viger, D. Blodgett, L. Brekke, J. R. Arnold, T. Hopson, and Q. Duan
Hydrol. Earth Syst. Sci., 19, 209–223, https://doi.org/10.5194/hess-19-209-2015, https://doi.org/10.5194/hess-19-209-2015, 2015
Short summary
Short summary
The focus of this paper is to (1) present a community data set of daily forcing and hydrologic response data for 671 unimpaired basins across the contiguous United States that spans a very wide range of hydroclimatic conditions, and (2) provide a calibrated model performance benchmark using a common conceptual snow and hydrologic modeling system. This benchmark provides a reference level of model performance across a very large basin sample and highlights regional variations in performance.
B. S. Beyene, A. F. Van Loon, H. A. J. Van Lanen, and P. J. J. F. Torfs
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-11-12765-2014, https://doi.org/10.5194/hessd-11-12765-2014, 2014
Manuscript not accepted for further review
Short summary
Short summary
This paper explores possible threshold level calculation methods for hydrological drought analysis. We proposed four threshold methods applied to time series of hydrometeorological variables and inter-compared the drought propagation patterns. Our results have shown that these methods can influence the magnitude and severity of droughts differently and even may introduce artefact drought events. Therefore, we suggest the use and checking of these threshold approaches for drought analysis.
C. C. van Heerwaarden and A. J. Teuling
Biogeosciences, 11, 6159–6171, https://doi.org/10.5194/bg-11-6159-2014, https://doi.org/10.5194/bg-11-6159-2014, 2014
Short summary
Short summary
This study disentangles the response of forest and grassland to heatwaves, to interpret the findings of Teuling et al. (2010), who found systematically higher temperatures over forests than over grasslands in European heatwaves. By means of a study with a simple coupled land–atmosphere model, we show that the increase in stomatal resistance of vegetation under high values of vapor pressure deficit explains most of the differences and that this increase is enhanced by boundary layer feedbacks.
C. C. Brauer, A. J. Teuling, P. J. J. F. Torfs, and R. Uijlenhoet
Geosci. Model Dev., 7, 2313–2332, https://doi.org/10.5194/gmd-7-2313-2014, https://doi.org/10.5194/gmd-7-2313-2014, 2014
C. C. Brauer, P. J. J. F. Torfs, A. J. Teuling, and R. Uijlenhoet
Hydrol. Earth Syst. Sci., 18, 4007–4028, https://doi.org/10.5194/hess-18-4007-2014, https://doi.org/10.5194/hess-18-4007-2014, 2014
A. I. Gevaert, A. J. Teuling, R. Uijlenhoet, S. B. DeLong, T. E. Huxman, L. A. Pangle, D. D. Breshears, J. Chorover, J. D. Pelletier, S. R. Saleska, X. Zeng, and P. A. Troch
Hydrol. Earth Syst. Sci., 18, 3681–3692, https://doi.org/10.5194/hess-18-3681-2014, https://doi.org/10.5194/hess-18-3681-2014, 2014
B. P. Guillod, B. Orlowsky, D. Miralles, A. J. Teuling, P. D. Blanken, N. Buchmann, P. Ciais, M. Ek, K. L. Findell, P. Gentine, B. R. Lintner, R. L. Scott, B. Van den Hurk, and S. I. Seneviratne
Atmos. Chem. Phys., 14, 8343–8367, https://doi.org/10.5194/acp-14-8343-2014, https://doi.org/10.5194/acp-14-8343-2014, 2014
S. Jörg-Hess, F. Fundel, T. Jonas, and M. Zappa
The Cryosphere, 8, 471–485, https://doi.org/10.5194/tc-8-471-2014, https://doi.org/10.5194/tc-8-471-2014, 2014
H. V. Gupta, C. Perrin, G. Blöschl, A. Montanari, R. Kumar, M. Clark, and V. Andréassian
Hydrol. Earth Syst. Sci., 18, 463–477, https://doi.org/10.5194/hess-18-463-2014, https://doi.org/10.5194/hess-18-463-2014, 2014
K. Liechti, L. Panziera, U. Germann, and M. Zappa
Hydrol. Earth Syst. Sci., 17, 3853–3869, https://doi.org/10.5194/hess-17-3853-2013, https://doi.org/10.5194/hess-17-3853-2013, 2013
F. Fundel, S. Jörg-Hess, and M. Zappa
Hydrol. Earth Syst. Sci., 17, 395–407, https://doi.org/10.5194/hess-17-395-2013, https://doi.org/10.5194/hess-17-395-2013, 2013
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Modelling flood frequency and magnitude in a glacially conditioned, heterogeneous landscape: testing the importance of land cover and land use
Direct integration of reservoirs' operations in a hydrological model for streamflow estimation: coupling a CLSTM model with MOHID-Land
Modelling the regional sensitivity of snowmelt, soil moisture, and streamflow generation to climate over the Canadian Prairies using a basin classification approach
To what extent does river routing matter in hydrological modeling?
Calibrating macroscale hydrological models in poorly gauged and heavily regulated basins
An advanced tool integrating failure and sensitivity analysis into novel modeling of the stormwater flood volume
airGRteaching: an open-source tool for teaching hydrological modeling with R
Stable water isotopes and tritium tracers tell the same tale: no evidence for underestimation of catchment transit times inferred by stable isotopes in StorAge Selection (SAS)-function models
Uncertainty in water transit time estimation with StorAge Selection functions and tracer data interpolation
Changes in Mediterranean flood processes and seasonality
Can the combining of wetlands with reservoir operation reduce the risk of future floods and droughts?
Knowledge-informed deep learning for hydrological model calibration: an application to Coal Creek Watershed in Colorado
When best is the enemy of good – critical evaluation of performance criteria in hydrological models
The suitability of differentiable, physics-informed machine learning hydrologic models for ungauged regions and climate change impact assessment
Producing reliable hydrologic scenarios from raw climate model outputs without resorting to meteorological observations
Projecting sediment export from two highly glacierized alpine catchments under climate change: Exploring non-parametric regression as an analysis tool
A Framework for Parameter Estimation, Sensitivity Analysis, and Uncertainty Analysis for Holistic Hydrologic Modeling Using SWAT+
Using normalised difference infrared index patterns to constrain semi-distributed rainfall–runoff models in tropical nested catchments
Towards robust seasonal streamflow forecasts in mountainous catchments: impact of calibration metric selection in hydrological modeling
Revisiting the hydrological basis of the Budyko framework with the principle of hydrologically similar groups
Reconstructing five decades of sediment export from two glacierized high-alpine catchments in Tyrol, Austria, using nonparametric regression
Water and energy budgets over hydrological basins on short and long timescales
Evaluation of hydrological models on small mountainous catchments: impact of the meteorological forcings
Hydrological response to climate change and human activities in the Three-River Source Region
Incorporating experimentally derived streamflow contributions into model parameterization to improve discharge prediction
Machine-learning- and deep-learning-based streamflow prediction in a hilly catchment for future scenarios using CMIP6 GCM data
River hydraulic modeling with ICESat-2 land and water surface elevation
Hydrological modeling using the Soil and Water Assessment Tool in urban and peri-urban environments: the case of Kifisos experimental subbasin (Athens, Greece)
Monetizing the role of water in sustaining watershed ecosystem services using a fully integrated subsurface–surface water model
Technical note: How physically based is hydrograph separation by recursive digital filtering?
A comprehensive open-source course for teaching applied hydrological modelling in Central Asia
Impact of distributed meteorological forcing on simulated snow cover and hydrological fluxes over a mid-elevation alpine micro-scale catchment
Technical note: Extending the SWAT model to transport chemicals through tile and groundwater flow
Long-term reconstruction of satellite-based precipitation, soil moisture, and snow water equivalent in China
Disentangling scatter in long-term concentration–discharge relationships: the role of event types
Simulating the hydrological impacts of land use conversion from annual crop to perennial forage in the Canadian Prairies using the Cold Regions Hydrological Modelling platform
Comparing machine learning and deep learning models for probabilistic post-processing of satellite precipitation-driven streamflow simulation
How can we benefit from regime information to make more effective use of long short-term memory (LSTM) runoff models?
