Articles | Volume 16, issue 9
Hydrol. Earth Syst. Sci., 16, 3315–3325, 2012
https://doi.org/10.5194/hess-16-3315-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue: Hydrology education in a changing world
Technical note 17 Sep 2012
Technical note | 17 Sep 2012
Teaching hydrological modeling with a user-friendly catchment-runoff-model software package
J. Seibert and M. J. P. Vis
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
A history of TOPMODEL
Progressive water deficits during multiyear droughts in basins with long hydrological memory in Chile
A comparison of catchment travel times and storage deduced from deuterium and tritium tracers using StorAge Selection functions
The role and value of distributed precipitation data in hydrological models
Flood spatial coherence, triggers, and performance in hydrological simulations: large-sample evaluation of four streamflow-calibrated models
Flexible vector-based spatial configurations in land models
Two-stage variational mode decomposition and support vector regression for streamflow forecasting
Predicting probabilities of streamflow intermittency across a temperate mesoscale catchment
Importance of the informative content in the study area when regionalising rainfall-runoff model parameters: the role of nested catchments and gauging station density
Which rainfall score is more informative about the performance in river discharge simulation? A comprehensive assessment on 1318 basins over Europe
Assimilation of Soil Moisture and Ocean Salinity (SMOS) brightness temperature into a large-scale distributed conceptual hydrological model to improve soil moisture predictions: the Murray–Darling basin in Australia as a test case
Frequency and magnitude variability of Yalu River flooding: numerical analyses for the last 1000 years
Assessing the degree of detail of temperature-based snow routines for runoff modelling in mountainous areas in central Europe
Adaptive clustering: reducing the computational costs of distributed (hydrological) modelling by exploiting time-variable similarity among model elements
Climate elasticity of evapotranspiration shifts the water balance of Mediterranean climates during multi-year droughts
Future streamflow regime changes in the United States: assessment using functional classification
Risks and opportunities for a Swiss hydroelectricity company in a changing climate
Survival of the Qaidam mega-lake system under mid-Pliocene climates and its restoration under future climates
Diagnosis toward predicting mean annual runoff in ungauged basins
Hydrological evaluation of open-access precipitation data using SWAT at multiple temporal and spatial scales
Understanding coastal wetland conditions and futures by closing their hydrologic balance: the case of the Gialova lagoon, Greece
A multi-sourced assessment of the spatio-temporal dynamic of soil saturation in the MARINE flash flood model
Why does a conceptual hydrological model fail to correctly predict discharge changes in response to climate change?
Sensitivity of meteorological-forcing resolution on hydrologic variables
The era of Infiltration
Impact of karst areas on runoff generation, lateral flow and interbasin groundwater flow at the storm-event timescale
Using altimetry observations combined with GRACE to select parameter sets of a hydrological model in a data-scarce region
Assessing the impact of seasonal-rainfall anomalies on catchment-scale water balance components
Crossing hydrological and geochemical modeling to understand the spatiotemporal variability of water chemistry in a headwater catchment (Strengbach, France)
Triple oxygen isotope systematics of evaporation and mixing processes in a dynamic desert lake system
Future shift in winter streamflow modulated by the internal variability of climate in southern Ontario
On the shape of forward transit time distributions in low-order catchments
Linking economic and social factors to peak flows in an agricultural watershed using socio-hydrologic modeling
Diagnosis of future changes in hydrology for a Canadian Rockies headwater basin
Should altitudinal gradients of temperature and precipitation inputs be inferred from key parameters in snow-hydrological models?
Climate change impacts model parameter sensitivity – What does this mean for calibration?
Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America
Learning from satellite observations: increased understanding of catchment processes through stepwise model improvement
Multistep-ahead daily inflow forecasting using the ERA-Interim reanalysis data set based on gradient-boosting regression trees
Behind the scenes of streamflow model performance
Quantifying the impacts of human water use and climate variations on recent drying of Lake Urmia basin: the value of different sets of spaceborne and in situ data for calibrating a global hydrological model
Irrigation, damming, and streamflow fluctuations of the Yellow River
Surface water and groundwater: unifying conceptualization and quantification of the two “water worlds”
Intra-catchment variability of surface saturation – insights from physically based simulations in comparison with biweekly thermal infrared image observations
Reconstructing the 2015 Salgar flash flood using radar retrievals and a conceptual modeling framework in an ungauged basin
Dynamics of hydrological-model parameters: mechanisms, problems and solutions
Understanding dominant controls on streamflow spatial variability to set up a semi-distributed hydrological model: the case study of the Thur catchment
Hydrograph separation: an impartial parametrisation for an imperfect method
Evaporation from a large lowland reservoir – (dis)agreement between evaporation models from hourly to decadal timescales
Beyond binary baseflow separation: a delayed-flow index for multiple streamflow contributions
Keith J. Beven, Mike J. Kirkby, Jim E. Freer, and Rob Lamb
Hydrol. Earth Syst. Sci., 25, 527–549, https://doi.org/10.5194/hess-25-527-2021, https://doi.org/10.5194/hess-25-527-2021, 2021
Short summary
Short summary
The theory that forms the basis of TOPMODEL was first outlined by Mike Kirkby some 45 years ago. This paper recalls some of the early developments: the rejection of the first journal paper, the early days of digital terrain analysis, model calibration and validation, the various criticisms of the simplifying assumptions, and the relaxation of those assumptions in the dynamic forms of TOPMODEL, and it considers what we might do now with the benefit of hindsight.
