
Hydrol. Earth Syst. Sci., 20, 2207–2226, 2016
www.hydrol-earth-syst-sci.net/20/2207/2016/
doi:10.5194/hess-20-2207-2016
© Author(s) 2016. CC Attribution 3.0 License.

Representation of spatial and temporal variability in large-domain
hydrological models: case study for a mesoscale pre-Alpine basin
Lieke Melsen1, Adriaan Teuling1, Paul Torfs1, Massimiliano Zappa2, Naoki Mizukami3, Martyn Clark3, and
Remko Uijlenhoet1

1Hydrology and Quantitative Water Management Group, Wageningen University, Wageningen, the Netherlands
2Swiss Federal Research Institute (WSL), Birmensdorf, Switzerland
3National Center for Atmospheric Research (NCAR), Boulder, CO, USA

Correspondence to: Lieke Melsen (lieke.melsen@wur.nl)

Received: 10 December 2015 – Published in Hydrol. Earth Syst. Sci. Discuss.: 27 January 2016
Revised: 25 May 2016 – Accepted: 25 May 2016 – Published: 8 June 2016

Abstract. The transfer of parameter sets over different tem-
poral and spatial resolutions is common practice in many
large-domain hydrological modelling studies. The degree to
which parameters are transferable across temporal and spa-
tial resolutions is an indicator of how well spatial and tem-
poral variability is represented in the models. A large de-
gree of transferability may well indicate a poor representa-
tion of such variability in the employed models. To inves-
tigate parameter transferability over resolution in time and
space we have set up a study in which the Variable Infiltra-
tion Capacity (VIC) model for the Thur basin in Switzerland
was run with four different spatial resolutions (1 km× 1 km,
5 km× 5 km, 10 km× 10 km, lumped) and evaluated for
three relevant temporal resolutions (hour, day, month), both
applied with uniform and distributed forcing. The model was
run 3150 times using the Hierarchical Latin Hypercube Sam-
ple and the best 1 % of the runs was selected as behavioural.
The overlap in behavioural sets for different spatial and tem-
poral resolutions was used as an indicator of parameter trans-
ferability. A key result from this study is that the overlap
in parameter sets for different spatial resolutions was much
larger than for different temporal resolutions, also when the
forcing was applied in a distributed fashion. This result sug-
gests that it is easier to transfer parameters across different
spatial resolutions than across different temporal resolutions.
However, the result also indicates a substantial underestima-
tion in the spatial variability represented in the hydrological
simulations, suggesting that the high spatial transferability
may occur because the current generation of large-domain

models has an inadequate representation of spatial variabil-
ity and hydrologic connectivity. The results presented in this
paper provide a strong motivation to further investigate and
substantially improve the representation of spatial and tem-
poral variability in large-domain hydrological models.

1 Introduction

The history of modern hydrological modelling dates back to
halfway through the nineteenth century, starting with em-
pirical models to predict peak flows (Todini, 2007). For
a long time, hydrological models were developed only at
the catchment scale, evolving from empirically based to
more physically based. Computational power and increased
data availability have driven the development of increasingly
complex and distributed hydrological models (Boyle et al.,
2001; Liu and Gupta, 2007). Distributed hydrological mod-
els can incorporate spatially varying parameters, including
those reflecting land use and soil characteristics (Carpen-
ter and Georgakakos, 2006), and spatially variable forcing.
In 1989 the first global hydrological model (GHM) was pre-
sented (Vörösmarty et al., 1989; Sood and Smakhtin, 2015).
Continuing improvements in computational power and data
availability provide new opportunities for GHMs, for exam-
ple expressed in the recent ambition to develop global models
with a resolution of the order of ∼ 1 km and higher, the so-
called hyper-resolution (Wood et al., 2011; Bierkens et al.,
2014; Bierkens, 2015).
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Because the parameters in hydrological models often rep-
resent a different spatial scale than the observation scale, or
because conceptual parameters have no directly measurable
physical meaning, calibration of hydrological models is al-
most always inevitable (Beven, 2012). The increased com-
plexity of hydrological models and the increased application
domain has resulted in more complex and time consuming
optimization procedures for the model parameters. However,
although recent developments in e.g. satellites and remote
sensing can provide spatially distributed data to construct and
force models, discharge measurements are still required to
calibrate and validate model output.

Both to decrease calculation time of the optimization pro-
cedure and to be able to apply the model in ungauged
or poorly gauged basins and areas, many studies have fo-
cused on the transferability of parameter values over time,
space, and spatial and temporal resolution (e.g. Wagener
and Wheater, 2006; Duan et al., 2006; Troy et al., 2008;
Samaniego et al., 2010; Rosero et al., 2010; Kumar et al.,
2013; Bennett et al., 2016). Sometimes it is assumed that pa-
rameters are directly transferable, for example by calibrating
on a coarser time step than the time step at which the model
output will eventually be analysed (e.g. Liu et al., 2013;
Costa-Cabral et al., 2013). Troy et al. (2008) rightly question
what the effect is of calibrating at one time step and transfer-
ring the parameters to another time step. Their results suggest
that the time step had only limited impact on the calibrated
parameters and thus on the monthly runoff ratio. On the other
hand, Haddeland et al. (2006) found that modelled moisture
fluxes are sensitive to the model time step. Several studies
(e.g. Littlewood and Croke, 2008, 2013; Kavetski et al., 2011
and Wang et al., 2009) have found that parameter values
are closely related to the employed time step of the model.
Chaney et al. (2015) investigated to what extent monthly
runoff observations could reduce the uncertainty around the
flow duration curve of daily modelled runoff. They found a
decrease in the uncertainty around the flow duration curve
when the monthly discharge observations were used, but the
magnitude of the reduction was dependent on climate type.
Recently, Ficchì et al. (2016) conducted a thorough analysis
of the effect of temporal resolution on the projection of flood
events, where it was shown that the flood characteristics de-
termined the sensitivity for the temporal resolution.

Less intuitive and less common is to transfer parameters
across different grid resolutions. Haddeland et al. (2002)
showed that the output of the Variable Infiltration Capacity
(VIC) model was significantly different when the parame-
ters of the model were kept constant for several spatial res-
olutions. For the same model, Liang et al. (2004) showed
that model parameters calibrated at a coarse grid resolution
could be applied to finer resolutions to obtain comparable
results. Troy et al. (2008), on the contrary, found that cali-
brating the VIC model on a coarse resolution significantly
affected the model performance when applied to finer resolu-
tions. Finnerty et al. (1997) investigated parameter transfer-

ability over both space and time for the Sacramento model,
and showed that it can lead to considerable volume errors.

Although the ambition of GHMs is to move towards hyper-
resolution (∼ 1 km and higher), more physically based catch-
ment models have already been applied at spatial resolutions
of the order of 100 m. Also for these models at this scale, the
effect of spatial resolution has been investigated (e.g. Vivoni
et al., 2005; Sulis et al., 2011; Shrestha et al., 2015). Even for
fully coupled surface-groundwater land-surface models, the
effect of spatial resolution on hydrologic fluxes was found to
be considerable (Shrestha et al., 2015).

The impact of transferring parameters across spatial and/or
temporal resolutions on model performance is thus ambigu-
ous, but relevant in the light of hydrological model develop-
ment, especially for GHMs which are at the upper bound-
ary of computational power and data availability. Calibration
on a coarse temporal or spatial resolution and subsequently
transferring to a higher resolution could potentially reduce
computation time, and it is therefore relevant to investigate
the opportunities. But parameter transferability across spatial
and temporal resolutions is also interesting for another rea-
son: it is an indicator of the degree to which spatial variability
and temporal variability are represented in the model. Ideally,
in a model that describes all relevant hydrological processes
correctly, parameters should to a large extent be transferable
over time because longer time steps are simply an integra-
tion of the shorter time steps. On the other hand, parameters
should not be or be hardly transferable over space, because
the physical characteristics which they represent are different
from place to place. Investigating parameter transferability
across spatial and temporal resolutions can thus provide in-
sight into the model’s representation of spatial and temporal
variability.