On the value of satellite remote sensing to reduce uncertainties of regional simulations of the Colorado River
Assessing runoff sensitivity of North American Prairie Pothole Region basins to wetland drainage using a basin classification-based virtual modelling approach
A large-sample investigation into uncertain climate change impacts on high flows across Great Britain
Effects of passive-storage conceptualization on modeling hydrological function and isotope dynamics in the flow system of a cockpit karst landscape
Technical note: Data assimilation and autoregression for using near-real-time streamflow observations in long short-term memory networks
Attribution of climate change and human activities to streamflow variations with a posterior distribution of hydrological simulations
A time-varying distributed unit hydrograph method considering soil moisture
Flood patterns in a catchment with mixed bedrock geology and a hilly landscape: identification of flashy runoff contributions during storm events
A graph neural network (GNN) approach to basin-scale river network learning: the role of physics-based connectivity and data fusion
Improving hydrologic models for predictions and process understanding using neural ODEs
Response of active catchment water storage capacity to a prolonged meteorological drought and asymptotic climate variation
HESS Opinions: Participatory Digital eARth Twin Hydrology systems (DARTHs) for everyone – a blueprint for hydrologists
Pamela E. Tetford and Joseph R. Desloges
Hydrol. Earth Syst. Sci., 27, 3977–3998, https://doi.org/10.5194/hess-27-3977-2023, https://doi.org/10.5194/hess-27-3977-2023, 2023
Short summary
Short summary
An efficient regional flood frequency model relates drainage area to discharge, with a major assumption of similar basin conditions. In a landscape with variable glacial deposits and land use, we characterize varying hydrological function using 28 explanatory variables. We demonstrate that (1) a heterogeneous landscape requires objective model selection criteria to optimize the fit of flow data, and (2) incorporating land use as a predictor variable improves the drainage area to discharge model.
Ana Ramos Oliveira, Tiago Brito Ramos, Lígia Pinto, and Ramiro Neves
Hydrol. Earth Syst. Sci., 27, 3875–3893, https://doi.org/10.5194/hess-27-3875-2023, https://doi.org/10.5194/hess-27-3875-2023, 2023
Short summary
Short summary
This paper intends to demonstrate the adequacy of a hybrid solution to overcome the difficulties related to the incorporation of human behavior when modeling hydrological processes. Two models were implemented, one to estimate the outflow of a reservoir and the other to simulate the hydrological processes of the watershed. With both models feeding each other, results show that the proposed approach significantly improved the streamflow estimation downstream of the reservoir.
Zhihua He, Kevin Shook, Christopher Spence, John W. Pomeroy, and Colin Whitfield
Hydrol. Earth Syst. Sci., 27, 3525–3546, https://doi.org/10.5194/hess-27-3525-2023, https://doi.org/10.5194/hess-27-3525-2023, 2023
Short summary
Short summary
This study evaluated the impacts of climate change on snowmelt, soil moisture, and streamflow over the Canadian Prairies. The entire prairie region was divided into seven basin types. We found strong variations of hydrological sensitivity to precipitation and temperature changes in different land covers and basins, which suggests that different water management and adaptation methods are needed to address enhanced water stress due to expected climate change in different regions of the prairies.
Nicolás Cortés-Salazar, Nicolás Vásquez, Naoki Mizukami, Pablo A. Mendoza, and Ximena Vargas
Hydrol. Earth Syst. Sci., 27, 3505–3524, https://doi.org/10.5194/hess-27-3505-2023, https://doi.org/10.5194/hess-27-3505-2023, 2023
Short summary
Short summary
This paper shows how important river models can be for water resource applications that involve hydrological models and, in particular, parameter calibration. To this end, we conduct numerical experiments in a pilot basin using a combination of hydrologic model simulations obtained from a large sample of parameter sets and different routing methods. We find that routing can affect streamflow simulations, even at monthly time steps; the choice of parameters; and relevant streamflow metrics.
Dung Trung Vu, Thanh Duc Dang, Francesca Pianosi, and Stefano Galelli
Hydrol. Earth Syst. Sci., 27, 3485–3504, https://doi.org/10.5194/hess-27-3485-2023, https://doi.org/10.5194/hess-27-3485-2023, 2023
Short summary
Short summary
The calibration of hydrological models over extensive spatial domains is often challenged by the lack of data on river discharge and the operations of hydraulic infrastructures. Here, we use satellite data to address the lack of data that could unintentionally bias the calibration process. Our study is underpinned by a computational framework that quantifies this bias and provides a safe approach to the calibration of models in poorly gauged and heavily regulated basins.
Francesco Fatone, Bartosz Szeląg, Przemysław Kowal, Arthur McGarity, Adam Kiczko, Grzegorz Wałek, Ewa Wojciechowska, Michał Stachura, and Nicolas Caradot
Hydrol. Earth Syst. Sci., 27, 3329–3349, https://doi.org/10.5194/hess-27-3329-2023, https://doi.org/10.5194/hess-27-3329-2023, 2023
Short summary
Short summary
A novel methodology for the development of a stormwater network performance simulator including advanced risk assessment was proposed. The applied tool enables the analysis of the influence of spatial variability in catchment and stormwater network characteristics on the relation between (SWMM) model parameters and specific flood volume, as an alternative approach to mechanistic models. The proposed method can be used at the stage of catchment model development and spatial planning management.
Olivier Delaigue, Pierre Brigode, Guillaume Thirel, and Laurent Coron
Hydrol. Earth Syst. Sci., 27, 3293–3327, https://doi.org/10.5194/hess-27-3293-2023, https://doi.org/10.5194/hess-27-3293-2023, 2023
Short summary
Short summary
Teaching hydrological modeling is an important, but difficult, matter. It requires appropriate tools and teaching material. In this article, we present the airGRteaching package, which is an open-source software tool relying on widely used hydrological models. This tool proposes an interface and numerous hydrological modeling exercises representing a wide range of hydrological applications. We show how this tool can be applied to simple but real-life cases.
Siyuan Wang, Markus Hrachowitz, Gerrit Schoups, and Christine Stumpp
Hydrol. Earth Syst. Sci., 27, 3083–3114, https://doi.org/10.5194/hess-27-3083-2023, https://doi.org/10.5194/hess-27-3083-2023, 2023
Short summary
Short summary
This study shows that previously reported underestimations of water ages are most likely not due to the use of seasonally variable tracers. Rather, these underestimations can be largely attributed to the choices of model approaches which rely on assumptions not frequently met in catchment hydrology. We therefore strongly advocate avoiding the use of this model type in combination with seasonally variable tracers and instead adopting StorAge Selection (SAS)-based or comparable model formulations.
Arianna Borriero, Rohini Kumar, Tam V. Nguyen, Jan H. Fleckenstein, and Stefanie R. Lutz
Hydrol. Earth Syst. Sci., 27, 2989–3004, https://doi.org/10.5194/hess-27-2989-2023, https://doi.org/10.5194/hess-27-2989-2023, 2023
Short summary
Short summary
We analyzed the uncertainty of the water transit time distribution (TTD) arising from model input (interpolated tracer data) and structure (StorAge Selection, SAS, functions). We found that uncertainty was mainly associated with temporal interpolation, choice of SAS function, nonspatial interpolation, and low-flow conditions. It is important to characterize the specific uncertainty sources and their combined effects on TTD, as this has relevant implications for both water quantity and quality.
Yves Tramblay, Patrick Arnaud, Guillaume Artigue, Michel Lang, Emmanuel Paquet, Luc Neppel, and Eric Sauquet
Hydrol. Earth Syst. Sci., 27, 2973–2987, https://doi.org/10.5194/hess-27-2973-2023, https://doi.org/10.5194/hess-27-2973-2023, 2023
Short summary
Short summary
Mediterranean floods are causing major damage, and recent studies have shown that, despite the increase in intense rainfall, there has been no increase in river floods. This study reveals that the seasonality of floods changed in the Mediterranean Basin during 1959–2021. There was also an increased frequency of floods linked to short episodes of intense rain, associated with a decrease in soil moisture. These changes need to be taken into consideration to adapt flood warning systems.
Yanfeng Wu, Jingxuan Sun, Boting Hu, Y. Jun Xu, Alain N. Rousseau, and Guangxin Zhang
Hydrol. Earth Syst. Sci., 27, 2725–2745, https://doi.org/10.5194/hess-27-2725-2023, https://doi.org/10.5194/hess-27-2725-2023, 2023
Short summary
Short summary
Reservoirs and wetlands are important regulators of watershed hydrology, which should be considered when projecting floods and droughts. We first coupled wetlands and reservoir operations into a semi-spatially-explicit hydrological model and then applied it in a case study involving a large river basin in northeast China. We found that, overall, the risk of future floods and droughts will increase further even under the combined influence of reservoirs and wetlands.
