Articles | Volume 16, issue 9
Hydrol. Earth Syst. Sci., 16, 3315–3325, 2012
https://doi.org/10.5194/hess-16-3315-2012

Special issue: Hydrology education in a changing world

Hydrol. Earth Syst. Sci., 16, 3315–3325, 2012
https://doi.org/10.5194/hess-16-3315-2012

Technical note 17 Sep 2012

Technical note | 17 Sep 2012

Teaching hydrological modeling with a user-friendly catchment-runoff-model software package

J. Seibert and M. J. P. Vis

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
A history of TOPMODEL
Keith J. Beven, Mike J. Kirkby, Jim E. Freer, and Rob Lamb
Hydrol. Earth Syst. Sci., 25, 527–549, https://doi.org/10.5194/hess-25-527-2021,https://doi.org/10.5194/hess-25-527-2021, 2021
Short summary
Progressive water deficits during multiyear droughts in basins with long hydrological memory in Chile
Camila Alvarez-Garreton, Juan Pablo Boisier, René Garreaud, Jan Seibert, and Marc Vis
Hydrol. Earth Syst. Sci., 25, 429–446, https://doi.org/10.5194/hess-25-429-2021,https://doi.org/10.5194/hess-25-429-2021, 2021
Short summary
A comparison of catchment travel times and storage deduced from deuterium and tritium tracers using StorAge Selection functions
Nicolas Björn Rodriguez, Laurent Pfister, Erwin Zehe, and Julian Klaus
Hydrol. Earth Syst. Sci., 25, 401–428, https://doi.org/10.5194/hess-25-401-2021,https://doi.org/10.5194/hess-25-401-2021, 2021
Short summary
The role and value of distributed precipitation data in hydrological models
Ralf Loritz, Markus Hrachowitz, Malte Neuper, and Erwin Zehe
Hydrol. Earth Syst. Sci., 25, 147–167, https://doi.org/10.5194/hess-25-147-2021,https://doi.org/10.5194/hess-25-147-2021, 2021
Short summary
Flood spatial coherence, triggers, and performance in hydrological simulations: large-sample evaluation of four streamflow-calibrated models
Manuela I. Brunner, Lieke A. Melsen, Andrew W. Wood, Oldrich Rakovec, Naoki Mizukami, Wouter J. M. Knoben, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 25, 105–119, https://doi.org/10.5194/hess-25-105-2021,https://doi.org/10.5194/hess-25-105-2021, 2021
Short summary

Cited articles

AghaKouchak, A. and Habib, E.: Application of a Conceptual Hydrologic Model in Teaching Hydrologic Processes, Int. J. Eng. Educ., 26, 963–973, 2010.
AghaKouchak, A., Nakhjiri, N., and Habib, E.: An educational model for ensemble streamflow simulation and uncertainty analysis, Hydrol. Earth Syst. Sci. Discuss., 9, 7297–7315, https://doi.org/10.5194/hessd-9-7297-2012, 2012.
Bergström, S.: Development and application of a conceptual runoff model for Scandinavian catchments, Bulletin Series A, No. 52, Department of Water Resources Engineering, Lund Institute of Technology, University of Lund, 134 pp., 1976.
Bergström, S.: The HBV Model: Its Structure and Applications, Swedish Meteorological and Hydrological Institute (SMHI), Hydrology, Norrköping, 35 pp., 1992.
Bergström, S.: The HBV model (Chapter 13), in: Computer Models of Watershed Hydrology, edited by: Singh, V. P., Water Resources Publications, Highlands Ranch, Colorado, USA, 443–476, 1995.