In this study, we employ the Variable Infiltration Capac-
ity (VIC) model (Liang et al., 1994), which has also been
applied at the global scale (Nijssen et al., 2001; Bierkens
et al., 2014), to study parameter transferability across tempo-
ral and spatial resolutions, accounting for the difference be-
tween uniform and distributed forcing. We applied this study
to a well-gauged meso-scale catchment in Switzerland (the
Thur basin, 1703 km2) on spatial resolutions that are relevant
for hyper-resolution studies (1 km× 1 km, 5 km× 5 km and
10 km× 10 km, as well as a lumped model which represents
the 0.5◦ grid used in many global studies). We use the most
common temporal resolutions for which discharge data are
available (hourly, daily, monthly). We ran the models both
with distributed forcing (different forcing input for each grid
cell) and with uniform forcing (same forcing input for each
grid cell), where the latter is in line with many of the data
sets currently used for forcing global hydrological models
(e.g. WATCH forcing data, 0.5◦).

Several studies already investigated scale effects in the
VIC model, for instance Haddeland et al. (2002, 2006), Liang
et al. (2004), Troy et al. (2008), Wenger et al. (2010) and
Wen et al. (2012). This study is novel in that we choose a
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Figure 1. Overview of the spatial and temporal resolutions employed in this study. Top panels from left to right: DEM (digital elevation
model) grid cells for 1 km× 1 km, 5 km× 5 km, 10 km× 10 km resolution and the lumped model. The circle in the left panel shows the
location of the Thur outlet where the discharge is measured. The dotted lines in the right panel indicate a 0.5◦ grid. Bottom panels: the three
temporal resolutions; observed discharge at an hourly, daily and monthly time step.

probabilistic approach rather than a deterministic approach:
essentially we employ a GLUE-based approach (Beven and
Binley, 1992, 2014) in which we implicitly account for pa-
rameter uncertainty. We quantify parameter transferability by
evaluating the overlap in behavioural sets for different tem-
poral and spatial resolutions. To determine the behavioural
sets, we make use of three different objective functions fo-
cusing on high flows, average conditions, and low flows. It is
also novel that we test the effect of forcing on the results, and
that we use several subbasins to explain the results. Our case
study provides a benchmark for parameter transferability for
models applied at larger scales, dealing with the same spatial
and temporal resolutions as employed here. The results of
our study also provide an indication of the current status of
spatial and temporal representation in the VIC model, being
representative of a larger group of land-surface models.

2 Catchment and data description

2.1 Thur basin

The Thur basin (1703 km2; see Figs. 1 and 2) in north-eastern
Switzerland was chosen as the study area, because of the ex-
cellent data availability in this area and because of its rel-
evance as a tributary of the river Rhine (Hurkmans et al.,
2008). The main river in the basin (the Thur) has a length
of 127 km. The average elevation of the basin is 765 m a.s.l.,
and the mean slope is 7.9◦ (based on a 200 m× 200 m resolu-
tion DEM and slope file). The basin outlet is situated at An-
delfingen at an elevation of 356 m a.s.l. (Gurtz et al., 1999).
The basin has an Alpine/pre-Alpine climatic regime, with
high temperature variations both in space and time (Fig. 3).
Precipitation varies from 2500 mm yr−1 in the mountains
to 1000 mm yr−1 in the lower areas. Part of the year the
basin is covered with snow. The most striking feature in the
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Figure 2. The Thur basin and the nine sub-basins for which dis-
charge data were available.

Thur basin is the Säntis, an Alpine peak with an altitude of
2502 m. The dominant land use in the Thur basin is pasture.
Within the Thur basin, measurements for nine (nested) sub-
catchments are available (see Fig. 2). The smallest gauged
sub-catchment is the Rietholzbach catchment (3.3 km2; see
Seneviratne et al., 2012); the largest is Halden (1085 km2).
Both the Rietholzbach and the Thur have been the subject of
many previous studies (e.g. Gurtz et al., 1999, 2003; Jasper
et al., 2004; Abbaspour et al., 2007; Yang et al., 2007; Teul-
ing et al., 2010; Melsen et al., 2014). In this study, we will
mainly focus on the outlet of the Thur basin.

2.2 Discharge data

For the station at the Thur outlet (Andelfingen) and eight sub-
basins, hourly discharge measurements for the period 1974–
2012 were made available by the Swiss Federal Office for
the Environment (FOEN). All discharge measurements have
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Figure 3. Upper panels: the precipitation sum in the Thur catchment over the full model period (1 August 2002–31 August 2003) shown for
different resolutions (f.l.t.r.: 1 km× 1 km, 5 km× 5 km, 10 km× 10 km). Lower panels: the average temperature over this period for the same
spatial resolutions.

been obtained using a stage–discharge relation, based on
several measurements conducted by FOEN throughout the
years, amongst others, with an ADCP. The discharge mea-
surements for the Rietholzbach catchment were made avail-
able by ETH Zürich.

2.3 Forcing data

Forcing data for this study were made available by the
Swiss Federal Office for Meteorology and Climatology (Me-
teoSwiss). These data have previously been used for numer-
ous applications of hydrological models in the Thur (Jasper
et al., 2004; Abbaspour et al., 2007; Fundel and Zappa, 2011;
Fundel et al., 2013; Jörg-Hess et al., 2015). The data are
available for this study in the form required to implement the
PREVAH model (Viviroli et al., 2009a, b). Data from nine
different meteorological stations throughout the catchment
(Güttingen, Hörnli, Reckenholz, Säntis, St. Gallen, Tänikon,
Wädenswil, Zürich and Rietholzbach) were available with
an hourly time resolution and spatially interpolated with the
use of the WINMET tool of the PREVAH modelling sys-
tem (Viviroli et al., 2009a), using elevation-dependent re-
gression (EDR) and inverse distance weighting (IDW) and
combinations of IDW and EDR. The data are available for
the period 1981–2004, for which a stable configuration of
stations is available. In this study, we only used data for the
period May 2002–August 2003. To force the VIC model,
hourly precipitation, incoming shortwave radiation, temper-
ature, vapour pressure and wind data were used. We have
run the model with two set-ups: fed with uniform forcing
and fed with distributed forcing. Because the Thur basin has
an extent of approximately 0.5◦, a lumped application of the
forcing mimics the use of global forcing data sets like the
WATCH forcing product and the ERA-Interim product. Ap-

plication with distributed forcing implied different forcing
inputs for each grid cell. Because of the pronounced eleva-
tion differences in the basin, precipitation and temperature
show a clear spatial pattern, which can be seen in Fig. 3.

2.4 Spatial data for the model

Land use, hydraulic conductivity, elevation, and soil wa-
ter storage capacity maps, all with a spatial resolution of
200 m× 200 m, were provided by the Swiss Federal Institute
for Forest, Snow and Landscape Research (WSL) under li-
cense by swisstopo (JA100118). Also in this case we used the
pre-processing routines created to implement the PREVAH
modelling system (Viviroli et al., 2009a). The resolution of
the available data (200 m× 200 m) is higher than the model
with the highest resolution in this study (1 km× 1 km), which
allows for sub-grid variability in the VIC model for land use
and elevation parameters (see Sect. 3.1). Other soil charac-
teristics, such as bulk density, have been obtained from the
Harmonized World Soil Database (FAO et al., 2012), which
has a spatial resolution of 1 km× 1 km.

3 Model and routing description

The VIC model (version 4.1.2.i) was run at an hourly time
step in the energy balance mode, which implies that both the
water and energy balances are solved. The default routing
developed for VIC by Lohmann et al. (1996) is only applica-
ble at daily time steps and hence is not suitable for studying
parameter transferability at finer temporal resolutions. There-
fore, horizontal water transport through the channel network
was implemented using mizuRoute (Mizukami et al., 2015).
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3.1 The VIC model

The VIC model (Liang et al., 1994, 1996) is a land-surface
model that solves the water and the energy balance. Subgrid
land-use type variability is accounted for by providing veg-
etation tiles that each cover a certain percentage of the total
surface area. Three different types of evaporation are consid-
ered by the VIC model: evaporation from the bare soil (Eb),
transpiration by the vegetation (T ), considered per vegetation
tile, and evaporation from interception (Ei). The total evap-
otranspiration is the area-weighted sum of the three evapo-
ration types. The fraction of land that is not assigned to a
particular land-use type is considered to be bare soil. Evap-
oration from bare soil only occurs at the top layer (layer 1).
If layer 1 is saturated, bare soil evaporation is at its poten-
tial rate. Potential evaporation is obtained with the Penman–
Monteith equation. If the top layer is not saturated, an Arno
formulation (Francini and Pacciani, 1991), which uses the
structure of the Xinanjiang model (Zhao et al., 1980), is used
to reduce the evaporation.

