Articles | Volume 20, issue 5
https://doi.org/10.5194/hess-20-1851-2016
https://doi.org/10.5194/hess-20-1851-2016
Research article
 | 
11 May 2016
Research article |  | 11 May 2016

High-frequency monitoring reveals nutrient sources and transport processes in an agriculture-dominated lowland water system

Bas van der Grift, Hans Peter Broers, Wilbert Berendrecht, Joachim Rozemeijer, Leonard Osté, and Jasper Griffioen

Related authors

Time lags of nitrate, chloride, and tritium in streams assessed by dynamic groundwater flow tracking in a lowland landscape
Vince P. Kaandorp, Hans Peter Broers, Ype van der Velde, Joachim Rozemeijer, and Perry G. B. de Louw
Hydrol. Earth Syst. Sci., 25, 3691–3711, https://doi.org/10.5194/hess-25-3691-2021,https://doi.org/10.5194/hess-25-3691-2021, 2021
Short summary
Drivers of nitrogen and phosphorus dynamics in a groundwater-fed urban catchment revealed by high-frequency monitoring
Liang Yu, Joachim C. Rozemeijer, Hans Peter Broers, Boris M. van Breukelen, Jack J. Middelburg, Maarten Ouboter, and Ype van der Velde
Hydrol. Earth Syst. Sci., 25, 69–87, https://doi.org/10.5194/hess-25-69-2021,https://doi.org/10.5194/hess-25-69-2021, 2021
Short summary
Drainage of soft cohesive sediment with and without Phragmites australis as an ecological engineer
Rémon M. Saaltink, Maria Barciela-Rial, Thijs van Kessel, Stefan C. Dekker, Hugo J. de Boer, Claire Chassange, Jasper Griffioen, Martin J. Wassen, and Johan C. Winterwerp
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-194,https://doi.org/10.5194/hess-2019-194, 2019
Revised manuscript not accepted
Short summary
Groundwater salinity variation in Upazila Assasuni (southwestern Bangladesh), as steered by surface clay layer thickness, relative elevation and present-day land use
Floris Loys Naus, Paul Schot, Koos Groen, Kazi Matin Ahmed, and Jasper Griffioen
Hydrol. Earth Syst. Sci., 23, 1431–1451, https://doi.org/10.5194/hess-23-1431-2019,https://doi.org/10.5194/hess-23-1431-2019, 2019
Short summary
Groundwater–surface water relations in regulated lowland catchments; hydrological and hydrochemical effects of a major change in surface water level management
Joachim Rozemeijer, Janneke Klein, Dimmie Hendriks, Wiebe Borren, Maarten Ouboter, and Winnie Rip
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-636,https://doi.org/10.5194/hess-2017-636, 2018
Revised manuscript not accepted
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Theory development
Technical Note: The divide and measure nonconformity – how metrics can mislead when we evaluate on different data partitions
Daniel Klotz, Martin Gauch, Frederik Kratzert, Grey Nearing, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 28, 3665–3673, https://doi.org/10.5194/hess-28-3665-2024,https://doi.org/10.5194/hess-28-3665-2024, 2024
Short summary
Bimodal hydrographs in a semi-humid forested watershed: characteristics and occurrence conditions
Zhen Cui, Fuqiang Tian, Zilong Zhao, Zitong Xu, Yongjie Duan, Jie Wen, and Mohd Yawar Ali Khan
Hydrol. Earth Syst. Sci., 28, 3613–3632, https://doi.org/10.5194/hess-28-3613-2024,https://doi.org/10.5194/hess-28-3613-2024, 2024
Short summary
Flood drivers and trends: a case study of the Geul River catchment (the Netherlands) over the past half century
Athanasios Tsiokanos, Martine Rutten, Ruud J. van der Ent, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 28, 3327–3345, https://doi.org/10.5194/hess-28-3327-2024,https://doi.org/10.5194/hess-28-3327-2024, 2024
Short summary
Power law between the apparent drainage density and the pruning area
Soohyun Yang, Kwanghun Choi, and Kyungrock Paik
Hydrol. Earth Syst. Sci., 28, 3119–3132, https://doi.org/10.5194/hess-28-3119-2024,https://doi.org/10.5194/hess-28-3119-2024, 2024
Short summary
Characterizing nonlinear, nonstationary, and heterogeneous hydrologic behavior using Ensemble Rainfall-Runoff Analysis (ERRA): proof of concept
James W. Kirchner
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-103,https://doi.org/10.5194/hess-2024-103, 2024
Revised manuscript accepted for HESS
Short summary

Cited articles

Akkermans, S. and Hermans, B.: Position paper manure, Stichting Natuur & Milieu, Utrecht, the Netherlands, 2014.
APHA-AWWA-WPCF: Standard Methods for the Examination of Water and Waste Water, edited by: Clesceri, G., Trussell, American Public Health Association, Washington, D.C., 1268 pp., 1989.
Baken, S., Verbeeck, M., Verheyen, D., Diels, J., and Smolders, E.: Phosphorus losses from agricultural land to natural waters are reduced by immobilization in iron-rich sediments of drainage ditches, Water Res., 71, 160–170, 2015.
Berendrecht, W. L., Heemink, A. W., van Geer, F. C., and Gehrels, J. C.: Decoupling of modeling and measuring interval in groundwater time series analysis based on response characteristics, J. Hydrol., 278, 1–16, https://doi.org/10.1016/S0022-1694(03)00075-1, 2003.
Bieroza, M. Z., Heathwaite, A. L., Mullinger, N. J., and Keenan, P. O.: Understanding nutrient biogeochemistry in agricultural catchments: The challenge of appropriate monitoring frequencies, Environ. Sci. Process. Imp., 16, 1676–1691, https://doi.org/10.1039/c4em00100a, 2014.
Download
Short summary
High-frequency water quality measurements at a pumping station where excess water is pumped out of a polder catchment have indicated that nitrate from agricultural areas is drained away relatively quickly in wet periods, but that phosphate is actually retained much more in polder systems than in free drainage areas. Phosphate emissions occur, therefore, not predominantly in winter, but due to the delayed release from the bed sediments and by feeding from the groundwater, rather in summer.