Peishi Jiang, Pin Shuai, Alexander Sun, Maruti K. Mudunuru, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 27, 2621–2644, https://doi.org/10.5194/hess-27-2621-2023, https://doi.org/10.5194/hess-27-2621-2023, 2023
Short summary
Short summary
We developed a novel deep learning approach to estimate the parameters of a computationally expensive hydrological model on only a few hundred realizations. Our approach leverages the knowledge obtained by data-driven analysis to guide the design of the deep learning model used for parameter estimation. We demonstrate this approach by calibrating a state-of-the-art hydrological model against streamflow and evapotranspiration observations at a snow-dominated watershed in Colorado.
Guillaume Cinkus, Naomi Mazzilli, Hervé Jourde, Andreas Wunsch, Tanja Liesch, Nataša Ravbar, Zhao Chen, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 27, 2397–2411, https://doi.org/10.5194/hess-27-2397-2023, https://doi.org/10.5194/hess-27-2397-2023, 2023
Short summary
Short summary
The Kling–Gupta Efficiency (KGE) is a performance criterion extensively used to evaluate hydrological models. We conduct a critical study on the KGE and its variant to examine counterbalancing errors. Results show that, when assessing a simulation, concurrent over- and underestimation of discharge can lead to an overall higher criterion score without an associated increase in model relevance. We suggest that one carefully choose performance criteria and use scaling factors.
Dapeng Feng, Hylke Beck, Kathryn Lawson, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 27, 2357–2373, https://doi.org/10.5194/hess-27-2357-2023, https://doi.org/10.5194/hess-27-2357-2023, 2023
Short summary
Short summary
Powerful hybrid models (called δ or delta models) embrace the fundamental learning capability of AI and can also explain the physical processes. Here we test their performance when applied to regions not in the training data. δ models rivaled the accuracy of state-of-the-art AI models under the data-dense scenario and even surpassed them for the data-sparse one. They generalize well due to the physical structure included. δ models could be ideal candidates for global hydrologic assessment.
Simon Ricard, Philippe Lucas-Picher, Antoine Thiboult, and François Anctil
Hydrol. Earth Syst. Sci., 27, 2375–2395, https://doi.org/10.5194/hess-27-2375-2023, https://doi.org/10.5194/hess-27-2375-2023, 2023
Short summary
Short summary
A simplified hydroclimatic modelling workflow is proposed to quantify the impact of climate change on water discharge without resorting to meteorological observations. Results confirm that the proposed workflow produces equivalent projections of the seasonal mean flows in comparison to a conventional hydroclimatic modelling approach. The proposed approach supports the participation of end-users in interpreting the impact of climate change on water resources.
Lena Katharina Schmidt, Till Francke, Peter Martin Grosse, and Axel Bronstert
EGUsphere, https://doi.org/10.5194/egusphere-2023-1063, https://doi.org/10.5194/egusphere-2023-1063, 2023
Short summary
Short summary
How suspended sediment export from glacierized high-alpine areas responds to future climate change is hardly assessable, as many interacting processes are involved and appropriate physical models are lacking. We present the first study to our knowledge exploring machine learning to project sediment export until 2100 in two high-alpine catchments. We find that uncertainties due to methodological limitations are small until 2070. Negative trends imply that ‘peak sediment’ may have already passed.
Salam A. Abbas, Ryan T. Bailey, Jeremy T. White, Jeffrey G. Arnold, Michael J. White, Natalja Čerkasova, and Jungang Gao
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-127, https://doi.org/10.5194/hess-2023-127, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
Research Highlights. 1. Implemented groundwater module (gwflow) into SWAT+ for four watersheds with different unique hydrologic features across the United States. 2. Present methods for sensitivity analysis, uncertainty analysis, and parameter estimation for coupled models. 3. Sensitivity analysis for streamflow and groundwater head conducted using Morris method. 4. Uncertainty analysis and parameter estimation performed using an iterative Ensemble Smoother within the PEST framework.
Nutchanart Sriwongsitanon, Wasana Jandang, James Williams, Thienchart Suwawong, Ekkarin Maekan, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 2149–2171, https://doi.org/10.5194/hess-27-2149-2023, https://doi.org/10.5194/hess-27-2149-2023, 2023
Short summary
Short summary
We developed predictive semi-distributed rainfall–runoff models for nested sub-catchments in the upper Ping basin, which yielded better or similar performance compared to calibrated lumped models. The normalised difference infrared index proves to be an effective proxy for distributed root zone moisture capacity over sub-catchments and is well correlated with the percentage of evergreen forest. In validation, soil moisture simulations appeared to be highly correlated with the soil wetness index.
Diego Araya, Pablo A. Mendoza, Eduardo Muñoz-Castro, and James McPhee
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-116, https://doi.org/10.5194/hess-2023-116, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
Dynamical systems are used by many agencies worldwide to produce seasonal streamflow forecasts, which are critical for decision-making. Such systems rely on hydrology models, which contain parameters that are typically estimated using a target performance metric (i.e., objective function). This study explores the effects of this decision across mountainous basins in Chile, illustrating tradeoffs between seasonal forecast quality and the models' capability to simulate streamflow characteristics.
Yuchan Chen, Xiuzhi Chen, Meimei Xue, Chuanxun Yang, Wei Zheng, Jun Cao, Wenting Yan, and Wenping Yuan
Hydrol. Earth Syst. Sci., 27, 1929–1943, https://doi.org/10.5194/hess-27-1929-2023, https://doi.org/10.5194/hess-27-1929-2023, 2023
Short summary
Short summary
This study addresses the quantification and estimation of the watershed-characteristic-related parameter (Pw) in the Budyko framework with the principle of hydrologically similar groups. The results show that Pw is closely related to soil moisture and fractional vegetation cover, and the relationship varies across specific hydrologic similarity groups. The overall satisfactory performance of the Pw estimation model improves the applicability of the Budyko framework for global runoff estimation.
Lena Katharina Schmidt, Till Francke, Peter Martin Grosse, Christoph Mayer, and Axel Bronstert
Hydrol. Earth Syst. Sci., 27, 1841–1863, https://doi.org/10.5194/hess-27-1841-2023, https://doi.org/10.5194/hess-27-1841-2023, 2023
Short summary
Short summary
We present a suitable method to reconstruct sediment export from decadal records of hydroclimatic predictors (discharge, precipitation, temperature) and shorter suspended sediment measurements. This lets us fill the knowledge gap on how sediment export from glacierized high-alpine areas has responded to climate change. We find positive trends in sediment export from the two investigated nested catchments with step-like increases around 1981 which are linked to crucial changes in glacier melt.
Samantha Petch, Bo Dong, Tristan Quaife, Robert P. King, and Keith Haines
Hydrol. Earth Syst. Sci., 27, 1723–1744, https://doi.org/10.5194/hess-27-1723-2023, https://doi.org/10.5194/hess-27-1723-2023, 2023
Short summary
Short summary
Gravitational measurements of water storage from GRACE (Gravity Recovery and Climate Experiment) can improve understanding of the water budget. We produce flux estimates over large river catchments based on observations that close the monthly water budget and ensure consistency with GRACE on short and long timescales. We use energy data to provide additional constraints and balance the long-term energy budget. These flux estimates are important for evaluating climate models.
Guillaume Evin, Matthieu Le Lay, Catherine Fouchier, Alexandre Mas, François Colleoni, David Penot, Pierre-André Garambois, and Olivier Laurantin
EGUsphere, https://doi.org/10.5194/egusphere-2023-845, https://doi.org/10.5194/egusphere-2023-845, 2023
Short summary
Short summary
Hydrological modelling of mountainous catchments is challenging for many reasons, the main one being the temporal and spatial representation of precipitation forcings. This study presents an evaluation of the hydrological modelling of 55 small mountainous catchments of the Northern French Alps, focusing on the influence of the type of precipitation reanalyses used as inputs. These evaluations emphasize the added value of radar measurements, in particular for the reproduction of flood events.
Ting Su, Chiyuan Miao, Qingyun Duan, Jiaojiao Gou, Xiaoying Guo, and Xi Zhao
Hydrol. Earth Syst. Sci., 27, 1477–1492, https://doi.org/10.5194/hess-27-1477-2023, https://doi.org/10.5194/hess-27-1477-2023, 2023
Short summary
Short summary
The Three-River Source Region (TRSR) plays an extremely important role in water resources security and ecological and environmental protection in China and even all of Southeast Asia. This study used the variable infiltration capacity (VIC) land surface hydrologic model linked with the degree-day factor algorithm to simulate the runoff change in the TRSR. These results will help to guide current and future regulation and management of water resources in the TRSR.