Camila Alvarez-Garreton, Juan Pablo Boisier, René Garreaud, Jan Seibert, and Marc Vis
Hydrol. Earth Syst. Sci., 25, 429–446, https://doi.org/10.5194/hess-25-429-2021, https://doi.org/10.5194/hess-25-429-2021, 2021
Short summary
Short summary
The megadrought experienced in Chile (2010–2020) has led to larger than expected water deficits. By analysing 106 basins with snow-/rainfall regimes, we relate such intensification with the hydrological memory of the basins, explained by snow and groundwater. Snow-dominated basins have larger memory and thus accumulate the effect of persistent precipitation deficits more strongly than pluvial basins. This notably affects central Chile, a water-limited region where most of the population lives.
Nicolas Björn Rodriguez, Laurent Pfister, Erwin Zehe, and Julian Klaus
Hydrol. Earth Syst. Sci., 25, 401–428, https://doi.org/10.5194/hess-25-401-2021, https://doi.org/10.5194/hess-25-401-2021, 2021
Short summary
Short summary
Different parts of water have often been used as tracers to determine the age of water in streams. The stable tracers, such as deuterium, are thought to be unable to reveal old water compared to the radioactive tracer called tritium. We used both tracers, measured in precipitation and in a stream in Luxembourg, to show that this is not necessarily true. It is, in fact, advantageous to use the two tracers together, and we recommend systematically using tritium in future studies.
Ralf Loritz, Markus Hrachowitz, Malte Neuper, and Erwin Zehe
Hydrol. Earth Syst. Sci., 25, 147–167, https://doi.org/10.5194/hess-25-147-2021, https://doi.org/10.5194/hess-25-147-2021, 2021
Short summary
Short summary
This study investigates the role and value of distributed rainfall in the runoff generation of a mesoscale catchment. We compare the performance of different hydrological models at different periods and show that a distributed model driven by distributed rainfall yields improved performances only during certain periods. We then step beyond this finding and develop a spatially adaptive model that is capable of dynamically adjusting its spatial model structure in time.
Manuela I. Brunner, Lieke A. Melsen, Andrew W. Wood, Oldrich Rakovec, Naoki Mizukami, Wouter J. M. Knoben, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 25, 105–119, https://doi.org/10.5194/hess-25-105-2021, https://doi.org/10.5194/hess-25-105-2021, 2021
Short summary
Short summary
Assessments of current, local, and regional flood hazards and their future changes often involve the use of hydrologic models. A reliable model ideally reproduces both local flood characteristics and regional aspects of flooding. In this paper we investigate how such characteristics are represented by hydrologic models. Our results show that both the modeling of local and regional flood characteristics are challenging, especially under changing climate conditions.
Shervan Gharari, Martyn P. Clark, Naoki Mizukami, Wouter J. M. Knoben, Jefferson S. Wong, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 24, 5953–5971, https://doi.org/10.5194/hess-24-5953-2020, https://doi.org/10.5194/hess-24-5953-2020, 2020
Short summary
Short summary
This work explores the trade-off between the accuracy of the representation of geospatial data, such as land cover, soil type, and elevation zones, in a land (surface) model and its performance in the context of modeling. We used a vector-based setup instead of the commonly used grid-based setup to identify this trade-off. We also assessed the often neglected parameter uncertainty and its impact on the land model simulations.
Ganggang Zuo, Jungang Luo, Ni Wang, Yani Lian, and Xinxin He
Hydrol. Earth Syst. Sci., 24, 5491–5518, https://doi.org/10.5194/hess-24-5491-2020, https://doi.org/10.5194/hess-24-5491-2020, 2020
Short summary
Short summary
A two-stage variational mode decomposition and support vector regression is designed to reduce the influence of boundary effects without removing or correcting boundary-affected decompositions. The proposed model significantly reduces the boundary effect consequences, saves modeling time and computation resources, barely overfits the calibration samples, and forecasts monthly runoff reasonably well compared to the benchmark models.
Nils Hinrich Kaplan, Theresa Blume, and Markus Weiler
Hydrol. Earth Syst. Sci., 24, 5453–5472, https://doi.org/10.5194/hess-24-5453-2020, https://doi.org/10.5194/hess-24-5453-2020, 2020
Short summary
Short summary
In recent decades the demand for detailed information of spatial and temporal dynamics of the stream network has grown in the fields of eco-hydrology and extreme flow prediction. We use temporal streamflow intermittency data obtained at various sites using innovative sensing technology as well as spatial predictors to predict and map probabilities of streamflow intermittency. This approach has the potential to provide intermittency maps for hydrological modelling and management practices.
