Articles | Volume 29, issue 4
https://doi.org/10.5194/hess-29-1083-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/hess-29-1083-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The influence of permafrost and other environmental factors on stream thermal sensitivity across Yukon, Canada
School of Earth, Environment and Society, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
Sean K. Carey
School of Earth, Environment and Society, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
Related authors
No articles found.
Anna-Maria Virkkala, Isabel Wargowsky, Judith Vogt, McKenzie A. Kuhn, Simran Madaan, Richard O'Keefe, Tiffany Windholz, Kyle A. Arndt, Brendan M. Rogers, Jennifer D. Watts, Kelcy Kent, Mathias Göckede, David Olefeldt, Gerard Rocher-Ros, Edward A. G. Schuur, David Bastviken, Kristoffer Aalstad, Kelly Aho, Joonatan Ala-Könni, Haley Alcock, Inge Althuizen, Christopher D. Arp, Jun Asanuma, Katrin Attermeyer, Mika Aurela, Sivakiruthika Balathandayuthabani, Alan Barr, Maialen Barret, Ochirbat Batkhishig, Christina Biasi, Mats P. Björkman, Andrew Black, Elena Blanc-Betes, Pascal Bodmer, Julia Boike, Abdullah Bolek, Frédéric Bouchard, Ingeborg Bussmann, Lea Cabrol, Eleonora Canfora, Sean Carey, Karel Castro-Morales, Namyi Chae, Andres Christen, Torben R. Christensen, Casper T. Christiansen, Housen Chu, Graham Clark, Francois Clayer, Patrick Crill, Christopher Cunada, Scott J. Davidson, Joshua F. Dean, Sigrid Dengel, Matteo Detto, Catherine Dieleman, Florent Domine, Egor Dyukarev, Colin Edgar, Bo Elberling, Craig A. Emmerton, Eugenie Euskirchen, Grant Falvo, Thomas Friborg, Michelle Garneau, Mariasilvia Giamberini, Mikhail V. Glagolev, Miquel A. Gonzalez-Meler, Gustaf Granath, Jón Guðmundsson, Konsta Happonen, Yoshinobu Harazono, Lorna Harris, Josh Hashemi, Nicholas Hasson, Janna Heerah, Liam Heffernan, Manuel Helbig, Warren Helgason, Michal Heliasz, Greg Henry, Geert Hensgens, Tetsuya Hiyama, Macall Hock, David Holl, Beth Holmes, Jutta Holst, Thomas Holst, Gabriel Hould-Gosselin, Elyn Humphreys, Jacqueline Hung, Jussi Huotari, Hiroki Ikawa, Danil V. Ilyasov, Mamoru Ishikawa, Go Iwahana, Hiroki Iwata, Marcin Antoni Jackowicz-Korczynski, Joachim Jansen, Järvi Järveoja, Vincent E. J. Jassey, Rasmus Jensen, Katharina Jentzsch, Robert G. Jespersen, Carl-Fredrik Johannesson, Chersity P. Jones, Anders Jonsson, Ji Young Jung, Sari Juutinen, Evan Kane, Jan Karlsson, Sergey Karsanaev, Kuno Kasak, Julia Kelly, Kasha Kempton, Marcus Klaus, George W. Kling, Natacha Kljun, Jacqueline Knutson, Hideki Kobayashi, John Kochendorfer, Kukka-Maaria Kohonen, Pasi Kolari, Mika Korkiakoski, Aino Korrensalo, Pirkko Kortelainen, Egle Koster, Kajar Koster, Ayumi Kotani, Praveena Krishnan, Juliya Kurbatova, Lars Kutzbach, Min Jung Kwon, Ethan D. Kyzivat, Jessica Lagroix, Theodore Langhorst, Elena Lapshina, Tuula Larmola, Klaus S. Larsen, Isabelle Laurion, Justin Ledman, Hanna Lee, A. Joshua Leffler, Lance Lesack, Anders Lindroth, David Lipson, Annalea Lohila, Efrén López-Blanco, Vincent L. St. Louis, Erik Lundin, Misha Luoto, Takashi Machimura, Marta Magnani, Avni Malhotra, Marja Maljanen, Ivan Mammarella, Elisa Männistö, Luca Belelli Marchesini, Phil Marsh, Pertti J. Martkainen, Maija E. Marushchak, Mikhail Mastepanov, Alex Mavrovic, Trofim Maximov, Christina Minions, Marco Montemayor, Tomoaki Morishita, Patrick Murphy, Daniel F. Nadeau, Erin Nicholls, Mats B. Nilsson, Anastasia Niyazova, Jenni Nordén, Koffi Dodji Noumonvi, Hannu Nykanen, Walter Oechel, Anne Ojala, Tomohiro Okadera, Sujan Pal, Alexey V. Panov, Tim Papakyriakou, Dario