Andreas Hartmann, Jean-Lionel Payeur-Poirier, and Luisa Hopp
Hydrol. Earth Syst. Sci., 27, 1325–1341, https://doi.org/10.5194/hess-27-1325-2023, https://doi.org/10.5194/hess-27-1325-2023, 2023
Short summary
Short summary
We advance our understanding of including information derived from environmental tracers into hydrological modeling. We present a simple approach that integrates streamflow observations and tracer-derived streamflow contributions for model parameter estimation. We consider multiple observed streamflow components and their variation over time to quantify the impact of their inclusion for streamflow prediction at the catchment scale.
Dharmaveer Singh, Manu Vardhan, Rakesh Sahu, Debrupa Chatterjee, Pankaj Chauhan, and Shiyin Liu
Hydrol. Earth Syst. Sci., 27, 1047–1075, https://doi.org/10.5194/hess-27-1047-2023, https://doi.org/10.5194/hess-27-1047-2023, 2023
Short summary
Short summary
This study examines, for the first time, the potential of various machine learning models in streamflow prediction over the Sutlej River basin (rainfall-dominated zone) in western Himalaya during the period 2041–2070 (2050s) and 2071–2100 (2080s) and its relationship to climate variability. The mean ensemble of the model results shows that the mean annual streamflow of the Sutlej River is expected to rise between the 2050s and 2080s by 0.79 to 1.43 % for SSP585 and by 0.87 to 1.10 % for SSP245.
Monica Coppo Frias, Suxia Liu, Xingguo Mo, Karina Nielsen, Heidi Ranndal, Liguang Jiang, Jun Ma, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 27, 1011–1032, https://doi.org/10.5194/hess-27-1011-2023, https://doi.org/10.5194/hess-27-1011-2023, 2023
Short summary
Short summary
This paper uses remote sensing data from ICESat-2 to calibrate a 1D hydraulic model. With the model, we can make estimations of discharge and water surface elevation, which are important indicators in flooding risk assessment. ICESat-2 data give an added value, thanks to the 0.7 m resolution, which allows the measurement of narrow river streams. In addition, ICESat-2 provides measurements on the river dry portion geometry that can be included in the model.
Evgenia Koltsida, Nikos Mamassis, and Andreas Kallioras
Hydrol. Earth Syst. Sci., 27, 917–931, https://doi.org/10.5194/hess-27-917-2023, https://doi.org/10.5194/hess-27-917-2023, 2023
Short summary
Short summary
Daily and hourly rainfall observations were inputted to a Soil and Water Assessment Tool (SWAT) hydrological model to investigate the impacts of rainfall temporal resolution on a discharge simulation. Results indicated that groundwater flow parameters were more sensitive to daily time intervals, and channel routing parameters were more influential for hourly time intervals. This study suggests that the SWAT model appears to be a reliable tool to predict discharge in a mixed-land-use basin.
Tariq Aziz, Steven K. Frey, David R. Lapen, Susan Preston, Hazen A. J. Russell, Omar Khader, Andre R. Erler, and Edward A. Sudicky
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-25, https://doi.org/10.5194/hess-2023-25, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
The study determines the value of water towards ecosystem services production in an agricultural watershed in Ontario, Canada. It uses a computer model and an economic valuation approach to determine how subsurface and surface water affect ecosystem services supply. The results show that subsurface water plays a critical role in maintaining ecosystem services. The study informs on the sustainable use of subsurface water and introduces a new method for managing watershed ecosystem services.
Klaus Eckhardt
Hydrol. Earth Syst. Sci., 27, 495–499, https://doi.org/10.5194/hess-27-495-2023, https://doi.org/10.5194/hess-27-495-2023, 2023
Short summary
Short summary
An important hydrological issue is to identify components of streamflow that react to precipitation with different degrees of attenuation and delay. From the multitude of methods that have been developed for this so-called hydrograph separation, a specific, frequently used one is singled out here. It is shown to be derived from plausible physical principles. This increases confidence in its results.
Beatrice Sabine Marti, Aidar Zhumabaev, and Tobias Siegfried
Hydrol. Earth Syst. Sci., 27, 319–330, https://doi.org/10.5194/hess-27-319-2023, https://doi.org/10.5194/hess-27-319-2023, 2023
Short summary
Short summary
Numerical modelling is often used for climate impact studies in water resources management. It is, however, not yet highly accessible to many students of hydrology in Central Asia. One big hurdle for new learners is the preparation of relevant data prior to the actual modelling. We present a robust, open-source workflow and comprehensive teaching material that can be used by teachers and by students for self study.
Aniket Gupta, Alix Reverdy, Jean-Martial Cohard, Basile Hector, Marc Descloitres, Jean-Pierre Vandervaere, Catherine Coulaud, Romain Biron, Lucie Liger, Reed Maxwell, Jean-Gabriel Valay, and Didier Voisin
Hydrol. Earth Syst. Sci., 27, 191–212, https://doi.org/10.5194/hess-27-191-2023, https://doi.org/10.5194/hess-27-191-2023, 2023
Short summary
Short summary
Patchy snow cover during spring impacts mountainous ecosystems on a large range of spatio-temporal scales. A hydrological model simulated such snow patchiness at 10 m resolution. Slope and orientation controls precipitation, radiation, and wind generate differences in snowmelt, subsurface storage, streamflow, and evapotranspiration. The snow patchiness increases the duration of the snowmelt to stream and subsurface storage, which sustains the plants and streamflow later in the summer.
Hendrik Rathjens, Jens Kiesel, Michael Winchell, Jeffrey Arnold, and Robin Sur
Hydrol. Earth Syst. Sci., 27, 159–167, https://doi.org/10.5194/hess-27-159-2023, https://doi.org/10.5194/hess-27-159-2023, 2023
Short summary
Short summary
The SWAT model can simulate the transport of water-soluble chemicals through the landscape but neglects the transport through groundwater or agricultural tile drains. These transport pathways are, however, important to assess the amount of chemicals in streams. We added this capability to the model, which significantly improved the simulation. The representation of all transport pathways in the model enables watershed managers to develop robust strategies for reducing chemicals in streams.
Wencong Yang, Hanbo Yang, Changming Li, Taihua Wang, Ziwei Liu, Qingfang Hu, and Dawen Yang
Hydrol. Earth Syst. Sci., 26, 6427–6441, https://doi.org/10.5194/hess-26-6427-2022, https://doi.org/10.5194/hess-26-6427-2022, 2022
Short summary
Short summary
We produced a daily 0.1° dataset of precipitation, soil moisture, and snow water equivalent in 1981–2017 across China via reconstructions. The dataset used global background data and local on-site data as forcing input and satellite-based data as reconstruction benchmarks. This long-term high-resolution national hydrological dataset is valuable for national investigations of hydrological processes.
Felipe A. Saavedra, Andreas Musolff, Jana von Freyberg, Ralf Merz, Stefano Basso, and Larisa Tarasova
Hydrol. Earth Syst. Sci., 26, 6227–6245, https://doi.org/10.5194/hess-26-6227-2022, https://doi.org/10.5194/hess-26-6227-2022, 2022
Short summary
Short summary
Nitrate contamination of rivers from agricultural sources is a challenge for water quality management. During runoff events, different transport paths within the catchment might be activated, generating a variety of responses in nitrate concentration in stream water. Using nitrate samples from 184 German catchments and a runoff event classification, we show that hydrologic connectivity during runoff events is a key control of nitrate transport from catchments to streams in our study domain.
Marcos R. C. Cordeiro, Kang Liang, Henry F. Wilson, Jason Vanrobaeys, David A. Lobb, Xing Fang, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 26, 5917–5931, https://doi.org/10.5194/hess-26-5917-2022, https://doi.org/10.5194/hess-26-5917-2022, 2022
Short summary
Short summary
This study addresses the issue of increasing interest in the hydrological impacts of converting cropland to perennial forage cover in the Canadian Prairies. By developing customized models using the Cold Regions Hydrological Modelling (CRHM) platform, this long-term (1992–2013) modelling study is expected to provide stakeholders with science-based information regarding the hydrological impacts of land use conversion from annual crop to perennial forage cover in the Canadian Prairies.
