Articles | Volume 18, issue 3
Hydrol. Earth Syst. Sci., 18, 1239–1249, 2014
https://doi.org/10.5194/hess-18-1239-2014

Special issue: Drought forecasting and warning

Hydrol. Earth Syst. Sci., 18, 1239–1249, 2014
https://doi.org/10.5194/hess-18-1239-2014
Research article
31 Mar 2014
Research article | 31 Mar 2014

Droughts and floods over the upper catchment of the Blue Nile and their connections to the timing of El Niño and La Niña events

M. A. H. Zaroug et al.

Related authors

Simulating the connections of ENSO and the rainfall regime of East Africa and the upper Blue Nile region using a climate model of the Tropics
M. A. H. Zaroug, F. Giorgi, E. Coppola, G. M. Abdo, and E. A. B. Eltahir
Hydrol. Earth Syst. Sci., 18, 4311–4323, https://doi.org/10.5194/hess-18-4311-2014,https://doi.org/10.5194/hess-18-4311-2014, 2014

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
A comparison of hydrological models with different level of complexity in Alpine regions in the context of climate change
Francesca Carletti, Adrien Michel, Francesca Casale, Alice Burri, Daniele Bocchiola, Mathias Bavay, and Michael Lehning
Hydrol. Earth Syst. Sci., 26, 3447–3475, https://doi.org/10.5194/hess-26-3447-2022,https://doi.org/10.5194/hess-26-3447-2022, 2022
Short summary
Modelling evaporation with local, regional and global BROOK90 frameworks: importance of parameterization and forcing
Ivan Vorobevskii, Thi Thanh Luong, Rico Kronenberg, Thomas Grünwald, and Christian Bernhofer
Hydrol. Earth Syst. Sci., 26, 3177–3239, https://doi.org/10.5194/hess-26-3177-2022,https://doi.org/10.5194/hess-26-3177-2022, 2022
Short summary
Hydrological concept formation inside long short-term memory (LSTM) networks
Thomas Lees, Steven Reece, Frederik Kratzert, Daniel Klotz, Martin Gauch, Jens De Bruijn, Reetik Kumar Sahu, Peter Greve, Louise Slater, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 26, 3079–3101, https://doi.org/10.5194/hess-26-3079-2022,https://doi.org/10.5194/hess-26-3079-2022, 2022
Short summary
A two-step merging strategy for incorporating multi-source precipitation products and gauge observations using machine learning classification and regression over China
Huajin Lei, Hongyu Zhao, and Tianqi Ao
Hydrol. Earth Syst. Sci., 26, 2969–2995, https://doi.org/10.5194/hess-26-2969-2022,https://doi.org/10.5194/hess-26-2969-2022, 2022
Short summary
Hydrometeorological evaluation of two nowcasting systems for Mediterranean heavy precipitation events with operational considerations
Alexane Lovat, Béatrice Vincendon, and Véronique Ducrocq
Hydrol. Earth Syst. Sci., 26, 2697–2714, https://doi.org/10.5194/hess-26-2697-2022,https://doi.org/10.5194/hess-26-2697-2022, 2022
Short summary

Cited articles

Abtew, W., Melesse, A. M., and Dessalegne, T.: El Niño Southern Oscillation link to the Blue Nile River Basin hydrology, Hydrol. Process., 23, 3653–3660, https://doi.org/10.1002/hyp.7367, 2009.
Amarasekera, K. N., Lee, R. F., Williams, E. R., and Eltahir, E. A. B.: ENSO and the natural variability in the flow of tropical rivers, J. Hydrol., 200, 24–39, 1997.
Awadalla, A. G. and Rousselle, J.: Forecasting the Nile flood using sea surface temperatures as inputs: A comparison between transfer function with noise and neural networks, in: Proc. 19th AGU Hydrology Days, Fort Collins, CO, American Geophysical Union, 23–36, 1999.
Barnett, T. P., Graham, N. E., Cane, M. A., Zebiak, S. E., Dolan, S. C., O'Brien, J., and Legler, D. M.: On the prediction of the El Niño of 1986–1987, Science, 241, 192–196, 1988.
Barnston, A. G., van den Dool, H. M., Rodenhuis, D. R., Ropelewski, C. R., Kousky, V. E., O'Lenic, E. A., and Leetmaa, A.: Long-lead seasonal forecasts-Where do we stand?, B. Am. Meteorol. Soci., 75, 2097–2114, 1994.