Articles | Volume 29, issue 13
https://doi.org/10.5194/hess-29-2997-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-2997-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Self-potential signals related to tree transpiration in a Mediterranean climate
Kaiyan Hu
Hubei Subsurface Multiscale Image Key Laboratory, School of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China
Bertille Loiseau
Sorbonne Université, CNRS, EPHE, UMR 7619 METIS, 75005 Paris, France
Université de Montpellier, UMR 5151 HSM (CNRS/UM/IRD), Montpellier, France
Simon D. Carrière
Sorbonne Université, CNRS, EPHE, UMR 7619 METIS, 75005 Paris, France
Université de Montpellier, UMR 5151 HSM (CNRS/UM/IRD), Montpellier, France
Nolwenn Lesparre
Université de Strasbourg, CNRS, EOST, ENGEES, ITES UMR 7063, 67000 Strasbourg, France
Cédric Champollion
Université de Montpellier, UMR 5243 GM (CNRS/UM/UA), Montpellier, France
Nicolas K. Martin-StPaul
INRAE, URFM, Domaine Saint Paul, INRAE Centre de Recherche PACA, Domaine Saint-Paul, France
Niklas Linde
Institute of Earth Sciences, University of Lausanne, Lausanne, Switzerland
Sorbonne Université, CNRS, EPHE, UMR 7619 METIS, 75005 Paris, France
Related authors
No articles found.
Jean Chéry, Michel Peyret, Cedric Champollion, and Bijan Mohammadi
EGUsphere, https://doi.org/10.5194/egusphere-2025-3421, https://doi.org/10.5194/egusphere-2025-3421, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
While early scientists believed forests attract rain, later research provided conflicting views, and modern climate models remain inconclusive on natural forests' role in regional pluviometry. Using a parsimony model, we show that continental forests strongly enhance pluviometry if they are connected to underground aquifers. We conclude that natural afforestation should be an efficient way to reactivate precipitation and aquifers recharge.
Orsolya Fülöp, Naoise Nunan, Mamadou Gueye, and Damien Jougnot
EGUsphere, https://doi.org/10.5194/egusphere-2025-1730, https://doi.org/10.5194/egusphere-2025-1730, 2025
Short summary
Short summary
Soil microorganisms exist in a highly structured and variably connected environment, in which they play a critical role in organic matter dynamics. To investigate the relationship between soil respiration and the connectivity of the soil pore water phase, we analysed the use of electrical conductivity as a proxy for soil respiration. Our results show that there were non-linear relationships between the two variables, thereby opening up a new approach to better understand soil respiration.
Tanguy Postic, François de Coligny, Isabelle Chuine, Louis Devresse, Daniel Berveiller, Hervé Cochard, Matthias Cuntz, Nicolas Delpierre, Émilie Joetzjer, Jean-Marc Limousin, Jean-Marc Ourcival, François Pimont, Julien Ruffault, Guillaume Simioni, Nicolas K. Martin-StPaul, and Xavier Morin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2110, https://doi.org/10.5194/egusphere-2025-2110, 2025
Short summary
Short summary
PHOREAU is a forest dynamic model that links plant traits with water use, growth, and climate responses to explore how species diversity affects productivity and resilience. Validated across European forests, PHOREAU simulates how tree communities function under drought and warming. Our findings support the use of trait-based modeling to guide forest adaptation strategies under future climate scenarios.
Arsène Druel, Julien Ruffault, Hendrik Davi, André Chanzy, Olivier Marloie, Miquel De Cáceres, Albert Olioso, Florent Mouillot, Christophe François, Kamel Soudani, and Nicolas K. Martin-StPaul
Biogeosciences, 22, 1–18, https://doi.org/10.5194/bg-22-1-2025, https://doi.org/10.5194/bg-22-1-2025, 2025
Short summary
Short summary
Accurate radiation data are essential for understanding ecosystem functions and dynamics. Traditional large-scale data lack the precision needed for complex terrain. This study introduces a new model, which accounts for sub-daily direct and diffuse radiation effects caused by terrain features, to enhance the radiation data resolution using elevation maps. Tested on a mountainous area, this method significantly improved radiation estimates, benefiting predictions of forest functions.
Marco M. Lehmann, Josie Geris, Ilja van Meerveld, Daniele Penna, Youri Rothfuss, Matteo Verdone, Pertti Ala-Aho, Matyas Arvai, Alise Babre, Philippe Balandier, Fabian Bernhard, Lukrecija Butorac, Simon Damien Carrière, Natalie C. Ceperley, Zuosinan Chen, Alicia Correa, Haoyu Diao, David Dubbert, Maren Dubbert, Fabio Ercoli, Marius G. Floriancic, Teresa E. Gimeno, Damien Gounelle, Frank Hagedorn, Christophe Hissler, Frédéric Huneau, Alberto Iraheta, Tamara Jakovljević, Nerantzis Kazakis, Zoltan Kern, Karl Knaebel, Johannes Kobler, Jiří Kocum, Charlotte Koeber, Gerbrand Koren, Angelika Kübert, Dawid Kupka, Samuel Le Gall, Aleksi Lehtonen, Thomas Leydier, Philippe Malagoli, Francesca Sofia Manca di Villahermosa, Chiara Marchina, Núria Martínez-Carreras, Nicolas Martin-StPaul, Hannu Marttila, Aline Meyer Oliveira, Gaël Monvoisin, Natalie Orlowski, Kadi Palmik-Das, Aurel Persoiu, Andrei Popa, Egor Prikaziuk, Cécile Quantin, Katja T. Rinne-Garmston, Clara Rohde, Martin Sanda, Matthias Saurer, Daniel Schulz, Michael Paul Stockinger, Christine Stumpp, Jean-Stéphane Venisse, Lukas Vlcek, Stylianos Voudouris, Björn Weeser, Mark E. Wilkinson, Giulia Zuecco, and Katrin Meusburger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-409, https://doi.org/10.5194/essd-2024-409, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
This study describes a unique large-scale isotope dataset to study water dynamics in European forests. Researchers collected data from 40 beech and spruce forest sites in spring and summer 2023, using a standardized method to ensure consistency. The results show that water sources for trees change between seasons and vary by tree species. This large dataset offers valuable information for understanding plant water use, improving ecohydrological models, and mapping water cycles across Europe.