Yuhang Zhang, Aizhong Ye, Phu Nguyen, Bita Analui, Soroosh Sorooshian, Kuolin Hsu, and Yuxuan Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-377, https://doi.org/10.5194/hess-2022-377, 2022
Revised manuscript accepted for HESS
Short summary
Short summary
We compared probabilistic long short-term memory (PLSTM) model and quantile regression forest model (QRF). The results show the QRF model is more efficient, taking only half the time of the PLSTM model to do all the experiments in terms of model efficiency, the QRF model and the PLSTM model are comparable in terms of probabilistic (multi-point) prediction, the QRF model performs better in small watersheds and the PLSTM model performs better in large watersheds.
Reyhaneh Hashemi, Pierre Brigode, Pierre-André Garambois, and Pierre Javelle
Hydrol. Earth Syst. Sci., 26, 5793–5816, https://doi.org/10.5194/hess-26-5793-2022, https://doi.org/10.5194/hess-26-5793-2022, 2022
Short summary
Short summary
Hydrologists have long dreamed of a tool that could adequately predict runoff in catchments. Data-driven long short-term memory (LSTM) models appear very promising to the hydrology community in this respect. Here, we have sought to benefit from traditional practices in hydrology to improve the effectiveness of LSTM models. We discovered that one LSTM parameter has a hydrologic interpretation and that there is a need to increase the data and to tune two parameters, thereby improving predictions.
Mu Xiao, Giuseppe Mascaro, Zhaocheng Wang, Kristen M. Whitney, and Enrique R. Vivoni
Hydrol. Earth Syst. Sci., 26, 5627–5646, https://doi.org/10.5194/hess-26-5627-2022, https://doi.org/10.5194/hess-26-5627-2022, 2022
Short summary
Short summary
As the major water resource in the southwestern United States, the Colorado River is experiencing decreases in naturalized streamflow and is predicted to face severe challenges under future climate scenarios. Here, we demonstrate the value of Earth observing satellites to improve and build confidence in the spatiotemporal simulations from regional hydrologic models for assessing the sensitivity of the Colorado River to climate change and supporting regional water managers.
Christopher Spence, Zhihua He, Kevin R. Shook, John W. Pomeroy, Colin J. Whitfield, and Jared D. Wolfe
Hydrol. Earth Syst. Sci., 26, 5555–5575, https://doi.org/10.5194/hess-26-5555-2022, https://doi.org/10.5194/hess-26-5555-2022, 2022
Short summary
Short summary
We learnt how streamflow from small creeks could be altered by wetland removal in the Canadian Prairies, where this practice is pervasive. Every creek basin in the region was placed into one of seven groups. We selected one of these groups and used its traits to simulate streamflow. The model worked well enough so that we could trust the results even if we removed the wetlands. Wetland removal did not change low flow amounts very much, but it doubled high flow and tripled average flow.
Rosanna A. Lane, Gemma Coxon, Jim Freer, Jan Seibert, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 26, 5535–5554, https://doi.org/10.5194/hess-26-5535-2022, https://doi.org/10.5194/hess-26-5535-2022, 2022
Short summary
Short summary
This study modelled the impact of climate change on river high flows across Great Britain (GB). Generally, results indicated an increase in the magnitude and frequency of high flows along the west coast of GB by 2050–2075. In contrast, average flows decreased across GB. All flow projections contained large uncertainties; the climate projections were the largest source of uncertainty overall but hydrological modelling uncertainties were considerable in some regions.
Guangxuan Li, Xi Chen, Zhicai Zhang, Lichun Wang, and Chris Soulsby
Hydrol. Earth Syst. Sci., 26, 5515–5534, https://doi.org/10.5194/hess-26-5515-2022, https://doi.org/10.5194/hess-26-5515-2022, 2022
Short summary
Short summary
We developed a coupled flow–tracer model to understand the effects of passive storage on modeling hydrological function and isotope dynamics in a karst flow system. Models with passive storages show improvement in matching isotope dynamics performance, and the improved performance also strongly depends on the number and location of passive storages. Our results also suggested that the solute transport is primarily controlled by advection and hydrodynamic dispersion in the steep hillslope unit.
Grey S. Nearing, Daniel Klotz, Jonathan M. Frame, Martin Gauch, Oren Gilon, Frederik Kratzert, Alden Keefe Sampson, Guy Shalev, and Sella Nevo
Hydrol. Earth Syst. Sci., 26, 5493–5513, https://doi.org/10.5194/hess-26-5493-2022, https://doi.org/10.5194/hess-26-5493-2022, 2022
Short summary
Short summary
When designing flood forecasting models, it is necessary to use all available data to achieve the most accurate predictions possible. This manuscript explores two basic ways of ingesting near-real-time streamflow data into machine learning streamflow models. The point we want to make is that when working in the context of machine learning (instead of traditional hydrology models that are based on
bio-geophysics), it is not necessary to use complex statistical methods for injecting sparse data.
Xiongpeng Tang, Guobin Fu, Silong Zhang, Chao Gao, Guoqing Wang, Zhenxin Bao, Yanli Liu, Cuishan Liu, and Junliang Jin
Hydrol. Earth Syst. Sci., 26, 5315–5339, https://doi.org/10.5194/hess-26-5315-2022, https://doi.org/10.5194/hess-26-5315-2022, 2022
Short summary
Short summary
In this study, we proposed a new framework that considered the uncertainties of model simulations in quantifying the contribution rate of climate change and human activities to streamflow changes. Then, the Lancang River basin was selected for the case study. The results of quantitative analysis using the new framework showed that the reason for the decrease in the streamflow at Yunjinghong station was mainly human activities.
Bin Yi, Lu Chen, Hansong Zhang, Vijay P. Singh, Ping Jiang, Yizhuo Liu, Hexiang Guo, and Hongya Qiu
Hydrol. Earth Syst. Sci., 26, 5269–5289, https://doi.org/10.5194/hess-26-5269-2022, https://doi.org/10.5194/hess-26-5269-2022, 2022
Short summary
Short summary
An improved GIS-derived distributed unit hydrograph routing method considering time-varying soil moisture was proposed for flow routing. The method considered the changes of time-varying soil moisture and rainfall intensity. The response of underlying surface to the soil moisture content was considered an important factor in this study. The SUH, DUH, TDUH and proposed routing methods (TDUH-MC) were used for flood forecasts, and the simulated results were compared and discussed.
Audrey Douinot, Jean François Iffly, Cyrille Tailliez, Claude Meisch, and Laurent Pfister
Hydrol. Earth Syst. Sci., 26, 5185–5206, https://doi.org/10.5194/hess-26-5185-2022, https://doi.org/10.5194/hess-26-5185-2022, 2022
Short summary
Short summary
The objective of the paper is to highlight the seasonal and singular shift of the transfer time distributions of two catchments (≅10 km2).
Based on 2 years of rainfall and discharge observations, we compare variations in the properties of TTDs with the physiographic characteristics of catchment areas and the eco-hydrological cycle. The paper eventually aims to deduce several factors conducive to particularly rapid and concentrated water transfers, which leads to flash floods.
Alexander Y. Sun, Peishi Jiang, Zong-Liang Yang, Yangxinyu Xie, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 26, 5163–5184, https://doi.org/10.5194/hess-26-5163-2022, https://doi.org/10.5194/hess-26-5163-2022, 2022
Short summary
Short summary
High-resolution river modeling is of great interest to local governments and stakeholders for flood-hazard mitigation. This work presents a physics-guided, machine learning (ML) framework for combining the strengths of high-resolution process-based river network models with a graph-based ML model capable of modeling spatiotemporal processes. Results show that the ML model can approximate the dynamics of the process model with high fidelity, and data fusion further improves the forecasting skill.
Marvin Höge, Andreas Scheidegger, Marco Baity-Jesi, Carlo Albert, and Fabrizio Fenicia
Hydrol. Earth Syst. Sci., 26, 5085–5102, https://doi.org/10.5194/hess-26-5085-2022, https://doi.org/10.5194/hess-26-5085-2022, 2022
Short summary
Short summary
Neural ODEs fuse physics-based models with deep learning: neural networks substitute terms in differential equations that represent the mechanistic structure of the system. The approach combines the flexibility of machine learning with physical constraints for inter- and extrapolation. We demonstrate that neural ODE models achieve state-of-the-art predictive performance while keeping full interpretability of model states and processes in hydrologic modelling over multiple catchments.