For the upper two soil layers, the Xinanjiang formulation
(Zhao et al., 1980) is used to describe infiltration. This for-
mulation assumes that the infiltration capacity varies within
an area. Surface runoff occurs when precipitation added to
the soil moisture of layers 1 and 2 exceeds the local infiltra-
tion capacity of the soil. Moisture transport from layer 1 to
layer 2 and from layer 2 to layer 3 is gravity driven and only
dictated by the moisture level of the upper layer. It is assumed
that there is no diffusion between the different layers. Layer 3
characterizes long-term soil moisture response, e.g. season-
ality. It only responds to short-term rainfall when both top
layers are fully saturated. The gravity-driven moisture move-
ment is regulated by the Brooks–Corey relationship:

Qi,i+1 =Ksat,i

(
Wi −Wr,i

W c
i −Wr,i

)expti
. (1)

Qi,i+1 is the flow [L3 T−1] from layer i to layer i+ 1.
Ksat,i is the saturated hydraulic conductivity of layer i, Wi is
the soil moisture content in layer i, W c

i is the maximum soil
moisture content in layer i, and Wr,i the residual moisture
content in layer i. The exponent of the Brooks–Corey rela-
tion, expti, is defined as follows: 2

Bp
+ 3, in which Bp is the

pore size distribution index. The exponent as a whole is often
calibrated.

Baseflow is determined based on the moisture level of
layer 3. Baseflow generation follows the conceptualization
of the Arno model (Francini and Pacciani, 1991). This for-
mulation consists of a linear part (lower moisture content re-
gions) and a quadratic part (in the higher moisture regions).
Baseflow is modelled as follows:

Qb =


dsdm

wsW
c
3
·W3 if 0≤W3 ≤ wsW

c
3

dsdm

wsW
c
3
·W3+

(
dm−

dsdm

ws

)(
W3−wsW

c
3

W c
3 −wsW

c
3

)g
if W3 ≥ wsW

c
3

.

In this equation,Qb is the total baseflow over the model time
step (in this study, 1 h), dm is the maximum baseflow, ds is the
fraction of dm where non-linear baseflow begins, and ws is
the fraction of soil moisture where non-linear baseflow starts.
W c

3 is the maximum soil moisture content in layer 3, calcu-
lated as a product of porosity and depth. The exponent g is
by default set to 2 (Liang et al., 1996).

Since the grid size of the VIC model is often larger than the
characteristic scale of snow processes, sub-grid variability is
accounted for by means of elevation bands. For each grid cell
the percentage of area within certain altitude ranges is pro-
vided. The snow model is applied for each elevation band
and land-use type separately; the weighted average provides
the output per grid cell. This output consists of the snow wa-
ter equivalent (SWE) and the snow depth. The snow model is
a two-layer accumulation–ablation model, which solves both
the energy and the mass balance. At the top layer of the snow
cover the energy exchange takes place. A zero energy flux
boundary is assumed at the snow–ground interface. A com-
plete description of the model can be found in Liang et al.
(1994, 1996).

3.2 Routing

The mizuRoute routine (Mizukami et al., 2015) takes care
of the transport of water between the different grid cells. The
routing is based on the same concept as the routing described
by Lohmann et al. (1996), except that in mizuRoute the re-
sponse is determined per subcatchment instead of per grid
cell.

With the linearized St. Venant equation,

∂Q

∂t
=D

∂2Q

∂x2 −C
∂Q

∂x
, (2)

water is transported from the boundary of the subcatchment
to the next subcatchment and finally to the outlet. In Eq. (2),
D (m2 s−1) represents the diffusion coefficient andC (m s−1)
the advection coefficient.

In the Thur basin, the routing is applied to subcatchments
of the order of 1 km2. It is important to note that with the
applied routing set-up, the drainage network is kept inde-
pendent of the resolution, because surface runoff is routed
for pre-defined sub-basins instead of per grid cell. In the de-
fault VIC routing of Lohmann et al. (1996), water is routed
per grid cell and is therefore dependent on the spatial reso-
lution of the VIC model. By applying mizuRoute based on
pre-defined sub-basins (∼ 1 km2), we have excluded the ef-
fect of the spatial resolution on the routing process.

4 Experimental set-up

We have constructed four VIC models with different spa-
tial resolutions: 1 km× 1 km, 5 km× 5 km, 10 km× 10 km,
as well as a lumped model. These models have been run with
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Figure 4. Daily discharge characteristics for the Thur basin. Left panel: the daily discharge in the Thur for the selected model period. The
black lines show three model runs with the same parameter set but with different initial conditions (θ = 0.5, 0.7, 0.9). Right panel: part of
the flow duration curve covered within the model period. The flow duration curve is based on 39 years of daily discharge observations in the
Thur basin for the period 1974–2012.

both uniform and distributed forcing. Since for the lumped
model there is no difference between uniform and distributed
forcing, this leads to a total of seven different model set-
ups. Because the runtime of the model combined with all
the post-processing is rather long (on average 2.5 h for the
1 km× 1 km model on a standard PC), an efficient sampling
strategy was designed. The procedure we followed is illus-
trated in Fig. 5. With sensitivity analysis (Sect. 4.4) the most
sensitive parameters from the model were selected. Subse-
quently, we sampled the full parameter space with a uni-
form prior using the Hierarchical Latin Hypercube Sam-
ple (HLHS) (Vorˆechovský, 2015); see Sect. 4.5. Although
sampling the parameter space with a uniform prior is less
efficient than other distributions which focus more on the
most likely regions, we did not want to exclude any region
because both the temporal and spatial resolution were var-
ied. The sampled parameters were applied uniformly over
the catchment, whereas all other soil- and land-use parame-
ters have been applied in a distributed fashion. After running
the models with the HLHS, the output was evaluated and the
best 1 % of the runs was defined as behavioural. The over-
lap in behavioural sets was used as an indicator of parameter
transferability (Sect. 4.7).

4.1 Spatial model resolution

Four VIC implementations with different spatial reso-
lutions (0.0109◦ roughly corresponding to 1 km× 1 km,
0.0558◦≈ 5 km× 5 km, 0.1100◦≈ 10 km× 10 km, as well
as a lumped model) were constructed. The 1 km× 1 km
model represents the so-called hyper-resolution. Several
studies already explore GHMs at this resolution, e.g. Su-
tanudjaja et al. (2014) for the Rhine–Meuse basin. The model
with the 10 km× 10 km resolution can be characterized as
“regional”. The 5 km× 5 km model is in between the hyper-
resolution scale and the regional scale. The lumped model,
which represents an area of 1703 km2, is of the order of mag-
nitude of grid cells with a 0.5◦ resolution, which represents
the original scale for which VIC was developed. Figure 1
gives an overview of the cell size of the four models. The

sampled parameters (see Sect. 4.4) have been applied uni-
formly over the catchment; all other parameters have been
applied in a distributed manner. We will discuss the effect
of applying the sampled parameters uniformly by using data
from the nine subcatchments.

4.2 Temporal model resolution

The models are run at an hourly time step, implying that they
solve both the energy and the water balance. The hourly out-
put of the routing model is aggregated to daily and monthly
time steps for further evaluation; see Fig. 1.

4.3 Simulation period

The four models are run for a period of 1 year and 4 months.
The first 3 months are used as a spin-up period and are not
used for further analysis. Tests with the same parameter set
and different initial conditions revealed that 3 months are suf-
ficient to eliminate the effect of initial conditions (see Fig. 4).
The initial soil moisture content of the model before spin-up
was fixed at θ = 0.9 because we found that the model reaches
equilibrium faster when starting from a wet state. The models
have not been subjected to a validation procedure on another
time period, because in this particular application the goal
was not to identify the best performing model, but to investi-
gate the role of temporal and spatial resolution in parameter
transferability.