Mattia Neri, Juraj Parajka, and Elena Toth
Hydrol. Earth Syst. Sci., 24, 5149–5171, https://doi.org/10.5194/hess-24-5149-2020, https://doi.org/10.5194/hess-24-5149-2020, 2020
Short summary
Short summary
One of the most informative ways to gain information on ungauged river sections is through the implementation of a rainfall-runoff model, exploiting the information collected in gauged catchments in the study area. This study analyses how the performances of different model regionalisation approaches are influenced by the informative content of the available regional data set, in order to identify the methods that are more suitable for the data availability in the region.
Stefania Camici, Christian Massari, Luca Ciabatta, Ivan Marchesini, and Luca Brocca
Hydrol. Earth Syst. Sci., 24, 4869–4885, https://doi.org/10.5194/hess-24-4869-2020, https://doi.org/10.5194/hess-24-4869-2020, 2020
Short summary
Short summary
The paper performs the most comprehensive European-scale evaluation to date of satellite rainfall products for river flow prediction. In doing so, how errors transfer from satellite-based rainfall products into flood simulation is investigated in depth and, for the first time, quantitative guidelines on the use of these products for hydrological applications are provided. This result can represent a keystone in the use of satellite rainfall products, especially in data-scarce regions.
Renaud Hostache, Dominik Rains, Kaniska Mallick, Marco Chini, Ramona Pelich, Hans Lievens, Fabrizio Fenicia, Giovanni Corato, Niko E. C. Verhoest, and Patrick Matgen
Hydrol. Earth Syst. Sci., 24, 4793–4812, https://doi.org/10.5194/hess-24-4793-2020, https://doi.org/10.5194/hess-24-4793-2020, 2020
Short summary
Short summary
Our objective is to investigate how satellite microwave sensors, particularly Soil Moisture and Ocean Salinity (SMOS), may help to reduce errors and uncertainties in soil moisture simulations with a large-scale conceptual hydro-meteorological model. We assimilated a long time series of SMOS observations into a hydro-meteorological model and showed that this helps to improve model predictions. This work therefore contributes to the development of faster and more accurate drought prediction tools.
Hui Sheng, Xiaomei Xu, Jian Hua Gao, Albert J. Kettner, Yong Shi, Chengfeng Xue, Ya Ping Wang, and Shu Gao
Hydrol. Earth Syst. Sci., 24, 4743–4761, https://doi.org/10.5194/hess-24-4743-2020, https://doi.org/10.5194/hess-24-4743-2020, 2020
Short summary
Short summary
This paper investigates the variability of past flooding by applying a numerical model coupled with historical records of regional climate and anthropogenic activity under the deficiency of observations. We conclude that trends in flooding frequency were predominantly modulated by the intensity and frequency of extreme rainfall events, which highlights the need for the implementation of effective river engineering measures to counteract increasing flood risks as a result of the future.
Marc Girons Lopez, Marc J. P. Vis, Michal Jenicek, Nena Griessinger, and Jan Seibert
Hydrol. Earth Syst. Sci., 24, 4441–4461, https://doi.org/10.5194/hess-24-4441-2020, https://doi.org/10.5194/hess-24-4441-2020, 2020
Short summary
Short summary
Snow processes are crucial for runoff in mountainous areas, but their complexity makes water management difficult. Temperature models are widely used as they are simple and do not require much data, but not much thought is usually given to which model to use, which may lead to bad predictions. We studied the impact of many model alternatives and found that a more complex model does not necessarily perform better. Finding which processes are most important in each area is a much better strategy.
Uwe Ehret, Rik van Pruijssen, Marina Bortoli, Ralf Loritz, Elnaz Azmi, and Erwin Zehe
Hydrol. Earth Syst. Sci., 24, 4389–4411, https://doi.org/10.5194/hess-24-4389-2020, https://doi.org/10.5194/hess-24-4389-2020, 2020
Short summary
Short summary
In this paper we propose adaptive clustering as a new method for reducing the computational efforts of distributed modelling. It consists of identifying similar-acting model elements during the runtime, clustering them, running the model for just a few representatives per cluster, and mapping their results to the remaining model elements in the cluster. With the example of a hydrological model, we show that this saves considerable computation time, while largely maintaining the output quality.
Francesco Avanzi, Joseph Rungee, Tessa Maurer, Roger Bales, Qin Ma, Steven Glaser, and Martha Conklin
Hydrol. Earth Syst. Sci., 24, 4317–4337, https://doi.org/10.5194/hess-24-4317-2020, https://doi.org/10.5194/hess-24-4317-2020, 2020
Short summary
Short summary
Multi-year droughts in Mediterranean climates often see a lower fraction of precipitation allocated to runoff compared to non-drought years. By comparing observed water-balance components with simulations by a hydrologic model (PRMS), we reinterpret these shifts as a hysteretic response of the water budget to climate elasticity of evapotranspiration. Our results point to a general improvement in hydrologic predictions across drought and recovery cycles by including this mechanism.