Jing Tian, Zhengke Pan, Shenglian Guo, Jiabo Yin, Yanlai Zhou, and Jun Wang
Hydrol. Earth Syst. Sci., 26, 4853–4874, https://doi.org/10.5194/hess-26-4853-2022, https://doi.org/10.5194/hess-26-4853-2022, 2022
Short summary
Short summary
Most of the literature has focused on the runoff response to climate change, while neglecting the impacts of the potential variation in the active catchment water storage capacity (ACWSC) that plays an essential role in the transfer of climate inputs to the catchment runoff. This study aims to systematically identify the response of the ACWSC to a long-term meteorological drought and asymptotic climate change.
Riccardo Rigon, Giuseppe Formetta, Marialaura Bancheri, Niccolò Tubini, Concetta D'Amato, Olaf David, and Christian Massari
Hydrol. Earth Syst. Sci., 26, 4773–4800, https://doi.org/10.5194/hess-26-4773-2022, https://doi.org/10.5194/hess-26-4773-2022, 2022
Short summary
Short summary
The
Digital Earth(DE) metaphor is very useful for both end users and hydrological modelers. We analyse different categories of models, with the view of making them part of a Digital eARth Twin Hydrology system (called DARTH). We also stress the idea that DARTHs are not models in and of themselves, rather they need to be built on an appropriate information technology infrastructure. It is remarked that DARTHs have to, by construction, support the open-science movement and its ideas.
Cited articles
Abbaspour, K., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., and Srinivasan, R.: Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT, J. Hydrol., 333, 413–430, https://doi.org/10.1016/j.jhydrol.2006.09.014, 2007.
Adams, R., Western, A., and Seed, A.: An analysis of the impact of spatial variability in rainfall on runoff and sediment predictions from a distributed model, Hydrol. Process., 26, 3263–3280, https://doi.org/10.1002/hyp.8435, 2012.
Andersen, O., Seneviratne, S., Hinderer, J., and Viterbo, P.: GRACE-derived terrestrial water storage depletion associated with the 2003 European heat wave, Geophys. Res. Let., 32, L18405, https://doi.org/10.1029/2005GL023574, 2005.
Becker, A. and Grünewald, U.: Flood risk in Central Europe, Science, 300, 1099, https://doi.org/10.1126/science.1083624, 2003.
Bennett, J., Robertson, D., Ward, P., Hapuarachchi, H., and Wang, Q.: Calibrating hourly rainfall-runoff models with daily forcings for streamflow forecasting applications in meso-scale catchments, Environ. Model. Softw., 76, 20–36, https://doi.org/10.1016/j.envsoft.2015.11.006, 2016.
Beven, K. J. and Binley, A.: The future of distributed models: Model calibration and uncertainty prediction, Hydrol. Process., 6, 279–298, https://doi.org/10.1002/hyp.3360060305, 1992.
Beven, K. J. and Binley, A.: GLUE: 20 years on, Hydrol. Process., 28, 5897–5918, https://doi.org/10.1002/hyp.10082, 2014.
Beven, K. J.: Rainfall-Runoff modelling, The Primer, 2nd Edn., chap. 1, Down to Basics: Runoff Processes and the Modelling Process, John Wiley & Sons, Chichester, West Sussex, UK, 1–22, 2012.
Bierkens, M. F. P.: Global hydrology 2015: State, trends, and directions, Water Resour. Res., 51, 4923–4947, https://doi.org/10.1002/2015WR017173, 2015.
Bierkens, M. F. P., Bell, V., Burek, P., Chaney, N., Condon, L., David, C., De Roo, A., Döll, P., Drost, N., Famiglietti, J., Flörke, M., Gochis, D., Houser, P., Hut, R., Keune, J., Kollet, S., Maxwell, R., Reager, J., Samaniego, L., Sudicky, E., Sutanudjaja, E., Van de Giesen, N., Winsemius, H., and Wood, E.: Hyper-resolution global hydrological modelling: What's next?, Hydrol. Process., 29, 310–320, https://doi.org/10.1002/hyp.10391, 2014.
Boyle, D., Gupta, H., Sorooshian, S., Koren, V., Zhang, Z., and Smith, M.: Towards improved streamflow forecasts: Value of semidistributed modeling, Water Resour. Res., 37, 2749–2759, https://doi.org/10.1029/2000WR000207, 2001.
Carpenter, T. and Georgakakos, K.: Intercomparison of lumped versus distributed hydrologic model ensemble simulations on operational forecast scales, J. Hydrol., 329, 174–185, https://doi.org/10.1016/j.jhydrol.2006.02.013, 2006.
Chaney, N. W., Herman, J. D., Reed, P. M., and Wood, E. F.: Flood and drought hydrologic monitoring: the role of model parameter uncertainty, Hydrol. Earth Syst. Sci., 19, 3239–3251, https://doi.org/10.5194/hess-19-3239-2015, 2015.
Costa-Cabral, M., Roy, S., Maurer, E., Mills, W., and Chen, L.: Snowpack and runoff response to climate change in Owens Valley and Mono Lake watersheds, Climatic Change, 116, 97–109, https://doi.org/10.1007/s10584-012-0529-y, 2013.
Demaria, E. M., Nijssen, B., and Wagener, T.: Monte Carlo sensitivity analysis of land surface parameters using the Variable Infiltration Capacity model, J. Geophys. Res., 112, D11113, https://doi.org/10.1029/2006JD007534, 2007.
Duan, Q., Schaake, J., Andréassian, V., Franks, S., Goteti, G., Gupta, H., Gusev, Y., Habets, F., Hall, A., Hay, L., Hogue, T., Huang, M., Leavesley, G., Liang, X., Nasonova, O., Noilhan, J., Oudin, L., Sorooshian, S., Wagener, T., and Wood, E.: Model Parameter Estimation Experiment (MOPEX): An overview of science strategy and major results from the second and third workshops, J. Hydrol., 320, 3–17, https://doi.org/10.1016/j.jhydrol.2005.07.031, 2006.
FAO, IIASA, ISRIC, ISSCAS, and JRC: Harmonized World Soil Database (version 1.2), Tech. rep., AO, Rome, Italy and IIASA, Laxenburg, Austria, http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ (last access: 14 March 2014), 2012.
Ficchì, A., Perrin, C., and Andréassian, V.: Impact of temporal resolution of inputs on hydrological model performance: An analysis based on 2400 flood events, J. Hydrol., 538, 454–470, https://doi.org/10.1016/j.jhydrol.2016.04.016, 2016.
Finnerty, B., Smith, M., Sea, D., Koren, V., and Moglen, G.: Space-time scale sensitivity of the Sacramento model to radar-gage precipitation inputs, J. Hydrol., 203, 21–38, https://doi.org/10.1016/S0022-1694(97)00083-8, 1997.
Francini, M. and Pacciani, M.: Comparative analysis of several conceptual rainfall-runoff models, J. Hydrol., 122, 161–219, 1991.
Fundel, F. and Zappa, M.: Hydrological ensemble forecasting in mesoscale catchments: Sensitivity to initial conditions and value of reforecasts, Water Resour. Res., 47, W09520, https://doi.org/10.1029/2010WR009996, 2011.
Fundel, F., Jörg-Hess, S., and Zappa, M.: Monthly hydrometeorological ensemble prediction of streamflow droughts and corresponding drought indices, Hydrol. Earth Syst. Sci., 17, 395–407, https://doi.org/10.5194/hess-17-395-2013, 2013.
Gleeson, T., Wada, Y., and van Beek, M. P. B. L. H.: Water balance of global aquifers revealed by groundwater footprint, Nature, 488, 197–200, https://doi.org/10.1038/nature11295, 2012.
Gupta, H., Kling, H., Yilmaz, K., and Martinez, G.: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377, 80–91, 2009.
Gurtz, J., Baltensweiler, A., and Lang, H.: Spatially distributed hydrotope-based modelling of evapotranspiration and runoff in mountainous basins, Hydrol. Process., 13, 2751–2768, 1999.
Gurtz, J., Verbunt, M., Zappa, M., Moesch, M., Pos, F., and Moser, U.: Long-term hydrometeorological measurements and model-based analyses in the hydrological research catchment Rietholzbach, J. Hydrol. Hydromech., 51, 162–174, 2003.