The analysed period is 1 August 2002–31 August 2003
(see Fig. 4). This period is characterized by three very
high peaks (August, September 2002) as well as the severe
2003 drought (June, July, August 2003). The 2002 peaks (see
e.g. Schmocker-Fackel and Naef, 2010) have an estimated
return period of 15 to 20 years. The peaks were caused by a
larger system that also caused the heavy floods in the Elbe
and the Danube (Becker and Grünewald, 2003). In contrast,
the 2003 summer was extremely warm and dry in western
and central Europe (Miralles et al., 2014), with Switzerland
being among the hottest and driest regions (Andersen et al.,
2005; Rebetez et al., 2006; Zappa and Kan, 2007; Senevi-
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Table 1. Sampled model parameters.

Parameter Units Lower Upper Description
value value

bi – 10−5 0.4 Variable infiltration curve parameter
ds – 10−4 1.0 Fraction of ds,max where non-linear baseflow starts
dm mm day−1 1.0 50 Maximum velocity of the baseflow
expt2 – 4.0 18.0 Exponent of the Brooks–Corey drainage equation for layer 2
Depth2 m Depth1+ 0.1 Depth1+ 3 Depth of soil layer 2
C ms−1 0.5 4 Advection coefficient of horizontal routing (St. Venant)
D m2 s−1 200 4000 Diffusion coefficient of horizontal routing (St. Venant)

ratne et al., 2012). With these two extremes the selected pe-
riod covers a large part of the flow duration curve, in both the
high and low flow regions (right panel in Fig. 4).

4.4 Model parameters

The VIC model has a large number of parameters, divided
over three sections: soil parameters, vegetation parameters,
and snow parameters. To determine which parameters should
be sampled in this study, a sensitivity analysis was conducted
on a broad selection of parameters (see Table S1 in the Sup-
plement). The parameter selection was made such that the
main hydrological processes were represented and included
28 VIC parameters from the three different sections. Sensi-
tivity analysis was conducted using the distributed evalua-
tion of local sensitivity analysis (DELSA) method (Rakovec
et al., 2014). DELSA is a hybrid local–global sensitivity
analysis method. It evaluates parameter sensitivity based on
the gradients of the objective function for each individual
parameter at several points throughout the parameter space.
Note that this method only provides first-order sensitivities
and thus does not account for parameter interaction.

A base set of 100 parameter samples was created. For each
parameter k that is accounted for in the analysis, the base set
of parameter samples is perturbed. In total, including the base
set, this leads to (number of parameters+ 1)× 100 parameter
samples that need to be evaluated. To save computation time,
the sensitivity analysis was conducted on the lumped VIC
model for the Thur basin. To study the effect of spatial scale
on sensitivity, two lumped models for subbasins of the Thur
have been constructed: the Jonschwil catchment (495 km2)
and the Rietholzbach catchment (3.3 km2). The Rietholzbach
catchment is nested inside the Jonschwil catchment, which
is again nested in the Thur catchment (Fig. 2). The three
catchments have comparable land use. The Kling–Gupta effi-
ciency of the discharge (KGE(Q)), Nash–Sutcliffe efficiency
of the discharge (NSE(Q)) and the Nash–Sutcliffe efficiency
of the logarithm of the discharge (NSE(logQ)) (see Sect. 4.6)
were used as objective functions to assess the sensitivity of
the parameters.

The analysis showed that parameter sensitivity did not no-
tably change over the assessed scales: the same parameters

were found to be most sensitive, but in a slightly differ-
ent order (see Fig. S1 in the Supplement). There are four
parameters which, for all scales and for all objective func-
tions, proved to be highly sensitive: the parameter describ-
ing variable infiltration (bi), the parameter that defines the
fraction of ds,max where non-linear baseflow starts (ds), the
maximum velocity of the baseflow (dm) and the exponent of
the Brooks–Corey relation ( 2

Bp
+ 3, expt2; see Eq. 1). Hence,

these four parameters were selected for the sampling analy-
sis. Other parameters that showed sensitivity in some cases
were the depth and bulk density of soil layer 2, the depth and
bulk density of soil layer 3, and the rooting depth of layer 1.
The selection of sensitive parameters closely resembles the
results of Demaria et al. (2007), who applied a sensitivity
analysis to VIC over different hydroclimatological regimes.
Because Demaria et al. (2007) found that the depth of soil
layer 2 was highly sensitive, this parameter was added to the
selection of parameters that was sampled. In addition, the
two routing parameters C and D were sampled because they
control the lateral exchange of water between grid cells. An
overview of the selected parameters is given in Table 1. Be-
cause sampling the seven selected parameters in a distributed
fashion is computationally extremely demanding and cur-
rently not yet feasible, the sampled parameters have been ap-
plied uniformly over the cells in the distributed VIC models.
This is according to current practice in large-scale modelling.

4.5 Hierarchical Latin Hypercube Sample

In comparison with traditional sampling methods, the num-
ber of parameter samples needed to cover the full param-
eter space can decrease significantly by selecting only the
most sensitive parameters (see Fig. 5b). For the four VIC
models (three distributed models, one lumped model) the se-
lected parameters (Table 1) were varied using a Latin hy-
percube sample (LHS). This is a variance reduction method
which efficiently samples the parameters within each re-
gion with equal probability in the parameter distribution
(Vorˆechovský and Novák, 2009) (see Fig. 5c). Especially
for the 1 km× 1 km model the calculation time is rather long.
Therefore, the LHS should preferably be as small as possible,
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Figure 5. Parameter sampling as applied in this study. (a) Example situation when sampling for a model with three parameters. (b) Sen-
sitivity analysis can be conducted to decrease the dimensions of the sampling space. (c) Latin Hypercube sampling is structured and more
efficient: one sample in each row and each column, as indicated with the bands. The number of samples has to be determined beforehand.
(d) Hierarchical Latin Hypercube Sampling allows to extend the sample if necessary, while conserving Latin hypercube structure.

while still being able to provide insights into e.g. posterior
parameter distributions. For a Monte Carlo (MC) sample, it
is easy to start with a small sample, and add more samples if
this proves to be necessary, e.g. based on the sample variance.
For a variance reduction technique such as LHS this is not
that straightforward. Therefore, we make use of the Hierar-
chical Latin Hypercube Sample (HLHS), recently developed
by Vorˆechovský (2015). This method allows us to start with
a small LHS and add more samples if necessary, while con-
serving the LHS structure (Fig. 5d). Inherent to this method
is that every sample extension is twice as large as the previ-
ous sample, which results in a total number of simulations
after r extensions:

Nsim,r = 3r ·Nstart, (3)

with Nsim being the total number of simulations, r the num-
ber of extensions, andNstart the start number of samples. As a
starting sample size, 350 is chosen, which is sampled based
on a space-filling criterion. For the seven parameters in the
HLHS a uniform prior is assumed in order the study the full
parameter space. The starting sample can be increased by a
first extension to 1050 samples in total, further to 3150, and
even up to 9450. After each extension, the cumulative dis-
tribution function (CDF) of the objective functions (KGE,
NSE) is compared with the CDF of the previous extension. A
Kolmogorov–Smirnov test is used to test whether the CDFs
are significantly different. It was found that the CDF es-
timated from 3150 samples was not significantly different
from the CDF based on 1050 samples at a 0.05 significance
level. Therefore, 3150 samples were considered sufficient to
sample the parameter space.

4.6 Objective functions

For each model run, several objective functions were evalu-
ated. The three objective functions are

– the Kling–Gupta efficiency (KGE) to describe the over-
all capability of the model to simulate the discharge

(Gupta et al., 2009):

KGE(Q)= 1−
√
(r − 1)2+ (α− 1)2+ (β − 1)2, (4)

where r is the correlation between observed dis-
charge Qo and modelled discharge Qm, α is the stan-
dard deviation of Qm divided by the standard deviation
of Qo, and β is the mean of Qm (Qm) divided by the
mean of Qo (Qo);

– the Nash–Sutcliffe efficiency (NSE) of the discharge
to describe the model performance for the higher dis-
charge regions (Nash and Sutcliffe, 1970):

NSE(Q)= 1−

T∑
t=1

(
Qto−Q

t
m
)2

T∑
t=1

(
Qto−Qo

)2 = 2 ·α · r −α2
−β2

n , (5)

in which βn is the bias normalized by the standard devi-
ation; and

– the Nash–Sutcliffe efficiency of the logarithm of the dis-
charge NSE(logQ) to test the model performance for
low discharges (Krause et al., 2005).