Manuela I. Brunner, Lieke A. Melsen, Andrew J. Newman, Andrew W. Wood, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 24, 3951–3966, https://doi.org/10.5194/hess-24-3951-2020, https://doi.org/10.5194/hess-24-3951-2020, 2020
Short summary
Short summary
Streamflow seasonality is changing and expected to further change under the influence of climate change. We here assess how annual streamflow hydrographs will change in future by using a newly developed classification scheme. Our comparison of future with current annual hydrograph classes shows that robust changes are expected only for currently melt-influenced regions in the Rocky Mountains. These upstream changes may require the adaptation of management strategies in downstream regions.
Kirsti Hakala, Nans Addor, Thibault Gobbe, Johann Ruffieux, and Jan Seibert
Hydrol. Earth Syst. Sci., 24, 3815–3833, https://doi.org/10.5194/hess-24-3815-2020, https://doi.org/10.5194/hess-24-3815-2020, 2020
Short summary
Short summary
Under a changing climate, reliable information on future hydrological conditions is necessary to inform water resource management. Here, we collaborated with a hydropower company that selected streamflow and energy demand indices. Using these indices, we identified stakeholder needs and used this to tailor the production of our climate change impact projections. We show that opportunities and risks for a hydropower company depend on a range of factors beyond those covered by traditional studies.
Dieter Scherer
Hydrol. Earth Syst. Sci., 24, 3835–3850, https://doi.org/10.5194/hess-24-3835-2020, https://doi.org/10.5194/hess-24-3835-2020, 2020
Short summary
Short summary
During the Pliocene, the Qaidam Basin on the Tibetan Plateau contained a mega-lake system. During the Pleistocene, it disappeared almost completely. Today, hyperarid climates prevail in the low-altitude parts of the basin. This study reveals that today's mean water balance of the Qaidam Basin is nearly zero and is positive during warmer, less dry years. The results explain how the mega-lake system could survive for a long time in the past and could eventually be restored in the future.
Yuan Gao, Lili Yao, Ni-Bin Chang, and Dingbao Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-353, https://doi.org/10.5194/hess-2020-353, 2020
Revised manuscript accepted for HESS
Short summary
Short summary
Mean annual runoff prediction is of great interest but still poses a challenge in ungauged basins. The purpose of this study is to diagnose the data requirement for predicting mean annual runoff in ungauged basins based on a water balance model, in which the effects of climate variability are explicitly represented. The performance of predicting mean annual runoff can be improved by employing better estimation of soil water storage capacity including the effects of soil, topography and bedrock.
Jianzhuang Pang, Huilan Zhang, Quanxi Xu, Yujie Wang, Yunqi Wang, Ouyang Zhang, and Jiaxin Hao
Hydrol. Earth Syst. Sci., 24, 3603–3626, https://doi.org/10.5194/hess-24-3603-2020, https://doi.org/10.5194/hess-24-3603-2020, 2020
Short summary
Short summary
As frequently used precipitation products, Gauge, CPC, and CHIRPS presented different behaviors in describing precipitation on different spatial and temporal scales, yet these dissimilarities could be concealed in hydrological modeling by parameter calibration and validation. Parameter adjustment in hydrologic modeling, however, would yield different water balance components and thus alter hydrologic mechanisms, demonstrating the complexity in physically describing natural hydrologic processes.
Stefano Manzoni, Giorgos Maneas, Anna Scaini, Basil E. Psiloglou, Georgia Destouni, and Steve W. Lyon
Hydrol. Earth Syst. Sci., 24, 3557–3571, https://doi.org/10.5194/hess-24-3557-2020, https://doi.org/10.5194/hess-24-3557-2020, 2020
Short summary
Short summary
A modeling tool is developed to assess the vulnerability of coastal wetlands to climatic and water management changes. Applied to the case study of the Gialova lagoon (Greece), this tool highlights the reliance of the lagoon functionality on scarce freshwater sources already under high demand from agriculture. Climatic changes will likely increase lagoon salinity, despite efforts to improve water management.
Judith Eeckman, Hélène Roux, Audrey Douinot, Bertrand Bonan, and Clément Albergel
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-311, https://doi.org/10.5194/hess-2020-311, 2020
Revised manuscript accepted for HESS
Doris Duethmann, Günter Blöschl, and Juraj Parajka
Hydrol. Earth Syst. Sci., 24, 3493–3511, https://doi.org/10.5194/hess-24-3493-2020, https://doi.org/10.5194/hess-24-3493-2020, 2020
Short summary
Short summary
We investigate why a conceptual hydrological model failed to correctly predict observed discharge changes in response to increasing precipitation and air temperature in 156 Austrian catchments. Simulations indicate that poor model performance is related to two problems, namely a model structure that neglects changes in vegetation dynamics and inhomogeneities in precipitation data caused by changes in stations density with time. Other hypotheses did not improve simulated discharge changes.
Fadji Z. Maina, Erica R. Siirila-Woodburn, and Pouya Vahmani
Hydrol. Earth Syst. Sci., 24, 3451–3474, https://doi.org/10.5194/hess-24-3451-2020, https://doi.org/10.5194/hess-24-3451-2020, 2020
Short summary
Short summary
Projecting the changes in water resources under a no-analog future climate requires integrated hydrologic models. However, these models are plagued by several sources of uncertainty. A hydrologic model was forced with various resolutions of meteorological forcing (0.5 to 40.5 km) to assess its sensitivity to these inputs. We show that most hydrologic variables reveal biases that are seasonally and spatially dependent, which can have serious implications for calibration and water management.