Haddeland, I., Matheussen, B., and Lettenmaier, D.: Influence of spatial resolution on simulated streamflow in a macroscale hydrologic model, Water Resour. Res., 38, 1124, https://doi.org/10.1029/2001WR000854, 2002.
Haddeland, I., Lettenmaier, D., and Skaugen, T.: Reconciling Simulated Moisture Fluxes Resulting from Alternate Hydrologic Model Time Steps and Energy Budget Closure Assumptions, J. Hydrometeorol., 7, 355–370, https://doi.org/10.1175/JHM496.1, 2006.
Hazenberg, P., Fang, Y., Broxton, P., Gochis, D., Niu, G., Pelletier, J., Troch, P., and Zeng, X.: A hybrid-3D hillslope hydrological model for use in Earth system models, Water Resour. Res., 10, 8218–8239, https://doi.org/10.1002/2014WR016842, 2015.
Hoekstra, A.: Water scarcity challenges to business, Nat. Clim. Change, 4, 318–320, https://doi.org/10.1038/nclimate2214, 2014.
Hurkmans, R. T. W. L., de Moel, H., Aerts, J. C. J. H., and Troch, P. A.: Water balance versus land surface model in the simulation of Rhine river discharges, Water Resour. Res., 44, W01418, https://doi.org/10.1029/2007WR006168, 2008.
Jasper, K., Calanca, P., Gyalistras, D., and Fuhrer, J.: Differential impacts of climate change on the hydrology of two Alpine river basins, Clim. Res., 26, 113–129, https://doi.org/10.3354/cr026113, 2004.
Jörg-Hess, S., Kempf, S., Fundel, F., and Zappa, M.: The benefit of climatological and calibrated reforecast data for simulating hydrological droughts in Switzerland, Meteorol. Appl., 22, 444–458, https://doi.org/10.1002/met.1474, 2015.
Kavetski, D., Fenicia, F., and Clark, M. P.: Impact of temporal data resolution on parameter inference and model identification in conceptual hydrological modeling: Insights from an experimental catchment, Water Resour. Res., 47, W05501, https://doi.org/10.1029/2010WR009525, 2011.
Kim, C. P., Stricker, J. N. M., and Feddes, R. A.: Impact of soil heterogeneity on the water budget of the unsaturated zone, Water Resour. Res., 33, 991–999, https://doi.org/10.1029/97WR00364, 1997.
Krause, P., Boyle, D. P., and Bäse, F.: Comparison of different efficiency criteria for hydrological model assessment, Adv. Geosci., 5, 89–97, https://doi.org/10.5194/adgeo-5-89-2005, 2005.
Kumar, R., Samaniego, L., and Attinger, S.: Implications of distributed hydrologic model parameterization on water fluxes at multiple scales and locations, Water Resour. Res., 49, 360–379, https://doi.org/10.1029/2012WR012195, 2013.
Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A simple hydrologically based model of land surface water and energy fluxes for general circulation models, J. Geophys. Res., 99, 14415–14458, 1994.
Liang, X., Wood, E. F., and Lettenmaier, D. P.: Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification, Global Planet. Change, 13, 195–206, https://doi.org/10.1016/0921-8181(95)00046-1, 1996.
Liang, X., Guo, J., and Leung, L.: Assessment of the effects of spatial resolutions on daily water flux simulations, J. Hydrol., 298, 287–310, https://doi.org/10.1016/j.jhydrol.2003.07.007, 2004.
Littlewood, I. and Croke, B.: Data time-step dependency of conceptual rainfall-streamflow model parameters: an empirical study with implications for regionalisation, Hydrolog. Sci. J., 53, 685–695, https://doi.org/10.1623/hysj.53.4.685, 2008.
Littlewood, I. and Croke, B.: Effects of data time-step on the accuracy of calibrated rainfall-streamflow model parameters: practical aspects of uncertainty reduction, Hydrol. Res., 44, 430–440, https://doi.org/10.2166/nh.2012.099, 2013.
Liu, H., Tian, F., Hu, H., Hu, H., and Sivapalan, M.: Soil moisture controls on patterns of grass green-up in Inner Mongolia: an index based approach, Hydrol. Earth Syst. Sci., 17, 805–815, https://doi.org/10.5194/hess-17-805-2013, 2013.
Liu, Y. and Gupta, H. V.: Uncertainty in hydrologic modeling: Towards an integrated data assimilation framework, Water Resour. Res., 43, W07401, https://doi.org/10.1029/2006WR005756, 2007.
Lobligeois, F., Andréassian, V., Perrin, C., Tabary, P., and Loumagne, C.: When does higher spatial resolution rainfall information improve streamflow simulation? An evaluation using 3620 flood events, Hydrol. Earth Syst. Sci., 18, 575–594, https://doi.org/10.5194/hess-18-575-2014, 2014.
Lohmann, D., Nolte-Holube, R., and Raschke, E.: A large-scale horizontal routing model to be coupled to land surface parameterization schemes, Tellus A, 48, 708–721, 1996.
Maxwell, R. and Kollet, S.: Quantifying the effects of three-dimensional subsurface heterogeneity on Hortonian runoff processes using a coupled numerical, stochastic approach, Adv. Water Resour., 31, 807–817, https://doi.org/10.1016/j.advwatres.2008.01.020, 2008.
Melsen, L., Teuling, A., van Berkum, S., Torfs, P., and Uijlenhoet, R.: Catchments as simple dynamical systems: A case study on methods and data requirements for parameter identification, Water Resour. Res., 50, 5577–5596, https://doi.org/10.1002/2013WR014720, 2014.
Melsen, L., Teuling, A., Torfs, P., Uijlenhoet, R., Mizukami, N., and Clark, M.: HESS Opinions: The need for process-based evaluation of large-domain hyper-resolution models, Hydrol. Earth Syst. Sci., 20, 1069–1079, https://doi.org/10.5194/hess-20-1069-2016, 2016.
Miller, E. and Miller, R.: Physical theory for capillary flow phenomena, J. Appl. Phys., 27, 324–332, https://doi.org/10.1063/1.1722370, 1956.
Miralles, D., Teuling, A., van Heerwaarden, C., and Vilà-Guerau de Arellano, J.: Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation, Nat. Geo. Sci., 7, 345–349, https://doi.org/10.1038/ngeo2141, 2014.
Mizukami, N., Clark, M. P., Sampson, K., Nijssen, B., Mao, Y., McMillan, H., Viger, R. J., Markstrom, S. L., Hay, L. E., Woods, R., Arnold, J. R., and Brekke, L. D.: mizuRoute version 1: a river network routing tool for a continental domain water resources applications, Geosci. Model Dev. Discuss, 8, 9415–9449, https://doi.org/10.5194/gmdd-8-9415-2015, 2015.
Mizukami, N., Clark, M., Gutmann, E., Mendoza, P., Newman, A., Nijssen, B., Livneh, B., Hay, L., Arnold, J., and Brekke, L.: Implications of the methodological choices for hydrologic portrayals of climate change over the contiguous United States: Statistically downscaled forcing data and hydrologic models, J. Hydrometeorol., 17, 73–98, https://doi.org/10.1175/JHM-D-14-0187.1, 2016.
Mohanty, B. and Skaggs, T.: Spatio-temporal evolution and time-stable characteristics of soil moisture within remote sensing footprints with varying soil, slope, and vegetation, Adv. Water Resour., 24, 1051–1067, https://doi.org/10.1016/S0309-1708(01)00034-3, 2001.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models, I. A discussion of principles, J. Hydrol., 10, 282–290, 1970.
Nijssen, B., O'Donnell, G., and Lettenmaier, D.: Predicting the Discharge of Global Rivers, J. Climate, 14, 3307–3323, https://doi.org/10.1175/1520-0442(2001)014<3307:PTDOGR>2.0.CO;2, 2001.
Rakovec, O., Hill, M. C., Clark, M. P., Weerts, A. H., Teuling, A. J., and Uijlenhoet, R.: Distributed Evaluation of Local Sensitivity Analysis (DELSA), with application to hydrologic models, Water Resour. Res., 50, 409–426, https://doi.org/10.1002/2013WR014063, 2014.
Rebetez, M., Mayer, H., Dupont, O., Schindler, D., Gartner, K., Kropp, J., and Menzel, A.: Heat and drought 2003 in Europe: a climate synthesis, Annu. Forest. Sci., 63, 569–577, https://doi.org/10.1051/forest:2006043, 2006.