Nolwenn Lesparre, Sylvain Pasquet, and Philippe Ackerer
Hydrol. Earth Syst. Sci., 28, 873–897, https://doi.org/10.5194/hess-28-873-2024, https://doi.org/10.5194/hess-28-873-2024, 2024
Short summary
Short summary
Vertical maps of seismic velocity reflect variations of subsurface porosity. We use such images to design the geometry of subsurface compartments delimited by velocity thresholds. The obtained patterns are inserted into a hydrogeological model to test the influence of random geometries, velocity thresholds, and hydraulic parameters on data estimated from the model: the depth of the groundwater and magnetic resonance sounding is a geophysical method sensitive to subsurface water content.
Rohianuu Moua, Nolwenn Lesparre, Jean-François Girard, Benjamin Belfort, François Lehmann, and Anis Younes
Hydrol. Earth Syst. Sci., 27, 4317–4334, https://doi.org/10.5194/hess-27-4317-2023, https://doi.org/10.5194/hess-27-4317-2023, 2023
Short summary
Short summary
Hydraulic properties of soil include the ability of water to move through the soil and the amount of water that is held in the soil in dry or wet conditions. In this work, we further investigate a protocol used to evaluate such hydraulic properties. We propose a modified version of the protocol, with which we show (i) how the data obtained with this protocol are influenced by the soil hydraulic properties and (ii) how one can use it to estimate these properties.
Miquel De Cáceres, Roberto Molowny-Horas, Antoine Cabon, Jordi Martínez-Vilalta, Maurizio Mencuccini, Raúl García-Valdés, Daniel Nadal-Sala, Santiago Sabaté, Nicolas Martin-StPaul, Xavier Morin, Francesco D'Adamo, Enric Batllori, and Aitor Améztegui
Geosci. Model Dev., 16, 3165–3201, https://doi.org/10.5194/gmd-16-3165-2023, https://doi.org/10.5194/gmd-16-3165-2023, 2023
Short summary
Short summary
Regional-level applications of dynamic vegetation models are challenging because they need to accommodate the variation in plant functional diversity. This can be done by estimating parameters from available plant trait databases while adopting alternative solutions for missing data. Here we present the design, parameterization and evaluation of MEDFATE (version 2.9.3), a novel model of forest dynamics for its application over a region in the western Mediterranean Basin.
Audrey Bonnelye, Pierre Dick, Marco Bohnhoff, Fabrice Cotton, Rüdiger Giese, Jan Henninges, Damien Jougnot, Grzegorz Kwiatek, and Stefan Lüth
Adv. Geosci., 58, 177–188, https://doi.org/10.5194/adgeo-58-177-2023, https://doi.org/10.5194/adgeo-58-177-2023, 2023
Short summary
Short summary
The overall objective of the CHENILLE project is to performed an in-situ experiment in the Underground Reaserch Laboratory of Tournemire (Southern France) consisting of hydraulic and thermal stimulation of a fault zone. This experiment is monitored with extensive geophysical means (passive seismic, active seismic, distributed fiber optics for temperature measurements) in order to unravel the physical processes taking place during the stimulation for a better charactization of fault zones.
Flore Rembert, Marie Léger, Damien Jougnot, and Linda Luquot
Hydrol. Earth Syst. Sci., 27, 417–430, https://doi.org/10.5194/hess-27-417-2023, https://doi.org/10.5194/hess-27-417-2023, 2023
Short summary
Short summary
The formation of underground cavities, called karsts, resulting from carbonate rock dissolution, is at stake in many environmental and societal issues, notably through risk management and the administration and quality of drinking water resources. Facing natural environment complexity, we propose a laboratory study combining hydro-chemical monitoring, 3D imaging, and non-invasive observation of electrical properties, showing the benefits of geoelectrical monitoring to map karst formation.
Thomas Hermans, Pascal Goderniaux, Damien Jougnot, Jan H. Fleckenstein, Philip Brunner, Frédéric Nguyen, Niklas Linde, Johan Alexander Huisman, Olivier Bour, Jorge Lopez Alvis, Richard Hoffmann, Andrea Palacios, Anne-Karin Cooke, Álvaro Pardo-Álvarez, Lara Blazevic, Behzad Pouladi, Peleg Haruzi, Alejandro Fernandez Visentini, Guilherme E. H. Nogueira, Joel Tirado-Conde, Majken C. Looms, Meruyert Kenshilikova, Philippe Davy, and Tanguy Le Borgne
Hydrol. Earth Syst. Sci., 27, 255–287, https://doi.org/10.5194/hess-27-255-2023, https://doi.org/10.5194/hess-27-255-2023, 2023
Short summary
Short summary
Although invisible, groundwater plays an essential role for society as a source of drinking water or for ecosystems but is also facing important challenges in terms of contamination. Characterizing groundwater reservoirs with their spatial heterogeneity and their temporal evolution is therefore crucial for their sustainable management. In this paper, we review some important challenges and recent innovations in imaging and modeling the 4D nature of the hydrogeological systems.
Julien Ruffault, François Pimont, Hervé Cochard, Jean-Luc Dupuy, and Nicolas Martin-StPaul
Geosci. Model Dev., 15, 5593–5626, https://doi.org/10.5194/gmd-15-5593-2022, https://doi.org/10.5194/gmd-15-5593-2022, 2022
Short summary
Short summary
A widespread increase in tree mortality has been observed around the globe, and this trend is likely to continue because of ongoing climate change. Here we present SurEau-Ecos, a trait-based plant hydraulic model to predict tree desiccation and mortality. SurEau-Ecos can help determine the areas and ecosystems that are most vulnerable to drying conditions.