The objective functions are calculated for all runs (3150) for
the seven different VIC set-ups and based on hourly, daily
and monthly time steps.

4.7 Determination of behavioural sets and parameter
transferability

After running the VIC model with 3150 parameter sets, a
selection is made of the best parameter sets, the so-called
behavioural runs (Beven and Binley, 1992). The best 1 %
(which is different for different objective functions) of the
3150 runs (32 members) are selected as behavioural. For
each combination of spatial and temporal resolution, and for
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Figure 6. Model performance of the behavioural sets for different temporal resolutions and different spatial resolutions. The left panel
shows the KGE(Q), the middle panel the NSE(Q) and the right panel the NSE(logQ). Per objective function the most behavioural sets were
selected; hence, the selected sets where not necessarily the same for the three objective functions. The box shows the 25th–75th percentiles. .

the three objective functions separately, the 32 best mem-
bers are selected. We evaluate all 32 parameter sets as be-
ing equally plausible and do not assign weights to the best
performing sets within the behavioural selection, to account
for uncertainty in the observations. Inherent to our approach,
selecting a certain percentage of runs rather than applying
a threshold level based on an objective function, is that the
selected runs do not necessarily comply with an acceptable
model performance. We expect that this neither positively
nor negatively influences our results concerning parameter
transferability.

We define parameter transferability θ
↔ as the percentage

agreement in selected behavioural sets:

θ
↔ = #

(
ASi ,Tj ∩BSk,Tl

)
/n · 100, (6)

in which ASi ,Tj is the set of selected behavioural members
for spatial resolution Si and temporal resolution Tj , and
BSk,Tl are the selected members for spatial resolution Sk and
temporal resolution Tl . The n is the total number of selected
members (in this case, 32). Equation (6) expresses θ↔ as a per-
centage; if θ↔= 100, this indicates that for two different res-
olutions (either spatial, temporal or both), exactly the same
parameter sets were selected as behavioural.

5 Results

First, the impact of temporal and spatial resolution on model
performance is discussed for both uniform and distributed
forcing, followed by a discussion of the impact of the tempo-
ral and spatial resolution on parameter distribution. For these
analyses, the temporal and spatial resolution are assumed to
be independent. Subsequently, the parameter transferability
across temporal and spatial resolution is assessed by deter-
mining the overlap in behavioural sets as defined by Eq. (6).
After that, parameter transferability over both temporal and
spatial resolution is assessed. Finally, we investigate param-
eter transferability over the sub-basins of the Thur.

5.1 Impact of temporal and spatial resolution on model
performance and parameter distribution

Figure 6 shows the model performance of the behavioural
sets for the different spatial and temporal resolutions and
the different objective functions, both for uniform and dis-
tributed forcing. We will first discuss the results for the uni-
form forcing.

With uniform forcing, the lumped model outperforms the
distributed models for all three objective functions and time
steps. The monthly time step shows for all three objective
functions an increasing model performance with decreasing
spatial resolution. It is remarkable that the model with the
monthly time step outperforms the models with daily and
hourly time steps when the NSE(logQ) was used as an ob-
jective function, while with the NSE(Q) as an objective func-
tion exactly the opposite is the case. It is important to notice
here that the monthly model results are simply an aggrega-
tion from the hourly model results, which might imply that
the higher score on the monthly time step is the result of er-
rors which compensate for each other, and that the model
performance scores for the monthly time step are based on
a considerable lower number of points. The KGE(Q) as an
objective function does not lead to a significantly different
model performance for the monthly time step. From the fig-
ure it seems that both the spatial and temporal resolution
have impact on the model performance. This is confirmed
with a statistical test. An ANOVA analysis with two factors
(temporal resolution, spatial resolution), with three or four
levels (hourly, daily, monthly; 1 km× 1 km, 5 km× 5 km,
10 km× 10 km and lumped) shows that both the spatial and
temporal resolution have a significant (p< 0.05) impact on
all three objective functions.

Distributed forcing leads in all cases except one
(1 km× 1 km, monthly, NSE(logQ)) to an improved model
performance compared to uniform forcing. It is important
to note that for the lumped model uniform and distributed
forcing are the same. It should therefore be remarked that
while with uniform forcing the lumped model outperforms
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Figure 7. The model performance for the three separate components of the Kling–Gupta efficiency of the behavioural sets for different
temporal and spatial resolutions. The left panel shows the correlation r , the middle panel the standard deviation of the model output divided
by the standard deviation of the observations (α), and the right panel shows the mean of the model output divided by the mean of the
observations (β).

the other model set-ups, for the distributed forcing the
10 km× 10 km model outperforms the other spatial resolu-
tions (except for NSE(logQ)). An ANOVA analysis con-
firmed that also for distributed forcing, both spatial and tem-
poral resolution have a significant (p< 0.05) impact on the
model performance for all three objective functions.

Figure 7 shows the distribution of the behavioural sets for
the three separate components of the KGE(Q). Regarding
the correlation r , the monthly time step scores higher than
the daily and hourly time step. On the other hand, the hourly
and daily time steps score higher with respect to β (closer
towards 1). Although Fig. 6 gives the impression that the
model performance in terms of KGE(Q) is relatively insen-
sitive to temporal and spatial resolution, Fig. 7 reveals this
is actually the result of compensations from the three differ-
ent components of the KGE(Q): the monthly time step has a
higher correlation, while the daily and hourly time steps have
a higher β.

Figure 8 shows the parameter distribution of the seven
sampled parameters, and shows how the distribution varies
as a function of temporal and spatial resolution, both for
distributed and uniform forcing. The distribution of the be-
havioural parameter sets for the daily and hourly time steps
are very much alike for all parameters, but the distribution
for the monthly time step is in some cases broader, which
implies that the parameters are less clearly defined. The pa-
rameter showing the clearest effect of temporal scale is the
advection coefficient C (Fig. 8). The C parameter, the veloc-
ity component in the routing, becomes less well defined with
an increasing time step, which is intuitive because timing be-
comes less relevant for longer time intervals.

The difference in the parameter distribution when com-
paring distributed and uniform forcing is limited. The clear-
est difference can be found for the dm parameter with the
NSE(Q) as an objective function. This parameter describes
the maximum velocity of the baseflow, and can potentially
impact short-term processes for which distributed forcing
seems important, like surface runoff. However, there are

other parameters, such as the bi parameter, which are more
directly linked to infiltration and surface runoff processes and
do not show a clear difference in parameter distribution be-
tween distributed and uniform forcing.

With an ANOVA analysis, the significance of temporal
and spatial resolutions in the parameter distribution of the
behavioural sets was tested. Figure 9 shows that the signif-
icance of spatial and temporal resolutions in the parameter
distribution depends on which objective function was used
to determine the behavioural sets. Uniform and distributed
forcings show comparable patterns. In general, the temporal
resolution has more impact on the parameter distribution (at
least four parameters are significantly affected by temporal
resolution) than the spatial resolution (only one parameter
for one objective function experiences significant impact of
the spatial resolution). Only two parameters are significantly
impacted by the temporal resolution for all three objective
functions: ds and C.