Papale, Sang-Jong Park, Frans-Jan W. Parmentier, Gilberto Pastorello, Mike Peacock, Matthias Peichl, Roman Petrov, Kyra St. Pierre, Norbert Pirk, Jessica Plein, Vilmantas Preskienis, Anatoly Prokushkin, Jukka Pumpanen, Hilary A. Rains, Niklas Rakos, Aleski Räsänen, Helena Rautakoski, Riika Rinnan, Janne Rinne, Adrian Rocha, Nigel Roulet, Alexandre Roy, Anna Rutgersson, Aleksandr F. Sabrekov, Torsten Sachs, Erik Sahlée, Alejandro Salazar, Henrique Oliveira Sawakuchi, Christopher Schulze, Roger Seco, Armando Sepulveda-Jauregui, Svetlana Serikova, Abbey Serrone, Hanna M. Silvennoinen, Sofie Sjogersten, June Skeeter, Jo Snöälv, Sebastian Sobek, Oliver Sonnentag, Emily H. Stanley, Maria Strack, Lena Strom, Patrick Sullivan, Ryan Sullivan, Anna Sytiuk, Torbern Tagesson, Pierre Taillardat, Julie Talbot, Suzanne E. Tank, Mario Tenuta, Irina Terenteva, Frederic Thalasso, Antoine Thiboult, Halldor Thorgeirsson, Fenix Garcia Tigreros, Margaret Torn, Amy Townsend-Small, Claire Treat, Alain Tremblay, Carlo Trotta, Eeva-Stiina Tuittila, Merritt Turetsky, Masahito Ueyama, Muhammad Umair, Aki Vähä, Lona van Delden, Maarten van Hardenbroek, Andrej Varlagin, Ruth K. Varner, Elena Veretennikova, Timo Vesala, Tarmo Virtanen, Carolina Voigt, Jorien E. Vonk, Robert Wagner, Katey Walter Anthony, Qinxue Wang, Masataka Watanabe, Hailey Webb, Jeffrey M. Welker, Andreas Westergaard-Nielsen, Sebastian Westermann, Jeffrey R. White, Christian Wille, Scott N. Williamson, Scott Zolkos, Donatella Zona, and Susan M. Natali
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-585, https://doi.org/10.5194/essd-2025-585, 2025
Preprint under review for ESSD
Short summary
Short summary
This dataset includes monthly measurements of carbon dioxide and methane exchange between land, water, and the atmosphere from over 1,000 sites in Arctic and boreal regions. It combines measurements from a variety of ecosystems, including wetlands, forests, tundra, lakes, and rivers, gathered by over 260 researchers from 1984–2024. This dataset can be used to improve and reduce uncertainty in carbon budgets in order to strengthen our understanding of climate feedbacks in a warming world.
Arsh Grewal, Erin M. Nicholls, and Sean K. Carey
Hydrol. Earth Syst. Sci., 29, 2467–2483, https://doi.org/10.5194/hess-29-2467-2025, https://doi.org/10.5194/hess-29-2467-2025, 2025
Short summary
Short summary
Stream chemistry in permafrost watersheds is highly seasonal due to ground thaw and declining streamflow after spring melt, reducing hydrologic connectivity with organic-rich flow paths in fall. We quantified the magnitude of stream chemistry seasonality (driven by processes other than seasonal streamflow) across 10 watersheds. Watersheds with steeper slopes saw a more rapid decline in DOC (dissolved organic carbon) concentrations, while greater permafrost extent led to a greater relative increase in ion concentrations.
M. Graham Clark and Sean K. Carey
Geosci. Model Dev., 17, 4911–4922, https://doi.org/10.5194/gmd-17-4911-2024, https://doi.org/10.5194/gmd-17-4911-2024, 2024
Short summary
Short summary
This paper provides validation of the Canadian Small Lakes Model (CSLM) for estimating evaporation rates from reservoirs and a refactoring of the original FORTRAN code into MATLAB and Python, which are now stored in GitHub repositories. Here we provide direct observations of the surface energy exchange obtained with an eddy covariance system to validate the CSLM. There was good agreement between observations and estimations except under specific atmospheric conditions when evaporation is low.