Anne-Karin Cooke, Cédric Champollion, and Nicolas Le Moigne
Geosci. Instrum. Method. Data Syst., 10, 65–79, https://doi.org/10.5194/gi-10-65-2021, https://doi.org/10.5194/gi-10-65-2021, 2021
Short summary
Short summary
Gravimetry studies the variations of the Earth’s gravity field which can be linked to mass changes studied in various disciplines of the Earth sciences. The gravitational attraction of the Earth is measured with gravimeters. Quantum gravimeters allow for continuous, high-frequency absolute gravity monitoring while remaining user-friendly and transportable. We assess the capacity of the AQG#B01, developed by Muquans, as a field gravimeter for hydrogeophysical applications.
Séverine Liora Furst, Samuel Doucet, Philippe Vernant, Cédric Champollion, and Jean-Louis Carme
Solid Earth, 12, 15–34, https://doi.org/10.5194/se-12-15-2021, https://doi.org/10.5194/se-12-15-2021, 2021
Short summary
Short summary
We develop a two-step methodology combining multiple surface deformation measurements above a salt extraction site (Vauvert, France) in order to overcome the difference in resolution and accuracy. Using this 3-D velocity field, we develop a model to determine the kinematics of the salt layer. The model shows a collapse of the salt layer beneath the exploitation. It also identifies a salt flow from the deepest and most external part of the salt layer towards the center of the exploitation.
Cited articles
Al Mahrouqi, D., Vinogradov, J., and Jackson, M. D.: Zeta potential of artificial and natural calcite in aqueous solution, Adv. Colloid Interfac., 240, 60–76, https://doi.org/10.1016/j.cis.2016.12.006, 2017.
Alfieri, J. G., Kustas, W. P., and Anderson, M. C.: A brief overview of approaches for measuring evapotranspiration, Agroclimatology: Linking Agriculture to Climate, 60, 109–127, https://doi.org/10.2134/agronmonogr60.2016.0034, 2018.
Anderegg, W. R., Klein, T., Bartlett, M., Sack, L., Pellegrini, A. F., Choat, B., and Jansen, S.: Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe, P. Natl. Acad. Sci. USA, 113, 5024–5029, https://doi.org/10.1073/pnas.1525678113, 2016.
Bachofen, C., Poyatos, R., Flo, V., Martínez-Vilalta, J., Mencuccini, M., Granda, V., and Grossiord, C.: Stand structure of Central European forests matters more than climate for transpiration sensitivity to VPD, J. Appl. Ecol., 60, 886–897, https://doi.org/10.1111/1365-2664.14383, 2023.
Barlow, P. W.: Moon and cosmos: plant growth and plant bioelectricity, in: Plant Electrophysiology: Signaling and Responses, edited by: Volkov, A. G., Springer, Berlin, Heidelberg, Germany, 249–280, https://doi.org/10.1007/978-3-642-29110-4_10, 249–280, 2012.
Belashev, B.: Monitoring the electrical potential difference of pine tree, BIO Web Conf., 93, 01015, https://doi.org/10.1051/bioconf/20249301015, 2024.
Brodribb, T. J. and Hill, R. S.: Increases in water potential gradient reduce xylem conductivity in whole plants. Evidence from a low-pressure conductivity method, Plant Physiol., 123, 1021–1028, https://doi.org/10.1104/pp.123.3.1021, 2000.
Cai, G., Ahmed, M. A., Abdalla, M., and Carminati, A.: Root hydraulic phenotypes impacting water uptake in drying soils, Plant Cell Environ., 45, 650–663, https://doi.org/10.1111/pce.14259, 2022.
Carminati, A. and Javaux, M.: Soil rather than xylem vulnerability controls stomatal response to drought, Trends Plant Sci., 25, 868–880, https://doi.org/10.1016/j.tplants.2020.04.003, 2020.
Carrière, S., Chalikakis, K., Danquigny, C., Davi, H., Mazzilli, N., Ollivier, C., and Emblanch, C.: The role of porous matrix in water flow regulation within a karst unsaturated zone: an integrated hydrogeophysical approach, Hydrogeol. J., 24, 1905–1918, https://doi.org/10.1007/s10040-016-1425-8, 2016.
Carrière, S. D., Ruffault, J., Pimont, F., Doussan, C., Simioni, G., Chalikakis, K., Limousin, J.-M., Scotti, I., Courdier, F., Cakpo, C.-B., Davi, H., and Martin-StPaul, N. K.: Impact of local soil and subsoil conditions on inter-individual variations in tree responses to drought: insights from Electrical Resistivity Tomography, Sci. Total Environ., 698, 134247, https://doi.org/10.1016/j.scitotenv.2019.134247, 2020a.
Carrière, S. D., Ruffault, J., Cakpo, C. B., Olioso, A., Doussan, C., Simioni, G., Chalikakis, K., Patris, N., Davi, H., and MartinSt-Paul, N. K.: Intra-specific variability in deep water extraction between trees growing on a Mediterranean karst, J. Hydrol., 590, 125428, https://doi.org/10.1016/j.jhydrol.2020.125428, 2020b.
Carrière, S. D., Martin-StPaul, N. K., Doussan, C., Courbet, F., Davi, H., and Simioni, G.: Electromagnetic induction is a fast and non-destructive approach to estimate the influence of subsurface heterogeneity on forest canopy structure, Water, 13, 3218, https://doi.org/10.3390/w13223218, 2021a.
Carrière, S. D., Loiseau, B., Champollion, C., Ollivier, C., Martin-StPaul, N. K., Lesparre, N., Olioso, A., Hinderer, J., and Jougnot, D.: First evidence of correlation between evapotranspiration and gravity at a daily time scale from two vertically spaced superconducting gravimeters, Geophys. Res. Lett., 48, e2021GL096579, https://doi.org/10.1029/2021GL096579, 2021b.
Damour, G., Simonneau, T., Cochard, H., and Urban, L.: An overview of models of stomatal conductance at the leaf level, Plant Cell Environ., 33, 1419–1438, https://doi.org/10.1111/j.1365-3040.2010.02181.x, 2010.