5.2 Parameter transferability

The main research question of this study is to what extent
parameters are transferable across temporal and spatial reso-
lutions, and we will use that as an indicator of the representa-
tion of spatial and temporal variability in the model. We have
defined parameter transferability θ

↔ as the percentage agree-
ment in identified behavioural sets (Eq. 6). Tables 2 and 3
give an overview of θ↔ for different temporal and spatial res-
olutions, both for uniform and distributed forcing. Table 2
shows that the θ

↔ is generally high for different spatial res-
olutions, which suggests that the parameters are to a large
extent transferable across spatial scales. In contrast, Table 3
shows that parameters are hardly transferable over the tem-
poral scale. The selected runs for hourly and daily time steps
largely agree, but the selected runs on a monthly time step
are clearly different. Surprisingly, this is also strongly re-
lated to the objective function. The selection based on the
NSE(logQ) is less sensitive to temporal resolution than those
based on the KGE(Q) or the NSE(Q). A possible explanation

Hydrol. Earth Syst. Sci., 20, 2207–2226, 2016 www.hydrol-earth-syst-sci.net/20/2207/2016/



L. Melsen et al.: Representation of spatial and temporal variability 2217

0.1 0.2 0.3 0.4
0

5
Original sample

distribution
↓

0.1 0.2 0.3 0.4
0

10

20

0.1 0.2 0.3 0.4
0

2

4

0.2 0.4 0.6 0.8 1
0

10

20

30

0.2 0.4 0.6 0.8 1
0

10

20

30

0.2 0.4 0.6 0.8 1
0

10

20

30

10 20 30 40 50
0

0.5
Hour (unif. | distr. forcing)
Day (unif. | distr. forcing)
Month (unif. | distr. forcing)

10 20 30 40 50
0

0.05

0.1

10 20 30 40 50
0

0.02

0.04

5 10 15
0

0.2

0.4

5 10 15
0

0.2

0.4

5 10 15
0

0.1

0.2

0.5 1 1.5 2 2.5 3
0

1

2

0.5 1 1.5 2 2.5 3
0

1

2

0.5 1 1.5 2 2.5 3
0

1

2

1 2 3 4
0

0.5

1

1 2 3 4
0

2

4

1 2 3 4
0

0.5

1

1000 2000 3000 4000
0

2

4
x 10

−4

1000 2000 3000 4000
0

5
x 10

−4

1000 2000 3000 4000
0

5
x 10

−4

D
en

si
ty

D
en

si
ty

D
en

si
ty

D
en

si
ty

D
en

si
ty

D
en

si
ty

D
en

si
ty

b
i
 (−)

d
s
 (−)

d
m

 (mm d−1)

expt
2
 (−)

Depth
2
 (m)

C (ms−1)

D (m2s−1)

KGE(Q) NSE(Q) NSE(logQ)

Figure 8. Distribution of the sampled parameters for the behavioural sets, fitted with a kernel density. The width of the line indicates the
variation in distribution between the different spatial resolutions. The left column is based on KGE(Q), the middle column on NSE(Q) and
the right column on NSE(logQ).

is that the NSE(logQ) tends to put more focus on lower dis-
charges with a longer timescale, with less focus on the short-
term flashy response of a catchment. Parameter transferabil-
ity over space is in general slightly lower when distributed
forcing is used compared to uniform forcing. On the other
hand, parameter transferability over time is slightly higher
for distributed forcing. Decreased sensitivity for the temporal
resolution and increased sensitivity for the spatial resolution
can indicate an improved physical representation with dis-

tributed forcing compared to uniform forcing, as one would
expect.

Tables 2 and 3 list the parameter transferability over only
one dimension (either spatial resolution or temporal resolu-
tion). We also investigated the combined effect of transfer-
ring parameters over both the spatial and temporal resolution.
Figure 10 shows the relative impact of temporal and spatial
resolution on parameter transferability based on KGE(Q) for
uniform forcing. To illustrate the relative impact of changes
in spatial and temporal resolution, we fitted a linear surface
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Table 2. Transferability of parameters across spatial resolution, expressed as percentage agreement in detected behavioural runs for different
spatial resolutions (in km) at different time steps.

Uniform forcing (% agreement) Distributed forcing (% agreement)

KGE(Q) NSE(Q) NSE(logQ) KGE(Q) NSE(Q) NSE(logQ)

Hour

1× 1 vs. 5× 5 78 84 91 88 75 84
1× 1 vs. 10× 10 72 81 81 78 56 78
5× 5 vs. 10× 10 94 94 91 88 81 94
1× 1 vs. lumped 78 88 91
5× 5 vs. lumped 91 84 94
10× 10 vs. lumped 88 81 88

Day

1× 1 vs. 5× 5 94 84 84 91 84 91
1× 1 vs. 10× 10 84 69 69 78 69 81
5× 5 vs. 10× 10 91 84 84 89 84 91
1× 1 vs. lumped 1 81 88
5× 5 vs. lumped 91 88 94
10× 10 vs. lumped 84 84 81

Month

1× 1 vs. 5× 5 75 88 88 84 84 91
1× 1 vs. 10× 10 66 84 81 66 78 84
5× 5 vs. 10× 10 88 91 94 78 88 94
1× 1 vs. lumped 78 72 94
5× 5 vs. lumped 78 75 88
10× 10 vs. lumped 78 78 88

Table 3. Transferability of parameters across temporal resolution, expressed as percentage agreement in detected behavioural runs for differ-
ent temporal resolutions at different spatial resolutions.

Uniform forcing (% agreement) Distributed forcing (% agreement)

KGE(Q) NSE(Q) NSE(logQ) KGE(Q) NSE(Q) NSE(logQ)

1 km× 1 km

Hour vs. day 56 81 81 69 63 75
Hour vs. month 3 6 34 6 9 47
Day vs. month 3 6 47 6 13 63

5 km× 5 km

Hour vs. day 66 88 81 69 69 81
Hour vs. month 3 6 38 9 6 53
Day vs. month 3 6 47 9 6 66

10 km× 10 km

Hour vs. day 63 75 78 59 72 78
Hour vs. month 3 3 44 13 6 59
Day vs. month 0 6 63 13 6 75

Lumped

Hour vs. day 66 84 81
Hour vs. month 3 0 44
Day vs. month 3 3 53
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Figure 9. The effect of spatial and temporal resolutions on parame-
ter distribution. The p value indicates the significance of the impact
of spatial resolution (S) and temporal resolution (T ) on the param-
eter values of the behavioural sets, evaluated for the three objective
functions.

through the data points from our study (R2
= 0.68). The fig-

ure clearly shows that temporal resolution has a stronger
impact on parameter transferability than spatial resolution.
The linear regression equation that describes the surface in
Fig. 10 is given below:

θ
↔KGE(Q)

= 83.3− 12.6 ·
Tj

Tl
− 3.0 ·

Si

Sk
, (7)

in which Tj
Tl

is the ratio in temporal resolution between
the two model set-ups over which parameters are trans-
ferred and Si

Sk
is the ratio in spatial resolution (L /L) be-

tween the two model set-ups. The effect of temporal reso-
lution on parameter transferability is stronger (slope of 12.6)
than the effect of spatial resolution (slope of 3.0). Parameter
transferability decreases when the ratio between the original
and the intended spatial and temporal resolutions increases.
The surfaces based on NSE(Q) (R2

= 0.60) and NSE(logQ)
(R2
= 0.75) show a similar behaviour:

θ
↔NSE(Q)

=88.6− 12.8 ·
Tj

Tl
− 2.8 ·

Si

Sk
, (8)

θ
↔NSE(logQ)

=92.9− 7.4 ·
Tj

Tl
− 3.6 ·

Si

Sk
. (9)

When we fit a surface through the points obtained for the
models run with distributed forcing, the linear regression
equations (R2

= 0.66, 0.67, 0.88 respectively) look as fol-
lows:

θ
↔KGE(Q)

=80.3− 11.4 ·
Tj

Tl
− 2.6 ·

Si

Sk
, (10)

θ
↔NSE(Q)

=75.3− 10.3 ·
Tj

Tl
− 4.3 ·

Si

Sk
, (11)

θ
↔NSE(logQ)

=91.3− 5.4 ·
Tj

Tl
− 2.8 ·

Si

Sk
. (12)

Also for the models with distributed forcing, the slope for the
temporal resolution is steeper than the slope for spatial reso-
lution, implying that parameter transferability is more sensi-
tive for temporal resolution than for spatial resolution. Com-
pared to uniform forcing, the slope for temporal resolution,
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Figure 10. Parameter transferability as a function of the ratio in
temporal and spatial resolution. The ratio of temporal resolutions
is defined as follows: transfer from hourly to daily time steps is a
ratio of 24, whereas transfer from hourly to monthly is a ratio of 732
(732 h in 1 month of 30.5 days). The ratio of spatial resolutions is
defined as the square root of the number of cells that would fit in the
other cell: from 1 km× 1 km resolution to 5 km× 5 km resolution is
a ratio of

√
25= 5. The behavioural sets were determined based on

the KGE(Q). The linear surface (R2
= 0.68) was fitted to illustrate

the relative impact of changes in spatial and temporal resolution.

and hence the impact of temporal resolution on transferabil-
ity, is less steep for distributed forcing, while the slope for
spatial resolution is on average comparable for both forcings.