Keith Beven
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-308, https://doi.org/10.5194/hess-2020-308, 2020
Revised manuscript accepted for HESS
Short summary
Short summary
Inspired by a quotation from Howard Cook in 1946, this paper traces the evolution of the infiltration theory of runoff from the work of Robert Horton and LeRoy Sherman in the 1930s to the early digital computer models of the 1970s and 1980s. Reconsideration of the perceptual model for many catchments, partly as a result of the greater appreciation of the contribution of subsurface flows to the hydrograph indicated by tracer studies, suggests a reconsideration of hydrological nomenclature.
Martin Le Mesnil, Roger Moussa, Jean-Baptiste Charlier, and Yvan Caballero
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-229, https://doi.org/10.5194/hess-2020-229, 2020
Revised manuscript accepted for HESS
Short summary
Short summary
We present an innovative approach consisting in the statistical analysis and comparison of 15 hydrological descriptors, characterizing catchment response to rainfall events. The distribution of these descriptors is analysed according to the occurrence of karst areas inside 108 catchments. It shows that karst impacts on storm events mainly result in river losses, and that interbasin groundwater flows can represent a significant part of the catchment water budget ath the event time scale.
Petra Hulsman, Hessel C. Winsemius, Claire I. Michailovsky, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 24, 3331–3359, https://doi.org/10.5194/hess-24-3331-2020, https://doi.org/10.5194/hess-24-3331-2020, 2020
Short summary
Short summary
In the absence of discharge data in ungauged basins, remotely sensed river water level data, i.e. altimetry, may provide valuable information to calibrate hydrological models. This study illustrated that for large rivers in data-scarce regions, river altimetry data from multiple locations combined with GRACE data have the potential to fill this gap when combined with estimates of the river geometry, thereby allowing a step towards more reliable hydrological modelling in data-scarce regions.
Paolo Nasta, Carolina Allocca, Roberto Deidda, and Nunzio Romano
Hydrol. Earth Syst. Sci., 24, 3211–3227, https://doi.org/10.5194/hess-24-3211-2020, https://doi.org/10.5194/hess-24-3211-2020, 2020
Short summary
Short summary
Rainfall seasonal anomalies in a Mediterranean climate are assessed by using two distinct approaches: a static approach based on the standardized precipitation index and a dynamic approach that identifies the rainy season by considering rainfall magnitude, timing, and duration. The impact of rainfall seasonality on catchment-scale water balance components is evaluated through scenario-based simulations of the Soil Water Assessment Tool in the upper Alento River catchment in southern Italy.
Julien Ackerer, Benjamin Jeannot, Frederick Delay, Sylvain Weill, Yann Lucas, Bertrand Fritz, Daniel Viville, and François Chabaux
Hydrol. Earth Syst. Sci., 24, 3111–3133, https://doi.org/10.5194/hess-24-3111-2020, https://doi.org/10.5194/hess-24-3111-2020, 2020
Claudia Voigt, Daniel Herwartz, Cristina Dorador, and Michael Staubwasser
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-255, https://doi.org/10.5194/hess-2020-255, 2020
Revised manuscript accepted for HESS
Olivier Champagne, M. Altaf Arain, Martin Leduc, Paulin Coulibaly, and Shawn McKenzie
Hydrol. Earth Syst. Sci., 24, 3077–3096, https://doi.org/10.5194/hess-24-3077-2020, https://doi.org/10.5194/hess-24-3077-2020, 2020
Short summary
Short summary
Using 50 members of one regional climate model and a processed-based hydrological model applied in four river basins in southern Ontario, this work focused on the winter streamflow projection uncertainties for the first half of 21st century. The results show a January–February increase of streamflow for the 50 projections due to early snowmelt and a rainfall increase. The streamflow projections are also modulated by the change of pressure patterns advecting different air masses over the region.
Ingo Heidbüchel, Jie Yang, Andreas Musolff, Peter Troch, Ty Ferré, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 24, 2895–2920, https://doi.org/10.5194/hess-24-2895-2020, https://doi.org/10.5194/hess-24-2895-2020, 2020
Short summary
Short summary
With the help of a 3-D computer model we examined how long the water of different rain events stays inside small catchments before it is discharged and how the nature of this discharge is controlled by different catchment and climate properties. We found that one can only predict the discharge dynamics when taking into account a combination of catchment and climate properties (i.e., there was not one single most important predictor). Our results can help to manage water pollution events.
David Dziubanski, Kristie J. Franz, and William Gutowski
Hydrol. Earth Syst. Sci., 24, 2873–2894, https://doi.org/10.5194/hess-24-2873-2020, https://doi.org/10.5194/hess-24-2873-2020, 2020
Short summary
Short summary
We describe a socio-hydrologic model that couples an agent-based model (ABM) of human decision-making with a hydrologic model. We establish this model for a typical agricultural watershed in Iowa, USA, and simulate the evolution of large discharge events over a 47-year period under changing land use. Using this modeling approach, relationships between seemingly unrelated variables such as crop markets or crop yields and local peak flow trends are quantified.