Davies, E.: Electrical Signals in Plants: Facts and Hypotheses, in: Plant Electrophysiology: Theory and Methods, edited by: Volkov, A. G., Springer, Berlin, Heidelberg, Germany, https://doi.org/10.1007/978-3-540-37843-3_17, 407–422, 2006.
Dix, M. J. and Aubrey, D. P.: Recalibrating best practices, challenges, and limitations of estimating tree transpiration via sap flow, Current Forestry Reports, 7, 31–37, https://doi.org/10.1007/s40725-021-00134-x, 2021.
Do, F. and Rocheteau, A.: Influence of natural temperature gradients on measurements of xylem sap flow with thermal dissipation probes. 1. Field observations and possible remedies, Tree Physiol., 22, 641–648, https://doi.org/10.1093/treephys/22.9.641, 2002.
Dragomiretskiy, K. and Zosso, D.: Variational mode decomposition, IEEE T. Signal Proces., 62, 531–544, https://doi.org/10.1109/TSP.2013.2288675, 2014.
Dumont, M. and Singha, K.: Geophysics as a hypothesis-testing tool for critical zone hydrogeology, WIREs Water, 11, e1732, https://doi.org/10.1002/wat2.1732, 2024.
Fensom, D. S.: The bio-electric potentials of plants and their functional significance: I. An electrokinetic theory of transport, Can. J. Bot., 35, 573–582, https://doi.org/10.1139/b57-047, 1957.
Fensom, D. S.: The bioelectric potentials of plants and their functional significance: V. Some daily and seasonal changes in the electrical potential and resistance of living trees, Can. J. Bot., 41, 831–851, https://doi.org/10.1139/b63-068, 1963.
Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., McCabe, M. F., Baldocchi, D., Townsend, P. A., Kilic, A., Tu, K., Miralles, D. D., Perret, J., Lagouarde, J.-P., Waliser, D., Purdy, A. J., French, A., Schimel, D., Famiglietti, J. S., Stephens, G., and Wood, E. F.: The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources, Water Resour. Res., 53, 2618–2626, https://doi.org/10.1002/2016WR020175, 2017.
Flo, V., Martinez-Vilalta, J., Steppe, K., Schuldt, B., and Poyatos, R.: A synthesis of bias and uncertainty in sap flow methods, Agr. Forest Meteorol., 271, 362–374, https://doi.org/10.1016/j.agrformet.2019.03.012, 2019.
Fores, B., Champollion, C., Mainsant, G., Albaric, J., and Fort, A.: Monitoring saturation changes with ambient seismic noise and gravimetry in a karst environment, Vadose Zone J., 17, 1–12, https://doi.org/10.2136/vzj2017.09.0163, 2018.
Fromm, J. and Lautner, S.: Electrical signals and their physiological significance in plants, Plant Cell Environ., 30, 249–257, https://doi.org/10.1111/j.1365-3040.2006.01614.x, 2007.
Fromm, J. and Lautner, S.: Generation, transmission, and physiological effects of electrical signals in plants, in: Plant Electrophysiology: Signaling and Responses, edited by: Volkov, A. G., Springer, Berlin, Heidelberg, Germany, https://doi.org/10.1007/978-3-642-29110-4_8, 207–232, 2012.
Gibert, D., Le Mouël, J. L., Lambs, L., Nicollin, F., and Perrier, F.: Sap flow and daily electric potential variations in a tree trunk, Plant Sci., 171, 572–584, https://doi.org/10.1016/j.plantsci.2006.06.012, 2006.
Gielen, B., de Beeck, M. O., Loustau, D., Ceulemans, R., Jordan, A., and Papale, D.: Integrated carbon observation system (icos): An infrastructure to monitor the european greenhouse gas balance, in: Terrestrial Ecosystem Research Infrastructures, CRC Press, 505–520, ISBN 9781315368252, 2017.
Gil, P. and Vargas, A. I.: Stem electrical potential variations may aid in the early detection of drought stress in fruit-bearing trees, Int. J. Agric. Nat. Resour., 50, 116–129, https://doi.org/10.7764/ijanr.v50i3.2552, 2023.
Gindl, W., Löppert, H. G., and Wimmer, R.: Relationship between streaming potential and sap velocity in Salix Alba L., Phyton-Ann. Rei Bot., 39, 217–224, 1999.
Girard, F., Vennetier, M., Guibal, F., Corona, C., Ouarmim, S., and Herrero, A.: Pinus halepensis Mill. crown development and fruiting declined with repeated drought in Mediterranean France, Eur. J. For. Res., 131, 919–931, https://doi.org/10.1007/s10342-011-0565-6, 2012.
Goulden, M. L. and Field, C. B.: Three methods for monitoring the gas exchange of individual tree canopies: ventilated-chamber, sap-flow and Penman-Monteith measurements on evergreen oaks, Funct. Ecol., 125–135, https://doi.org/10.2307/2390121, 1994.
Granier, A.: Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements, Tree Physiol., 3, 309–320, 1987.
Granier, A., Biron, P., Bréda, N., Pontailler, J. Y., and Saugier, B.: Transpiration of trees and forest stands: Short and long-term monitoring using sapflow methods, Glob. Change Biol., 2, 265–274, https://doi.org/10.1111/j.1365-2486.1996.tb00078.x, 1996.
Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlin. Processes Geophys., 11, 561–566, https://doi.org/10.5194/npg-11-561-2004, 2004.
Guarracino, L. and Jougnot, D.: A physically based analytical model to describe effective excess charge for streaming potential generation in water saturated porous media, J. Geophys. Res.-Sol. Ea., 123, 52–65, https://doi.org/10.1002/2017JB014873, 2018.
Hao, Z., Wang, G., Li, W., Zhang, J., and Kan, J.: Effects of electrode material on the voltage of a tree-based energy generator, PLOS ONE, 10, e0136639, https://doi.org/10.1371/journal.pone.0136639, 2015.