5.3 Spatially distributed parameters

The advantage of distributed hydrological models over
lumped models is that distributed models can incorporate
spatially varying parameters, including those reflecting land-
use and soil characteristics (Carpenter and Georgakakos,
2006), and spatially varying forcing. Figure 11 for exam-
ple shows how the spatial variation in bulk density decreases
with increasing resolution. However, in this study, as in most
large-domain studies with distributed models, the most sen-
sitive parameters (i.e. the ones that were calibrated) have
been applied uniformly over the grid cells. The main moti-
vation for this practice is the ill-posedness of the problem
(too many parameters have to be identified with too little in-
formation), in addition to computational time. This implies
that the advantage of a distributed model remains unused for
the parameters that impact the model output most. To test
the spatial distribution of the most sensitive parameters for
the Thur basin, we have investigated parameter transferabil-
ity between the Thur basin and the nine subbasins for which
discharge data were available (see Sect. 2.1 and Fig. 2). Ta-
ble 4 gives an overview of a selected number of spatial and
temporal resolutions. The table shows that parameter trans-
ferability from the Thur to the subbasins is notably low. An
extreme example is the St. Gallen catchment, which has a
maximum of one behavioural parameter set in common with
the Thur basin. Table 4 therefore shows that the spatial vari-
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Table 4. Transferability of parameters from the Thur to the nine subbasins, expressed as percentage agreement (%) in detected behavioural
runs. The forcing was applied uniformly and the KGE(Q) was used as an objective function.

Catchment (size) 1 km× 1 km 5 km× 5 km 10 km× 10 km

Hour Day Month Hour Hour

Rietholzbach (3.3 km2) 19 0 0 25 19
Herisau (17.8 km2) 16 6 0 16 16
Appenzell (74.2 km2) 28 25 9 28 16
Wängi (78.9 km2) 9 56 31 34 50
Mogelsberg (88.2 km2) 28 38 66 19 28
Frauenfeld (212 km2) 3 3 75 3 0
St. Gallen (261 km2) 3 0 0 3 0
Jonschwil (493 km2) 6 0 0 6 0
Halden (1085 km2) 19 9 0 18 13

ation in the calibrated parameters is underestimated in the
current model set-up.

6 Discussion

6.1 Model performance

It seems counter-intuitive that model performance is signif-
icantly affected by both the temporal and spatial resolution,
while the parameter distribution is mainly impacted by the
temporal resolution. This can be explained, however. Model
performance can still be significantly impacted by temporal
and spatial resolution, even if the same parameters are se-
lected for different spatial resolutions. This implies that the
model performance is mainly limited by the model structure
or set-up, and much less by the parameter values. This is
confirmed by comparing the uniform and distributed forc-
ing. Although the distribution of the behavioural parameters
was not very different for the two forcing types, the model
performance for distributed forcing was in almost all cases
better than the model performance for the uniform forcing.

Liang et al. (2004) defined a so-called “critical resolution”,
beyond which a finer spatial resolution would not lead to
any improvement in the model performance. In the study
of Liang et al. (2004) this critical resolution for the VIC
model was found to be 1/8◦ (≈ 12.5 km× 12.5 km). All spa-
tial resolutions applied in this study, but the lumped ones are
below this critical resolution. The results in this study are
therefore consistent with the results from Liang et al. (2004),
because we did not find any improvement in model per-
formance with increasing spatial resolution, neither for the
uniform nor for the distributed forcing. Rather, we find the
contrary; for the uniform forcing the lumped model outper-
formed the higher-resolution models, and for the distributed
forcing the 10 km× 10 km outperformed the other models.
If something like a critical resolution exists, it is proba-
bly related to the processes represented in the model. Con-

trary to our findings are the results of Zappa (2002), who
found that a critical spatial resolution in the Thur region is of
the order of 500 m× 500 m using the PREVAH model, be-
cause of the complex topography and snow processes in the
catchment. This can either imply that the sub-grid variability
parametrization in VIC is effective, or that not all relevant hy-
drological processes are included in the VIC model. In order
to check this last suggestion, future research on parameter
transferability should consider more hydrological fluxes and
states besides the discharge, e.g. evapotranspiration.

6.2 The high sensitivity for temporal resolution

The conclusion that parameters cannot be transferred across
temporal resolution seems to contradict the results of Troy
et al. (2008). The large difference is that Troy et al. (2008)
only used sub-daily time steps (1, 3, 6, 12 h), whereas we
did find agreement between the hourly and daily time steps.
Therefore, our results are not necessarily contradictory. Troy
et al. (2008) chose the sub-daily time steps in order to in-
vestigate whether time could be saved in the calibration pro-
cess by calibrating on a coarser time step. Unfortunately, the
reality is that in most large-domain studies models are cali-
brated with monthly discharge observations (Melsen et al.,
2016) rather than with sub-daily observations. Our results
suggest that models which were calibrated or validated at a
monthly time step cannot be interpreted at the daily or hourly
time step. Chaney et al. (2015) showed that monthly dis-
charge observations could decrease the uncertainty around
the daily flow duration curve. The decrease in uncertainty
by adding monthly discharge information differed for dif-
ferent climates. The Thur basin, with a wet continental cli-
mate, would experience a high reduction in uncertainty. This
means that our results, which show that with monthly data it
is impossible to determine the optimal parameter set for the
hourly or daily time step, would even be stronger for dry cli-
mates (Chaney et al., 2015). Kavetski et al. (2011) showed
that parameter values can significantly change by changing
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Figure 11. Distribution of bulk density over the grid cells for the
four different spatial resolutions.

the temporal resolution. They found that the sensitivity of
a parameter to temporal resolution could be related to the
model structure; the parameters from simpler model struc-
tures were more sensitive to temporal resolution than the pa-
rameters from more complex models.

Figure 12 and Tables S2 and S3 show that the conclusions
we draw from Tables 2 and 3 are not only valid for the best
1 % of runs selected as behavioural. Tables S2 and S3 show
that the same patterns are found when selecting the best 2 %
or 5 % of the model runs. Figure 12 gives an overview for
two selected cases, which show that model performance de-
teriorates when parameters are transferred over time, also for
the best 10 % up to higher thresholds, whereas the impact
of spatial resolution on model performance deterioration is
limited.

6.3 Models vs. nature: do the current generation of
models adequately represent spatial variability?

Our results show that parameter transferability is more sen-
sitive to temporal than to spatial resolution. A key question
is to what extent this result stems from the model representa-
tion of spatial variability. Spatial variability can be reflected
in three domains of the model: the routing, the forcing, and
the soil and land-use parameters. In this study we excluded
the effect of routing by using a high-resolution drainage net-
work based on sub-basins with a size of ∼ 1 km2, indepen-
dent of the resolution of the hydrologic model. We think that
the effect of spatial resolution can be increased by adapt-
ing the routing scheme accordingly. Drainage network res-
olution may affect the projected hydrograph, for example
with changes in the stream network and the channel slope.
However, this effect should then be assigned to the routing
model, and not to the runoff generation model (the hydro-
logic model). For clarity, we decided to exclude the effect of
spatial resolution on routing in this study.

We investigated the effect of forcing by comparing the re-
sults for distributed and uniformly applied forcing, and we
tested the effect of spatially distributed soil and land-use pa-

rameters by aggregating them for lower resolutions (Fig. 11).
Despite distributed forcing and the decrease in variation in
soil and land-use parameters, the model parameters showed
low sensitivity to the spatial resolution. A possible explana-
tion could be the sub-grid parametrizations of the VIC model
for land use and elevation, which decrease the effect of up-
scaling these parameters to other resolutions, as shown by
Haddeland et al. (2002). However, we think that Sect. 5.3
and Table 4 show how spatial variability is underestimated by
calibrating and applying the most sensitive parameters uni-
formly over the basin.