Xing Fang and John W. Pomeroy
Hydrol. Earth Syst. Sci., 24, 2731–2754, https://doi.org/10.5194/hess-24-2731-2020, https://doi.org/10.5194/hess-24-2731-2020, 2020
Short summary
Short summary
High-resolution Weather Research and Forecasting model near-surface outputs from control and future periods were bias-corrected by downscaling outputs with respect to meteorological stations in Marmot Creek Research Basin, Canadian Rocky Mountains. A hydrological model simulation driven by the bias-corrected outputs showed declined seasonal peak snowpack, shorter snow-cover duration, higher evapotranspiration, and increased streamflow discharge in Marmot Creek for the warmer and wetter future.
Denis Ruelland
Hydrol. Earth Syst. Sci., 24, 2609–2632, https://doi.org/10.5194/hess-24-2609-2020, https://doi.org/10.5194/hess-24-2609-2020, 2020
Short summary
Short summary
Interpolation methods accounting for elevation dependency from scattered gauges result in inaccurate inputs for snow-hydrological models. Altitudinal gradients of temperature and precipitation can be successfully inferred using an inverse snow-hydrological modelling approach. This approach can significantly improve the simulation of snow cover and streamflow dynamics through more parsimonious parametrization.
Lieke Anna Melsen and Björn Guse
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-179, https://doi.org/10.5194/hess-2020-179, 2020
Revised manuscript accepted for HESS
Short summary
Short summary
Certain hydrological processes become more or less relevant when the climate changes. This should also be visible in the models that are used for long term predictions of river flow as a consequence of climate change. We investigated this, using three different models. The change in relevance should be reflected in how the parameters of the models are determined. In the different models, different processes become more relevant in the future: they disagree with each other.
Mostafa Tarek, François P. Brissette, and Richard Arsenault
Hydrol. Earth Syst. Sci., 24, 2527–2544, https://doi.org/10.5194/hess-24-2527-2020, https://doi.org/10.5194/hess-24-2527-2020, 2020
Short summary
Short summary
The ERA5 reanalysis dataset is characterized by its high spatial (0.25) and temporal (hourly) resolutions and has therefore a large potential to drive environmental models in regions where the network of stations is deficient. ERA5 performance is evaluated on 3138 North American catchments. Results indicate that for hydrological modelling, ERA5 precipitation and temperature are just as good as observation all over North America, with the exception of the eastern half of the US.
Petra Hulsman, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-191, https://doi.org/10.5194/hess-2020-191, 2020
Revised manuscript accepted for HESS
Short summary
Short summary
Satellite observations have increasingly been used for model calibration, while model structural developments largely rely on discharge data often resulting in poor representations of internal rainfall-runoff processes, especially for large river basins. This study explores the combined use of spatial pattern and temporal dynamics of satellite-based evaporation and total water storage data for model structural improvement and model calibration for a large, semi-arid and data scarce river system.
Shengli Liao, Zhanwei Liu, Benxi Liu, Chuntian Cheng, Xinfeng Jin, and Zhipeng Zhao
Hydrol. Earth Syst. Sci., 24, 2343–2363, https://doi.org/10.5194/hess-24-2343-2020, https://doi.org/10.5194/hess-24-2343-2020, 2020
Short summary
Short summary
Inflow forecasting plays an essential role in reservoir management and operation. To improve the accuracy of multistep-ahead daily inflow forecasting, the paper develops a new hybrid inflow forecast framework using ERA-Interim data. We find that the framework significantly enhances the accuracy of inflow forecasting at lead times of 4–10 d compared with widely used and mature methods. This research provides a reference for operational inflow forecasting in remote regions.
Laurène J. E. Bouaziz, Guillaume Thirel, Tanja de Boer-Euser, Lieke A. Melsen, Joost Buitink, Claudia C. Brauer, Jan De Niel, Sotirios Moustakas, Patrick Willems, Benjamin Grelier, Gilles Drogue, Fabrizio Fenicia, Jiri Nossent, Fernando Pereira, Eric Sprokkereef, Jasper Stam, Benjamin J. Dewals, Albrecht H. Weerts, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-176, https://doi.org/10.5194/hess-2020-176, 2020
Revised manuscript accepted for HESS
Short summary
Short summary
We quantify the differences in internal states and fluxes of twelve process-based models with similar streamflow performance and assess their plausibility using remotely-sensed estimates of evaporation, snow cover, soil moisture and total storage anomalies. The dissimilarities in internal process representation imply that these models cannot all simultaneously be close to reality. Therefore, we invite modelers to evaluate their models using multiple variables and to rely on multi-model studies.