Harmon, R. E., Barnard, H. R., Day-Lewis, F. D., Mao, D., and Singha K.: Exploring environmental factors that drive diel variations in tree water storage using wavelet analysis, Front. Water, 3, 682285, https://doi.org/10.3389/frwa.2021.682285, 2021.
Hermans, T., Goderniaux, P., Jougnot, D., Fleckenstein, J. H., Brunner, P., Nguyen, F., Linde, N., Huisman, J. A., Bour, O., Lopez Alvis, J., Hoffmann, R., Palacios, A., Cooke, A.-K., Pardo-Álvarez, Á., Blazevic, L., Pouladi, B., Haruzi, P., Fernandez Visentini, A., Nogueira, G. E. H., Tirado-Conde, J., Looms, M. C., Kenshilikova, M., Davy, P., and Le Borgne, T.: Advancing measurements and representations of subsurface heterogeneity and dynamic processes: towards 4D hydrogeology, Hydrol. Earth Syst. Sci., 27, 255–287, https://doi.org/10.5194/hess-27-255-2023, 2023.
Hedrich, R. and Schroeder, J. I.: The physiology of ion channels and electrogenic pumps in higher plants, Annu. Rev. Plant Biol., 40, 539–569, https://doi.org/10.1146/annurev.pp.40.060189.002543, 1989.
Hölttä, T., Vesala, T., Sevanto, S., Perämäki, M., and Nikinmaa, E.: Modeling xylem and phloem water flows in trees according to cohesion theory and Münch hypothesis, Trees, 20, 67–78, https://doi.org/10.1007/s00468-005-0014-6, 2006.
H+: Network of hydrogeological research sites, https://hplus.ore.fr/, last access: 26 June 2025.
Hu, K., Jougnot, D., Huang, Q., Looms, M. C., and Linde, N.: Advancing quantitative understanding of self-potential signatures in the critical zone through long-term monitoring, J. Hydrol., 585, 124771, https://doi.org/10.1016/j.jhydrol.2020.124771, 2020.
Hu, K., Loiseau, B., Carrière, S., Lesparre, N., Champollion, C., Martin-StPaul, N., Linde, N., and Jougnot, D.: Dataset for “Self-potential signals related to tree transpiration in a Mediterranean climate”, Zenodo [data set], https://doi.org/10.5281/zenodo.12662288, 2024.
Hu, K.: Illustration of a tree, BioRender, https://BioRender.com/kixmyvj (last access: 11 July 2025), 2025a.
Hu, K.: Base layout for vertically extracted xylem and phloem, BioRender, https://BioRender.com/0qwjmt9 (last access: 11 July 2025), 2025b.
Hu, K.: Cellulose structure, https://BioRender.com/76osafb (last access: 11 July 2025), 2025c.
Hubbard, C. G., West, L. J., Morris, K., Kulessa, B., Brookshaw, D., Lloyd, J. R., and Shaw, S.: In search of experimental evidence for the biogeobattery, J. Geophys. Res.-Biogeo., 116, G04018, https://doi.org/10.1029/2011JG001713, 2011.
Hubbe, M. A.: Sensing the electrokinetic potential of cellulosic fiber surfaces, BioResources, 1, 116–149, 2006.
Islam, M., Janssen, D., Chao, D., Gu, J., Eisen, D., and Choa, F.: Electricity derived from plants, Journal of Energy and Power Engineering, 11, 614–619, 2017.
Jacob, T., Bayer, R., Chery, J., Jourde, H., Le Moigne, N., Boy, J. P., Hinderer, J., Luck, B., and Brunet, P.: Absolute gravity monitoring of water storage variation in a karst aquifer on the Larzac plateau (Southern France), J. Hydrol., 359, 105–117, https://doi.org/10.1016/j.jhydrol.2008.06.020, 2008.
Jardani, A., Revil, A., Boleve, A., Crespy, A., Dupont, J. P., Barrash, W., and Malama, B.: Tomography of the Darcy velocity from self-potential measurements, Geophys. Res. Lett., 34, L24403, https://doi.org/10.1029/2007GL031907, 2007.
Jasechko, S., Sharp, Z. D., Gibson, J. J., Birks, S. J., Yi, Y., and Fawcett, P. J.: Terrestrial water fluxes dominated by transpiration, Nature, 496, 347–350, https://doi.org/10.1038/nature11983, 2013.
Jayawickreme, D. H., Jobbágy, E. G., and Jackson, R. B.: Geophysical subsurface imaging for ecological applications, New Phytol., 201, 1170–1175, https://doi.org/10.1111/nph.12619, 2014.
Jougnot, D. and Linde, N.: Self-potentials in partially saturated media: The importance of explicit modeling of electrode effects, Vadose Zone J., 12, 1–21, https://doi.org/10.2136/vzj2012.0169, 2013.
Jougnot, D., Linde, N., Revil, A., and Doussan, C.: Derivation of soil-specific streaming potential electrical parameters from hydrodynamic characteristics of partially saturated soils, Vadose Zone J., 11, https://doi.org/10.2136/vzj2011.0086, 2012.
Jougnot, D., Linde, N., Haarder, E. B., and Looms, M. C.: Monitoring of saline tracer movement with vertically distributed self-potential measurements at the HOBE agricultural test site, Voulund, Denmark, J. Hydrol., 521, 314–327, https://doi.org/10.1016/j.jhydrol.2014.11.041, 2015.
Jougnot, D., Mendieta, A., Leroy, P., and Maineult, A.: Exploring the effect of the pore size distribution on the streaming potential generation in saturated porous media, insight from pore network simulations, J. Geophys. Res.-Sol. Ea., 124, 5315–5335, https://doi.org/10.1029/2018JB017240, 2019.
Jougnot, D., Roubinet, D., Guarracino, L., and Maineult, A.: Modeling Streaming Potential in Porous and Fractured Media, Description and Benefits of the Effective Excess Charge Density Approach, in: Advances in Modeling and Interpretation in Near Surface Geophysics, edited by: Biswas, A. and Sharma, S., Springer, Cham, Switzerland, https://doi.org/10.1007/978-3-030-28909-6_4, 61–96, 2020.