The models in this study are configured in a similar way
to many current-day large-domain hydrological models, us-
ing common data like the Harmonized World Soil Database
and uniform application of the most sensitive parameters.
As such, this study is likely representative of many large-
domain studies. The limited sensitivity for spatial resolution
is arguable because our implementation of VIC substantially
underestimates the spatial variability in nature, and, impor-
tantly, that similar issues in representing spatial variability
are a common problem in large-domain hydrological mod-
elling (e.g. see the model configuration in Mizukami et al.,
2016). Many studies have considered spatial variability in
forcing (Adams et al., 2012; Lobligeois et al., 2014) and
soil parameters (Mohanty and Skaggs, 2001; Western et al.,
2004). Kim et al. (1997) accounted for heterogeneity in soil
hydraulic properties using stochastic methods, based on the
scaling theory of Miller and Miller (1956). In fact, the effect
of stochastic soil parametrizations on parameter transferabil-
ity would be a valuable research topic (Maxwell and Kollet,
2008). We argue here that the high spatial transferability may
occur because the current generation of land-surface mod-
els have an inadequate representation of spatial variability
and hydrologic connectivity, providing a strong motivation to
substantially improve the representation of spatial and tem-
poral variability in models. This not only implies increasing
the spatial (and temporal) resolution of the model, but also
including more relevant hydrological processes. Promising
techniques have been developed to allow spatial distribution
of calibrated parameters, for example with multiscale param-
eter regionalization (MPR, Samaniego et al., 2010; Kumar
et al., 2013), which could and should be applied for large-
domain hydrologic models.

6.4 Limitations of this case study

The results in our study are based on a limited number of
model configurations for a single basin, so the results pre-
sented here are only intended to provide an example of the
behaviour in the current generation of land-surface models.
Our results show a low sensitivity for the spatial resolution,
whether applied with distributed forcing or not. The observed
impact of spatial resolution can therefore almost completely
be attributed to the effect of spatially distributed soil and
land-use parameters (including the calibrated ones), which

www.hydrol-earth-syst-sci.net/20/2207/2016/ Hydrol. Earth Syst. Sci., 20, 2207–2226, 2016



2222 L. Melsen et al.: Representation of spatial and temporal variability

N
S

E
(Q

)

1KM

0

0.5

10KM

N
S

E
(Q

)

Relative frequency

10KM

0.0−0.1 quantile

0.9−1.0 quantile

0

0.5

Relative frequency

1KM

→

→

from to

SPACE

behavioural
set (1%)

←
HOUR MONTH

Relative frequency

MONTH

Relative frequency

HOUR

→

→

from to

TIME

 0.0       0.2       0.4        0.6       0.8        1.0 

Original quantile of runs based on NSE(Q)

Figure 12. Impact of parameter transfer on model performance. The panels show the distribution of the NSE(Q) fitted with a kernel density
for 3150 runs. On the left-hand side of the arrow the red area represents the best 10 % of the runs, each colour interval increasing with 10 %
to the full data set (100 %, purple). The selected behavioural runs are indicated separately with a black line (best 1 %). The panel on the
right-hand side of the arrow shows the distribution of the model performance for the coloured selections when evaluated at another spatial
(left panels) or temporal (right panels) resolution. When the direction of the colours changes from the left panel to the right panel, this implies
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could be substantially underestimated. The impact of tempo-
ral resolution on parameter transferability is large. We em-
ployed the temporal resolutions for which most hydrological
observations are available; thus, our results are relevant for
practical applications. Based on the work of Chaney et al.
(2015) we expect that parameter transferability will be lower
for arid climates than the numbers we obtained, and based on
the work of Kavetski et al. (2011) we expect that parameter
transferability will be lower for more parsimonious models.
The general message from our study is the surprisingly high
spatial transferability, highlighting the need for a focused re-
search effort to improve the representation of spatial vari-
ability in large-domain distributed models (GHMs). A possi-
ble path forward is to develop computationally frugal process
representations, as for example presented by Hazenberg et al.
(2015) for hillslope processes.

7 Summary and conclusions

A VIC model for the Thur basin was run with four
different spatial resolutions (1 km× 1 km, 5 km× 5 km,
10 km× 10 km, lumped) and evaluated at three different tem-

poral resolutions (hourly, daily, monthly). The forcing was
applied both uniformly and distributed over the catchment,
and the drainage network for the routing model was defined
independently of the hydrological model resolution. Three
objective functions were used to evaluate model perfor-
mance: KGE(Q), NSE(Q) and the NSE(logQ). The model
was run 3150 times using the Hierarchical Latin Hyper-
cube Sample and the best 1 % of the runs was selected as
behavioural and used for further analysis. Parameter trans-
ferability was quantified by evaluating the overlap in be-
havioural sets for different temporal and spatial resolutions.
From the results we can draw the following conclusions.

– Both the spatial resolution and the temporal resolution
of the VIC model had a significant impact on the model
performance, either expressed in terms of KGE(Q),
NSE(Q), or NSE(logQ). The model performance eval-
uated at a monthly time step consistently increased with
decreasing spatial resolution, while for the daily and
hourly time step no clear relation to spatial resolution
could be found. Generally, the models applied with spa-
tially distributed forcing performed better than the mod-
els applied with uniform forcing.
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– The spatial resolution of the model had little impact
on the parameter distribution of the behavioural sets.
On the other hand, the temporal resolution significantly
impacted the distribution of at least four out of seven
parameters, both when applied with uniform and dis-
tributed forcing.

– Parameters could to a large extent be transferred across
the spatial resolutions, while parameter transferability
over the temporal resolutions was less trivial. Param-
eter transferability between the hourly and daily time
steps was found to be feasible, but the monthly time step
led to substantially different parameter values. This is
crucial information, because many studies tend to cali-
brate the VIC model on the monthly time step (Melsen
et al., 2016). The results of this study suggest that the
output from models calibrated on a monthly time step
cannot be interpreted or analysed on a daily or hourly
time step. This might seem obvious, but it should be rec-
ognized that the increasing spatial resolution of large-
domain land-surface models might increase the expec-
tations concerning temporal resolution as well, as de-
scribed in Melsen et al. (2016).

– We also investigated whether parameters could be trans-
ferred across both the spatial and the temporal res-
olutions simultaneously. Parameter transferability de-
creases when the ratio between the original and the in-
tended spatial and/or temporal resolution increases. The
ratio of temporal resolutions has a larger negative ef-
fect on parameter transferability than the ratio of spa-
tial resolutions. It was also shown that parameter trans-
ferability depends on the objective function. When the
NSE(logQ), which tends to put more emphasis on low
flows, is used as an evaluation criterion, the parame-
ter values at a monthly time step overlap much more
with the daily and hourly time steps than when KGE(Q)
or NSE(Q) are used as objective functions. This means
that parameter transferability across temporal resolution
also depends on the timescale of the process to which a
particular parameter refers.

The most important result of our study is that it showed high
parameter transferability across spatial resolution, even when
forcing was applied in a distributed fashion. A possible ex-
planation for the low sensitivity to spatial resolution is the
uniform application of the most sensitive parameters. This
is indicative of a substantial underestimation of the actual
spatial variability represented by the VIC simulations. We
did, however, construct our model according to current-day
standards for large-domain land-surface models, raising the
point that the high spatial transferability may occur because
the current generation of models has an inadequate represen-
tation of spatial variability and hydrologic connectivity. The
results presented in this paper provide strong motivation to
further investigate and substantially improve the representa-

tion of spatial and temporal variability in large-domain hy-
drological models. Large-domain hydrological models have
many applications, from water footprints (Gleeson et al.,
2012) and water scarcity (Hoekstra, 2014), to global water
use (Wada and Bierkens, 2014) and electricity supply (Van
Vliet et al., 2012), but the spatial variability in the models is
very likely underestimated, which increases the uncertainty
in the model results. A critical evaluation of large-domain
hydrological models on a smaller scale, as conducted in this
study, shows that we should be careful with interpreting the
results of large-domain models.

The Supplement related to this article is available online
at doi:10.5194/hess-20-2207-2016-supplement.
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