Rosero, E., Yang, Z., Wagener, T., Gulden, L., Yatheendradas, S., and Niu, G.: Quantifying parameter sensitivity, interaction, and transferability in hydrologically enhanced versions of the Noah land surface model over transition zones during the warm season, J. Geophys. Res., 115, D03106, https://doi.org/10.1029/2009JD012035, 2010.
Samaniego, L., Kumar, R., and Attinger, S.: Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale, Water Resour. Res., 46, W05523, https://doi.org/10.1029/2008WR007327, 2010.
Schmocker-Fackel, P. and Naef, F.: More frequent flooding? Changes in flood frequency in Switzerland since 1850, J. Hydrol., 381, 1–8, https://doi.org/10.1016/j.jhydrol.2009.09.022, 2010.
Seneviratne, S. I., Lehner, I., Gurtz, J., Teuling, A. J., Lang, H., Moser, U., Grebner, D., Menzel, L., Schroff, K., Vitvar, T., and Zappa, M.: Swiss prealpine Rietholzbach research catchment and lysimeter: 32 year time series and 2003 drought event, Water Resour. Res., 48, W06526, https://doi.org/10.1029/2011WR011749, 2012.
Shrestha, P., Sulis, M., Simmer, C., and Kollet, S.: Impacts of grid resolution on surface energy fluxes simulated with an integrated surface-groundwater flow model, Hydrol. Earth Syst. Sci., 19, 4317–4326, https://doi.org/10.5194/hess-19-4317-2015, 2015.
Sood, A. and Smakhtin, V.: Global hydrological models: a review, Hydrolog. Sci. J., 60, 549–565, https://doi.org/10.1080/02626667.2014.950580, 2015.
Sulis, M., Paniconi, C., and Camporese, M.: Impact of grid resolution on the integrated and distributedr esponse of a coupled surface-subsurface hydrological model for the des Anglais catchment, Quebec, Hydrol. Process., 25, 1853–1865, https://doi.org/10.1002/hyp.7941, 2011.
Sutanudjaja, E., van Beek, L., de Jong, S., van Geer, F., and Bierkens, M.: Calibrating a large-extent high-resolution coupled groundwater-land surface model using soil moisture and discharge data, Water Resour. Res., 50, 687–705, https://doi.org/10.1002/2013WR013807, 2014.
Teuling, A. J., Lehner, I., Kirchner, J. W., and Seneviratne, S. I.: Catchments as simple dynamical systems: Experience from a Swiss prealpine catchment, Water Resour. Res., 46, W10502, https://doi.org/10.1029/2009WR008777, 2010.
Todini, E.: Hydrological Catchment Modelling: Past, Present and Future, Hydrol. Earth Syst. Sci., 11, 468–482, https://doi.org/10.5194/hess-11-468-2007, 2007.
Troy, T. J., Wood, E. F., and Sheffield, J.: An efficient calibration method for continental-scale land surface modeling, Water Resour. Res, 44, W09411, https://doi.org/10.1029/2007WR006513, 2008.
Van Vliet, M. T. H., Yearsly, J. R., Ludwig, F., Vögele, S., Lettenmaier, D. P., and Kabat, P.: Vulnerability of US and European electricity supply to climate change, Nature Clim. Change, 2, 676–681, https://doi.org/10.1038/nclimate1546, 2012.
Viviroli, D., Zappa, M., Gurtz, J., and Weingartner, R.: An introduction to the hydrological modelling system PREVAH and its pre- and post-processing-tools, Environ. Model. Softw., 24, 1209–1222, https://doi.org/10.1016/j.envsoft.2009.04.001, 2009a.
Viviroli, D., Zappa, M., Schwanbeck, J., Gurtz, J., and Weingartner, R.: Continuous simulation for flood estimation in ungauged mesoscale catchments of Switzerland – Part I: Modelling framework and calibration results, J. Hydrol., 377, 191–207, https://doi.org/10.1016/j.jhydrol.2009.08.023, 2009b.
Vivoni, E., Ivanov, V., Bras, R., and Entekhabi, D.: On the effects of triangulated terrain resolution ondistributed hydrologic model response, Hydrol. Process., 19, 2101–2122, https://doi.org/10.1002/hyp.5671, 2005.
Vor̂echovský, M.: Hierarchical refinement of latin hypercube samples, Comput.-Aid. Civ. Infrastruct. Eng., 30, 394–411, https://doi.org/10.1111/mice.12088, 2015.
Vor̂echovský, M. and Novák, D.: Correlation control in small-sample Monte Carlo type simulations I: A simulated annealing approach, Probabil. Eng. Mech., 24, 452–462, https://doi.org/10.1016/j.probengmech.2009.01.004, 2009.
Vörösmarty, C., Moore III, B., Grace, A., and Gildea, M.: Continental scale models of water balance and fluvial transport: an application to South-America, Global Biogeochem. Cy., 3, 241–265, https://doi.org/10.1029/GB003i003p00241, 1989.
Wada, Y. and Bierkens, M.: Sustainability of global water use: past reconstruction and future projections, Environ. Res. Lett., 9, 104003, https://doi.org/10.1088/1748-9326/9/10/104003, 2014.
Wagener, T. and Wheater, H. S.: Parameter estimation and regionalization for continuous rainfall-runoff models including uncertainty, J. Hydrol., 320, 132–154, https://doi.org/10.1016/j.jhydrol.2005.07.015, 2006.
Wang, Y., He, B., and Takase, K.: Effects of temporal resolution on hydrological model parameters and its impact on prediction of river discharge, Hydrolog. Sci. J., 54, 886–898, https://doi.org/10.1623/hysj.54.5.886, 2009.
Wen, Z., Liang, X., and Yang, S.: A new multiscale routing framework and its evaluation for land surface modeling applications, Water Resour. Res., 48, W08528, https://doi.org/10.1029/2011WR011337, 2012.
Wenger, S., Luce, C., Hamlet, A., Isaak, D., and Neville, H.: Macroscale hydrologic modeling of ecologically relevant flow metrics, Water Resour. Res., 46, W09513, https://doi.org/10.1029/2009WR008839, 2010.
Western, A., Zhou, S., Grayson, R., McMahona, T., Blöschl, G., and Wilson, D.: Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes, J. Hydrol., 286, 113–134, https://doi.org/10.1016/j.jhydrol.2003.09.014, 2004.
Wood, E., Roundy, J., Troy, T., van Beek, L., Bierkens, M. P., Blyth, E., de Roo, A., Döll, P., Ek, M., Famiglietti, J., Gochis, D., van de Giesen, N., Houser, P., Jaffé, P., Kollet, S., Lehner, B., Lettenmaier, D., Peters-Lidard, C., Sivapalan, M., Sheffield, J., Wade, A., and Whitehead, P.: Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water, Water Resour. Res., 47, W05301, https://doi.org/10.1029/2010WR010090, 2011.
Yang, J., Reichert, P., and Abbaspour, K.: Bayesian uncertainty analysis in distributed hydrologic modeling: A case study in the Thur River basin (Switzerland), Water Resour. Res., 43, W10401, https://doi.org/10.1029/2006WR005497, 2007.
Zappa, M.: Multiple-Response Verification of a Distributed Hydrological Model at Different Spatial Scales, in: chap. 4. The sensitivity of distributed hydrological simulations to the spatial resolution of physiographic data, ETH Zürich, 35–51, 14895, https://doi.org/10.3929/ethz-a-004529728, 2002.
Zappa, M. and Kan, C.: Extreme heat and runoff extremes in the Swiss Alps, Nat. Hazards Earth Syst. Sci., 7, 375–389, https://doi.org/10.5194/nhess-7-375-2007, 2007.
Zhao, R., Zuang, Y., Fang, L., Liu, X., and Zhang, Q.: The Xinanjiang model, Hydrological forecasting – Prévisions hydrologiques, Proceedings of the Oxford Symposium, April 1980, 129, 351–356, http://hydrologie.org/redbooks/a129/iahs_129_0351.pdf (last access: 7 August 2014), 1980.
Short summary
In this study we investigated the sensitivity of a large-domain hydrological model for spatial and temporal resolution. We evaluated the results on a mesoscale catchment in Switzerland. Our results show that the model was hardly sensitive for the spatial resolution, which implies that spatial variability is likely underestimated. Our results provide a motivation to improve the representation of spatial variability in hydrological models in order to increase their credibility on a smaller scale.
In this study we investigated the sensitivity of a large-domain hydrological model for spatial...