Kim, H. K., Park, J., and Hwang, I.: Investigating water transport through the xylem network in vascular plants, J. Exp. Bot., 65, 1895–1904, https://doi.org/10.1093/jxb/eru075, 2014.
Kinraide, T. B., Yermiyahu, U., and Rytwo, G.: Computation of surface electrical potentials of plant cell membranes: correspondence to published zeta potentials from diverse plant sources, Plant Physiol., 118, 505–512, https://doi.org/10.1104/pp.118.2.505, 1998.
Koppán, A., Fenyvesi, A., Szarka, L., and Westergom, V.: Measurement of electric potential difference on trees, Acta Biol. Szeged., 46, 37–38, https://abs.bibl.u-szeged.hu/index.php/abs/article/view/2232 (last access: 26 June 2025), 2002.
Kormiltsev, V. V., Ratushnyak, A. N., and Shapiro, V. A.: Three-dimensional modeling of electric and magnetic fields induced by the fluid flow movement in porous media, Phys. Earth Planet. In., 105, 109–118, https://doi.org/10.1016/S0031-9201(97)00116-7, 1998.
Kröber, W., Zhang, S., Ehmig, M., and Bruelheide, H.: Linking xylem hydraulic conductivity and vulnerability to the leaf economics spectrum – a cross-species study of 39 evergreen and deciduous broadleaved subtropical tree species, PLOS ONE, 9, e109211, https://doi.org/10.1371/journal.pone.0109211, 2014.
Kuang, X., Liu, J., Scanlon, B. R., Jiao, J. J., Jasechko, S., Lancia, M., Biskaborn, B. K., Wada, Y., Li, H., Zeng, Z., Guo, Z., Yao, Y., Gleeson, T., Nicot, J.-P., Luo, X., Zou, Y., and Zheng, C.: The changing nature of groundwater in the global water cycle, Science, 383, eadf0630, https://doi.org/10.1126/science.adf0630, 2024.
Kume, T., Onozawa, Y., Komatsu, H., Tsuruta, K., Shinohara, Y., Umebayashi, T., and Otsuki, K.: Stand-scale transpiration estimates in a Moso bamboo forest: (I) Applicability of sap flux measurements, Forest Ecol. Manag., 260, 1287–1294, https://doi.org/10.1016/j.foreco.2010.07.012, 2010.
Kunert, N., Aparecido, L. M. T., Wolff, S., Higuchi, N., dos Santos, J., de Araujo, A. C., and Trumbore, S.: A revised hydrological model for the Central Amazon: The importance of emergent canopy trees in the forest water budget, Agr. Forest Meteorol., 239, 47–57, https://doi.org/10.1016/j.agrformet.2017.03.002, 2017.
Kurpius, M. R., Panek, J. A., Nikolov, N. T., McKay, M., and Goldstein, A. H.: Partitioning of water flux in a Sierra Nevada ponderosa pine plantation, Agr. Forest Meteorol., 117, 173–192, https://doi.org/10.1016/S0168-1923(03)00062-5, 2003.
Le Mouël, J. L., Gibert, D., and Poirier, J. P.: On transient electric potential variations in a standing tree and atmospheric electricity, CR Géosci., 342, 95–99, https://doi.org/10.1016/j.crte.2009.12.001, 2010.
Le Mouël, J. L., Gibert, D., Boulé, J. B., Zuddas, P., Courtillot, V., Lopes, F., Gèze, M., and Maineult, A.: On the effect of the luni-solar gravitational attraction on trees, arXiv [preprint], https://doi.org/10.48550/arXiv.2402.07766, 2024.
Leroy, P., Devau, N., Revil, A., and Bizi, M.: Influence of surface conductivity on the apparent zeta potential of amorphous silica nanoparticles, J. Colloid Interf. Sci., 410, 81–93, https://doi.org/10.1016/j.jcis.2013.08.012, 2013.
Linde, N., Revil, A., Boleve, A., Dagès, C., Castermant, J., Suski, B., and Voltz, M.: Estimation of the water table throughout a catchment using self-potential and piezometric data in a Bayesian framework, J. Hydrol., 334, 88–98. https://doi.org/10.1016/j.jhydrol.2006.09.027, 2007.
Linde, N., Doetsch, J., Jougnot, D., Genoni, O., Dürst, Y., Minsley, B. J., Vogt, T., Pasquale, N., and Luster, J.: Self-potential investigations of a gravel bar in a restored river corridor, Hydrol. Earth Syst. Sci., 15, 729–742, https://doi.org/10.5194/hess-15-729-2011, 2011.
Loiseau, B., Carrière, S. D., Jougnot, D., Singha, K., Mary, B., Delpierre, N., Guérin, R., and Martin-StPaul, N. K.: The geophysical toolbox applied to forest ecosystems–A review, Sci. Total Environ., 899, 165503, https://doi.org/10.1016/j.scitotenv.2023.165503, 2023.
López-Portillo, J., Ewers, F. W., and Angeles, G.: Sap salinity effects on xylem conductivity in two mangrove species, Plant Cell Environ., 28, 1285–1292, https://doi.org/10.1111/j.1365-3040.2005.01366.x, 2005.
Losso, A., Gauthey, A., Choat, B., and Mayr, S.: Seasonal variation in the xylem sap composition of six Australian trees and shrubs, AoB Plants, 15, plad064, https://doi.org/10.1093/aobpla/plad064, 2023.
Love, C. J., Zhang, S., and Mershin, A.: Source of sustained voltage difference between the xylem of a potted Ficus benjamina tree and its soil, PloS One, 3, e2963, https://doi.org/10.1371/journal.pone.0002963, 2008.
Luo, Z., Deng, Z., Singha, K., Zhang, X., Liu, N., Zhou, Y., He, X., and Guan, H.: Temporal and spatial variation in water content within living tree stems determined by electrical resistivity tomography, Agr. Forest Meteorol., 291, 108058, https://doi.org/10.1016/j.agrformet.2020.108058, 2020.
