Articles | Volume 19, issue 5
https://doi.org/10.5194/hess-19-2353-2015
https://doi.org/10.5194/hess-19-2353-2015
Review article
 | 
20 May 2015
Review article |  | 20 May 2015

Multi-annual droughts in the English Lowlands: a review of their characteristics and climate drivers in the winter half-year

C. K. Folland, J. Hannaford, J. P. Bloomfield, M. Kendon, C. Svensson, B. P. Marchant, J. Prior, and E. Wallace

Related authors

Changes in the future summer Mediterranean climate: contribution of teleconnections and local factors
Monika J. Barcikowska, Sarah B. Kapnick, Lakshmi Krishnamurty, Simone Russo, Annalisa Cherchi, and Chris K. Folland
Earth Syst. Dynam., 11, 161–181, https://doi.org/10.5194/esd-11-161-2020,https://doi.org/10.5194/esd-11-161-2020, 2020

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Theory development
Drought cascades across multiple systems in Central Asia identified based on the dynamic space–time motion approach
Lu Tian, Markus Disse, and Jingshui Huang
Hydrol. Earth Syst. Sci., 27, 4115–4133, https://doi.org/10.5194/hess-27-4115-2023,https://doi.org/10.5194/hess-27-4115-2023, 2023
Short summary
What is the Priestley–Taylor wet-surface evaporation parameter? Testing four hypotheses
Richard D. Crago, Jozsef Szilagyi, and Russell J. Qualls
Hydrol. Earth Syst. Sci., 27, 3205–3220, https://doi.org/10.5194/hess-27-3205-2023,https://doi.org/10.5194/hess-27-3205-2023, 2023
Short summary
Understanding the diurnal cycle of land–atmosphere interactions from flux site observations
Eunkyo Seo and Paul A. Dirmeyer
Hydrol. Earth Syst. Sci., 26, 5411–5429, https://doi.org/10.5194/hess-26-5411-2022,https://doi.org/10.5194/hess-26-5411-2022, 2022
Short summary
Breakdown in precipitation–temperature scaling over India predominantly explained by cloud-driven cooling
Sarosh Alam Ghausi, Subimal Ghosh, and Axel Kleidon
Hydrol. Earth Syst. Sci., 26, 4431–4446, https://doi.org/10.5194/hess-26-4431-2022,https://doi.org/10.5194/hess-26-4431-2022, 2022
Short summary
Historical droughts manifest an abrupt shift to a wetter Tibetan Plateau
Yongwei Liu, Yuanbo Liu, Wen Wang, Han Zhou, and Lide Tian
Hydrol. Earth Syst. Sci., 26, 3825–3845, https://doi.org/10.5194/hess-26-3825-2022,https://doi.org/10.5194/hess-26-3825-2022, 2022
Short summary

Cited articles

Allan, R. J. and Ansell, T. J.: A new globally complete monthly historical gridded mean sea level pressure data set (HadSLP2): 1850–2004, J. Climate, 19, 5816–5842, 2006.
Anstey, J A. and Shepherd, T. G.: High-latitude influence of the quasi-biennial oscillation, Q. J. Roy. Meteorol. Soc., 140, 1–21, https://doi.org/10.1002/qj.2132, 2014.
Belleflamme, A., Fettweis, X., Lang, C., and Erpicum, M.: Current and future atmospheric circulation at 500 hPa over Greenland simulated by the CMIP3 and CMIP5 global models, Clim. Dynam., 41, 2061–2080, https://doi.org/10.1007/s00382-012-1538-2, 2013.
Blackburn, M. and Hoskins, B. J.: Atmospheric variability and extreme autumn rainfall in the UK, http://www.met.reading.ac.uk/ mike/extremes/ (last access: 7 May 2015), 2001.
Bloomfield, J. P. and Marchant, B. P.: Analysis of groundwater drought building on the standardised precipitation index approach, Hydrol. Earth Syst. Sci., 17, 4769–4787, https://doi.org/10.5194/hess-17-4769-2013, 2013..
Short summary
The English Lowlands is a heavily populated, water-stressed region, which is vulnerable to long droughts typically associated with dry winters. We conduct a long-term (1910-present) quantitative analysis of precipitation, flow and groundwater droughts for the region, and then review potential climatic drivers. No single driver is dominant, but we demonstrate a physical link between La Nina conditions, winter rainfall and long droughts in the region.