Seyed-Mohammad Hosseini-Moghari, Shahab Araghinejad, Mohammad J. Tourian, Kumars Ebrahimi, and Petra Döll
Hydrol. Earth Syst. Sci., 24, 1939–1956, https://doi.org/10.5194/hess-24-1939-2020, https://doi.org/10.5194/hess-24-1939-2020, 2020
Short summary
Short summary
This paper uses a multi-objective approach for calibrating the WGHM model to determine the role of human water use and climate variations in the recent loss of water storage in Lake Urmia basin, Iran. We found that even without human water use Lake Urmia would not have recovered from the significant loss of lake water volume caused by the drought year 2008.
Zun Yin, Catherine Ottlé, Philippe Ciais, Feng Zhou, Xuhui Wang, Polcher Jan, Patrice Dumas, Shushi Peng, Laurent Li, Xudong Zhou, and Shilong Piao
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-7, https://doi.org/10.5194/hess-2020-7, 2020
Revised manuscript accepted for HESS
Short summary
Short summary
We improved the irrigation module in a land surface model and developed a dam operation model in aim to investigate how these human activities affect the discharge of the Yellow River in China. The results show that the irrigation mainly result in the decrease of the discharge. The dam operations, however, mainly affect the river discharge fluctuations. By considering only two operation rules: flood control and base flow guarantee, our dam model can sustainably improve the simulation accuracy.
Brian Berkowitz and Erwin Zehe
Hydrol. Earth Syst. Sci., 24, 1831–1858, https://doi.org/10.5194/hess-24-1831-2020, https://doi.org/10.5194/hess-24-1831-2020, 2020
Short summary
Short summary
We present a
blueprintfor a unified modelling framework to quantify chemical transport in both surface water and groundwater systems. There has been extensive debate over recent decades, particularly in the surface water literature, about how to explain and account for long travel times of chemical species that are distinct from water flow (rainfall-runoff) travel times. We suggest a powerful modelling framework known to be robust and effective from the field of groundwater hydrology.
Barbara Glaser, Marta Antonelli, Luisa Hopp, and Julian Klaus
Hydrol. Earth Syst. Sci., 24, 1393–1413, https://doi.org/10.5194/hess-24-1393-2020, https://doi.org/10.5194/hess-24-1393-2020, 2020
Short summary
Short summary
The inundation of flood-prone areas can have crucial impacts on runoff generation and water quality. We investigate the variation of flooding in space and time along a small stream with long-term observations and numerical simulations. We demonstrate that the main reason for the flooding is the exfiltration of groundwater into local topographic depressions. However, only interplay with further influencing factors can explain all of the variability of the observed flooding patterns and dynamics.
Nicolás Velásquez, Carlos D. Hoyos, Jaime I. Vélez, and Esneider Zapata
Hydrol. Earth Syst. Sci., 24, 1367–1392, https://doi.org/10.5194/hess-24-1367-2020, https://doi.org/10.5194/hess-24-1367-2020, 2020
Short summary
Short summary
During 18 May 2015, a storm event produced a flash flood in the municipality of Salgar (northwestern Colombian Andes), resulting in more than 100 human casualties and significant economic losses. Here we present a modeled process reconstruction of what happened during this event. For this, we only use radar rainfall estimations and a digital elevation model. Results show that with scarce data there is an opportunity to obtain acceptable tools for risk management and decision making.
Tian Lan, Kairong Lin, Chong-Yu Xu, Xuezhi Tan, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 24, 1347–1366, https://doi.org/10.5194/hess-24-1347-2020, https://doi.org/10.5194/hess-24-1347-2020, 2020
Marco Dal Molin, Mario Schirmer, Massimiliano Zappa, and Fabrizio Fenicia
Hydrol. Earth Syst. Sci., 24, 1319–1345, https://doi.org/10.5194/hess-24-1319-2020, https://doi.org/10.5194/hess-24-1319-2020, 2020
Antoine Pelletier and Vazken Andréassian
Hydrol. Earth Syst. Sci., 24, 1171–1187, https://doi.org/10.5194/hess-24-1171-2020, https://doi.org/10.5194/hess-24-1171-2020, 2020
Short summary
Short summary
There are many ways for water to join a river after a rainfall event, but they can be split into two categories: the quick ones that remain in the surface and the slow ones that use other trajectories. Thus, measured streamflow of a river can be split into two components: quickflow and baseflow. We present a new method to perform this separation, using only streamflow and rainfall data, which are generally broadly available. It is then used as an analysis tool of river dynamics over France.
Femke A. Jansen and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 24, 1055–1072, https://doi.org/10.5194/hess-24-1055-2020, https://doi.org/10.5194/hess-24-1055-2020, 2020
Short summary
Short summary
We characterized the (dis)agreement between six evaporation methods from hourly to decadal timescales, focussing on the IJsselmeer region in the Netherlands. The projected changes in mean yearly water losses through evaporation between the years 2000 and 2100 range from 4 mm to 94 mm among the methods. We therefore stress that the choice of method is of great importance for water managers in their decision making.