McCulloh, K. A., Winter, K., Meinzer, F. C., Garcia, M., Aranda, J., and Lachenbruch, B.: A comparison of daily water use estimates derived from constant-heat sap-flow probe values and gravimetric measurements in pot-grown saplings, Tree Physiol., 27, 1355–1360, https://doi.org/10.1093/treephys/27.9.1355, 2007.
McDonald, K. C., Zimmermann, R., and Kimball, J. S.: Diurnal and spatial variation of xylem dielectric constant in Norway spruce (Picea abies [L.] Karst.) as related to microclimate, xylem sap flow, and xylem chemistry, IEEE T. Geosci. Remote, 40, 2063–2082, https://doi.org/10.1109/TGRS.2002.803737, 2002.
Miller, A. J. and Wells, D. M.: Electrochemical Methods and Measuring Transmembrane Ion Gradients, in: Plant Electrophysiology: Theory and Methods, edited by: Volkov, A. G., Springer, Berlin, Heidelberg, Germany, https://doi.org/10.1007/978-3-540-37843-3_2, 15–34, 2006.
Moreno, M., Simioni, G., Cailleret, M., Ruffault, J., Badel, E., Carrière, S., Davi, H., Gavinet, J., Huc, R., Limousin, J.-M., Marloie, O., Martin, L., Rodríguez-Calcerrada, J., Vennetier, M., and Martin-StPaul, N.: Consistently lower sap velocity and growth over nine years of rainfall exclusion in a Mediterranean mixed pine-oak forest, Agr. Forest Meteorol., 308, 108472, https://doi.org/10.1016/j.agrformet.2021.108472, 2021.
Mottl, O., Flantua, S. G., Bhatta, K. P., Felde, V. A., Giesecke, T., Goring, S., Grimm, E. C., Haberle, S., Hooghiemstra, H., Ivory, S., Kuneš, P., Wolters, S., Seddon, A. W. R., and Williams, J. W.: Global acceleration in rates of vegetation change over the past 18,000 years, Science, 372, 860–864, https://doi.org/10.1126/science.abg1685, 2021.
Nardini A., Salleo S., and Jansen S.: More than just a vulnerable pipeline: xylem physiology in the light of ion-mediated regulation of plant water transport, J. Exp. Bot., 62, 4701–4718, https://doi.org/10.1093/jxb/err208, 2011.
Nobel, P. S. (Ed.): Physicochemical and Environmental Plant Physiology, Academic Press, ISBN 978-0-12-374143-1, 2009.
Nolan, C., Overpeck, J. T., Allen, J. R., Anderson, P. M., Betancourt, J. L., Binney, H. A., Brewer, S., Bush, M. B., Chase, B. M., Cheddadi, R., Djamali, M., Dodson, J., Edwards, M. E., Gosling, W. D., Haberle, S., Hotchkiss, S. C., Huntley, B., Ivory, S. J., Kershaw, A. P., Kim, S. H., Latorre, C., Leydet, M., Lezine, A. M., Liu, K. B., Liu, Y., Lozhkin, A. V., McGlone, M. S., Marchant, R. A., Momohara, A., Moreno, P. I., Muller, S., Otto-Bliesner, B. L., Shen, C.; Stevenson, J., Takahara, H., Tarasov, P. E., Tipton, J., Vincens, A., Weng, C., Xu, Q., Zheng, Z., and Jackson, S. T.: Past and future global transformation of terrestrial ecosystems under climate change, Science, 361, 920–923, https://doi.org/10.1126/science.aan5360, 2018.
Oki, T. and Kanae, S.: Global hydrological cycles and world water resources, Science, 313, 1068–1072, https://doi.org/10.1126/science.1128845, 2006.
Ollivier, C., Olioso, A., Carrière, S. D., Boulet, G., Chalikakis, K., Chanzy, A., Charlier, J.-B., Combemale, D., Davi, H., Emblanch, C., Marloie, O., Martin-StPaul, N., Mazzilli, N., Simioni, G., and Weiss, M.: An evapotranspiration model driven by remote sensing data for assessing groundwater resource in karst watershed, Sci. Total Environ., 781, 146706, https://doi.org/10.1016/j.scitotenv.2021.146706, 2021.
Oliveras, I. and Llorens, P.: Medium-term sap flux monitoring in a Scots pine stand: analysis of the operability of the heat dissipation method for hydrological purposes, Tree Physiol., 21, 473–480, https://doi.org/10.1093/treephys/21.7.473, 2001.
Oyarce, P. and Gurovich, L.: Electrical signals in avocado trees: Responses to light and water availability conditions, Plant Signal. Behav., 5, 34–41, 2010.
OZCAR: French network of Critical Zone Observatories: Research and Applications, https://www.ozcar-ri.org/, last access: 26 June 2025.
Perrier, F. E., Petiau, G., Clerc, G., Bogorodsky, V., Erkul, E., Jouniaux, L., Lesmes, D., Mancnae, J., Meunier, J., Morgan, D., Nascimento, D., Oettinger, G., Schwarz, G., Toh, H., Valiant, M., Vozoff, K., and Yazici-Cakin, O.: A one-year systematic study of electrodes for long period measurements of the electric field in geophysical environments, J. Geomagn. Geoelectr., 49, 1677–1696, https://doi.org/10.5636/jgg.49.1677, 1997.
Petiau, G.: Second generation of lead-lead chloride electrodes for geophysical applications, Pure Appl. Geophys., 157, 357–382, https://doi.org/10.1007/s000240050004, 2000.
Poyatos, R., Granda, V., Molowny-Horas, R., Mencuccini, M., Steppe, K., and Martínez-Vilalta, J.: SAPFLUXNET: towards a global database of sap flow measurements, Tree Physiol., 36, 1449–1455, https://doi.org/10.1093/treephys/tpw110, 2016.
Pozdnyakov, A. I.: Bioelectric potentials in the soil-plant system, Eurasian Soil Sci.+, 46, 742–750, https://doi.org/10.1134/S1064229313070089, 2013.
Revil, A. and Jardani, A. (Eds.): The Self-potential Method: Theory and Applications in Environmental Geosciences, Cambridge University Press, ISBN 978-1-107-01927-0, 2013.
Revil, A., Pezard, P. A., and Glover, P. W. J.: Streaming potential in porous media: 1. Theory of the zeta potential, J. Geophys. Res.-Sol. Ea., 104, 20021–20031, https://doi.org/10.1029/1999JB900089, 1999.
Scanlon, T. M. and Kustas, W. P.: Partitioning evapotranspiration using an eddy covariance-based technique: Improved assessment of soil moisture and land–atmosphere exchange dynamics, Vadose Zone J., 11, vzj2012.0025, https://doi.org/10.2136/vzj2012.0025, 2012.
Schill, V., Hartung, W., Orthen, B., and Weisenseel, M. H.: The xylem sap of maple (Acer platanoides) trees–sap obtained by a novel method shows changes with season and height, J. Exp. Bot., 47, 123–133, https://doi.org/10.1093/jxb/47.1.123, 1996.
Schlesinger, W. H. and Jasechko, S.: Transpiration in the global water cycle, Agr. Forest Meteorol., 189, 115–117, https://doi.org/10.1016/j.agrformet.2014.01.011, 2014.
Simioni, G., Marie, G., Davi, H., Martin-St Paul, N., and Huc, R.: Natural forest dynamics have more influence than climate change on the net ecosystem production of a mixed Mediterranean forest, Ecol. Modell., 416, 108921, https://doi.org/10.1016/j.ecolmodel.2019.108921, 2020.
Smith, D. M. and Allen, S. J.: Measurement of sap flow in plant stems, J. Exp. Bot., 47, 1833–1844, 1996.
Spanswick, R. M.: Electrogenic pumps, in: Plant Electrophysiology: Theory and Methods, edited by: Volkov, A. G., Springer, Berlin, Heidelberg, Germany, https://doi.org/10.1007/978-3-540-37843-3_10, 221–246, 2006.
Sperry, J. S.: Evolution of water transport and xylem structure, Int. J. Plant Sci., 164, S115-S127, https://doi.org/10.1086/368398, 2003.
Tattar, T. A. and Blanchard, R. O.: Electrophysiological research in plant pathology, Annu. Rev. Phytopathol., 14, 309–325, https://doi.org/10.1146/annurev.py.14.090176.001521, 1976.
Torrence, C. and Compo, G. P.: A practical guide to wavelet analysis, B. Am. Meteorol. Soc., 79, 61–78, https://doi.org/10.1175/1520-0477(1998)079%3C0061:APGTWA%3E2.0.CO;2, 1998.
Valois, R., Galibert, P. Y., Guerin, R., and Plagnes, V.: Application of combined time-lapse seismic refraction and electrical resistivity tomography to the analysis of infiltration and dissolution processes in the epikarst of the Causse du Larzac (France), Near Surf. Geophys., 14, 13–22, https://doi.org/10.3997/1873-0604.2015052, 2016.
van Bel, A. J.: Transport phloem: low profile, high impact, Plant Physiol., 131, 1509–1510, 2003.
Volkov, A. G. and Markin, V. S.: Phytosensors and Phytoactuators, in: Plant Electrophysiology: Signaling and Responses, edited by: Volkov, A. G., Springer, Berlin, Heidelberg, Germany, 173–206, https://doi.org/10.1007/978-3-642-29110-4_7, 2012.
Voytek, E. B., Barnard, H. R., Jougnot, D., and Singha, K.: Transpiration-and precipitation-induced subsurface water flow observed using the self-potential method, Hydrol. Process., 33, 1784–1801, https://doi.org/10.1002/hyp.13453, 2019.
Wang, J., Turner, N. C., Feng, H., Dyck, M., and He, H.: Heat tracer-based sap flow methods for tree transpiration measurements: a mini review and bibliometric analysis, J. Exp. Bot., 74, 723–742, https://doi.org/10.1093/jxb/erac424, 2023.
Wei, Z., Yoshimura, K., Wang, L., Miralles, D. G., Jasechko, S., and Lee, X.: Revisiting the contribution of transpiration to global terrestrial evapotranspiration, Geophys. Res. Lett., 44, 2792–2801, https://doi.org/10.1002/2016GL072235, 2017.
Zapata, R., Oliver-Villanueva, J. V., Lemus-Zú niga, L. G., Luzuriaga, J. E., Mateo Pla, M. A., and Urchueguía, J. F.: Evaluation of electrical signals in pine trees in a mediterranean forest ecosystem, Plant Signal. Behav., 15, 1795580, https://doi.org/10.1080/15592324.2020.1795580, 2020.
Zapata, R., Oliver-Villanueva, J. V., Lemus-Zú niga, L. G., Fuente, D., Mateo Pla, M. A., Luzuriaga, J. E., and Moreno Esteve, J. C.: Seasonal variations of electrical signals of Pinus halepensis Mill. in Mediterranean forests in dependence on climatic conditions, Plant Signal. Behav., 16, 1948744, https://doi.org/10.1080/15592324.2021.1948744, 2021.
Zhang, H., Simmonds, L. P., Morison, J. I., and Payne, D.: Estimation of transpiration by single trees: comparison of sap flow measurements with a combination equation, Agr. Forest Meteorol., 87, 155–169, https://doi.org/10.1016/S0168-1923(97)00017-8, 1997.
Short summary
This study explores the potential of the electrical self-potential (SP) method, a passive geophysical technique, to provide additional insights into tree transpiration rates. We measured SP and sap velocity in three tree species over a year in a Mediterranean climate. Results indicate SP may characterize transpiration rates, especially during dry seasons. Additionally, the electrokinetic coupling coefficients of these trees align with values typically found in porous geological media.
This study explores the potential of the electrical self-potential (SP) method, a passive...