Michael Stoelzle, Tobias Schuetz, Markus Weiler, Kerstin Stahl, and Lena M. Tallaksen
Hydrol. Earth Syst. Sci., 24, 849–867, https://doi.org/10.5194/hess-24-849-2020, https://doi.org/10.5194/hess-24-849-2020, 2020
Short summary
Short summary
During dry weather, different delayed sources of runoff (e.g. from groundwater, wetlands or snowmelt) modulate the magnitude and variability of streamflow. Hydrograph separation methods often do not distinguish these delayed contributions and mostly pool them into only two components (i.e. quickflow and baseflow). We propose a method that uncovers multiple components and demonstrates how they better reflect streamflow generation processes of different flow regimes.
Cited articles
AghaKouchak, A. and Habib, E.: Application of a Conceptual Hydrologic Model in Teaching Hydrologic Processes, Int. J. Eng. Educ., 26, 963–973, 2010.
AghaKouchak, A., Nakhjiri, N., and Habib, E.: An educational model for ensemble streamflow simulation and uncertainty analysis, Hydrol. Earth Syst. Sci. Discuss., 9, 7297–7315, https://doi.org/10.5194/hessd-9-7297-2012, 2012.
Bergström, S.: Development and application of a conceptual runoff model for Scandinavian catchments, Bulletin Series A, No. 52, Department of Water Resources Engineering, Lund Institute of Technology, University of Lund, 134 pp., 1976.
Bergström, S.: The HBV Model: Its Structure and Applications, Swedish Meteorological and Hydrological Institute (SMHI), Hydrology, Norrköping, 35 pp., 1992.
Bergström, S.: The HBV model (Chapter 13), in: Computer Models of Watershed Hydrology, edited by: Singh, V. P., Water Resources Publications, Highlands Ranch, Colorado, USA, 443–476, 1995.
Braun, L. N. and Renner, C. B.: Application of a Conceptual Runoff Model in Different Physiographic Regions of Switzerland, Hydrolog. Sci. J., 37, 217–231, 1992.
Doherty, J. and Johnston, J. M.: Methodologies for calibration and predictive analysis of a watershed model, J. Am. Water Resour. As., 39, 251–265, 2003.
Doherty, J. and Skahill, B. E.: An advanced regularization methodology for use in watershed model calibration, J. Hydrol., 327, 564–577, https://doi.org/10.1016/j.jhyrol.2005.11.058, 2006.Please check doi.
Hottelet, C., Braun, L. N., Leibundgut, C., and Rieg, A.: Simulation of snowpack and discharge in an alpine karst basin, IAHS-AISH P., 218, 249–260, 1993.
Konz, M. and Seibert, J.: On the value of glacier mass balances for hydrological model calibration, J. Hydrol., 385, 238–246, https://doi.org/10.1016/j.jhydrol.2010.02.025, 2010.
Lindström, G. and Bergström, S.: Improving the HBV and PULSE-models by use of temperature anomalies, Vannet i Norden, 16–23, 1992.
Lindström, G., Johansson, B., Persson, M., Gardelin, M., and Bergström, S.: Development and test of the distributed HBV-96 hydrological model, J. Hydrol., 201, 272–288, 1997.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.: Numerical recipes in C$++$ : the art of scientific computing, 2nd Edn., Cambridge University Press, Cambridge, UK; New York, xxvii, 1002 pp., 2002.
Seibert, J.: Estimation of parameter uncertainty in the HBV model, Nord. Hydrol., 28, 247–262, 1997.
Seibert, J.: Regionalisation of parameters for a conceptual rainfall-runoff model, Agr. Forest Meteorol., 98, 279–293, 1999.
Seibert, J.: Multi-criteria calibration of a conceptual runoff model using a genetic algorithm, Hydrol. Earth Syst. Sci., 4, 215–224, https://doi.org/10.5194/hess-4-215-2000, 2000.
Seibert, J. and Beven, K. J.: Gauging the ungauged basin: how many discharge measurements are needed?, Hydrol. Earth Syst. Sci., 13, 883–892, https://doi.org/10.5194/hess-13-883-2009, 2009.
Seibert, J. and McDonnell, J. J.: Land-cover impacts on streamflow: a change-detection modelling approach that incorporates parameter uncertainty, Hydrolog. Sci. J., 55, 316–332, https://doi.org/10.1080/02626661003683264, 2010.
Seibert, J., McDonnell, J. J., and Woodsmith, R. D.: Effects of wildfire on catchment runoff response: a modelling approach to detect changes in snow-dominated forested catchments, Hydrol. Res., 41, 378–390, https://doi.org/10.2166/Nh.2010.036, 2010.
Steele-Dunne, S., Lynch, P., McGrath, R., Semmler, T., Wang, S. Y., Hanafin, J., and Nolan, P.: The impacts of climate change on hydrology in Ireland, J. Hydrol., 356, 28–45, https://doi.org/10.1016/j.jhydrol.2008.03.025, 2008.
Uhlenbrook, S., Seibert, J., Leibundgut, C., and Rodhe, A.: Prediction uncertainty of conceptual rainfall-runoff models caused by problems in identifying model parameters and structure, Hydrolog. Sci. J., 44, 779–797, 1999.
Wagener, T. and McIntyre, N.: Tools for teaching hydrological and environmental modeling, Computers in Education Journal, 17, 16–26, 2007.
Special issue