Chris M. DeBeer, Howard S. Wheater, John W. Pomeroy, Alan G. Barr, Jennifer L. Baltzer, Jill F. Johnstone, Merritt R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn Marshall, Elizabeth Campbell, Philip Marsh, Sean K. Carey, William L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren D. Helgason, Andrew M. Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, Michael N. Demuth, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 25, 1849–1882, https://doi.org/10.5194/hess-25-1849-2021, https://doi.org/10.5194/hess-25-1849-2021, 2021
Short summary
Short summary
This article examines future changes in land cover and hydrological cycling across the interior of western Canada under climate conditions projected for the 21st century. Key insights into the mechanisms and interactions of Earth system and hydrological process responses are presented, and this understanding is used together with model application to provide a synthesis of future change. This has allowed more scientifically informed projections than have hitherto been available.
Cited articles
Anderson, S. P.: Glaciers show direct linkage between erosion rate and chemical weathering fluxes, Geomorphology, 67, 147–157, https://doi.org/10.1016/j.geomorph.2004.07.010, 2005.
Baker, D. B., Richards, R. P., Loftus, T. T., and Kramer, J. W.: A new flashiness index: Characteristics and applications to midwestern rivers and streams, J. Am. Water Resour. As., 40, 503–522, https://doi.org/10.1111/j.1752-1688.2004.tb01046.x, 2004.
Bjerklie, D. M. and LaPerriere, J. D.: Gold-mining effects on stream hydrology and water quality, Circle Quadrangle, Alaska, J. Am. Water Resour. As., 21, 235–242, https://doi.org/10.1111/j.1752-1688.1985.tb00133.x, 1985.
Bolduc, C., Lamoureux, S. F., and Franssen, J.: Thermal and isotopic evidence for surface and subsurface water contributions to baseflow in a high Arctic river, Hydrol. Process., 32, 602–616, https://doi.org/10.1002/hyp.11427, 2018.
Boudreault, J., Bergeron, N. E., St-Hilaire, A., and Chebana, F.: Stream temperature modeling using functional regression models, J. Am. Water Resour. As., 55, 1382–1400, https://doi.org/10.1111/1752-1688.12778, 2019.
Brown, G. W.: Predicting temperatures of small streams, Water Resour. Res., 5, 68–75, https://doi.org/10.1029/WR005i001p00068, 1969.
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., and West, G. B.: Toward a metabolic theory of ecology, Ecology, 85, 1771–1789, https://doi.org/10.1890/03-9000, 2004.
Brutsaert, W.: Hydrology: An Introduction, Cambridge University Press, https://doi.org/10.1017/CBO9780511808470, 2005.
Bush, E. and Lemmen, D. S. (Eds.): Canada's changing climate report, Government of Canada, Ottawa, ON, ISBN 978-0-660-30222-5, 2019.
Caissie, D.: The thermal regime of rivers: A review, Freshwater Biol., 51, 1389–1406, https://doi.org/10.1111/j.1365-2427.2006.01597.x, 2006.
Canada1Water: Canada1Water (Version 1) [Stream Order data set], https://doi.org/10.4095/331515, 2023.
Chiasson-Poirier, G., Franssen, J., Lafrenière, M. J., Fortier, D., and Lamoureux, S. F.: Seasonal evolution of active layer thaw depth and hillslope-stream connectivity in a permafrost watershed, Water Resour. Res., 56, e2019WR025828, https://doi.org/10.1029/2019WR025828, 2020.
Constantz, J.: Interaction between stream temperature, streamflow, and groundwater exchanges in alpine streams, Water Resour. Res., 34, 1609–1615, https://doi.org/10.1029/98WR00998, 1998.
Crisp, D. T. and Howson, G.: Effect of air temperature upon mean water temperature in streams in the north Pennines and English Lake District, Freshwater Biol., 12, 359–367, https://doi.org/10.1111/j.1365-2427.1982.tb00629.x, 1982.
DeBeer, C. M., Wheater, H. S., Pomeroy, J. W., Barr, A. G., Baltzer, J. L., Johnstone, J. F., Turetsky, M. R., Stewart, R. E., Hayashi, M., van der Kamp, G., Marshall, S., Campbell, E., Marsh, P., Carey, S. K., Quinton, W. L., Li, Y., Razavi, S., Berg, A., McDonnell, J. J., Spence, C., Helgason, W. D., Ireson, A. M., Black, T. A., Elshamy, M., Yassin, F., Davison, B., Howard, A., Thériault, J. M., Shook, K., Demuth, M. N., and Pietroniro, A.: Summary and synthesis of Changing Cold Regions Network (CCRN) research in the interior of western Canada – Part 2: Future change in cryosphere, vegetation, and hydrology, Hydrol. Earth Syst. Sci., 25, 1849–1882, https://doi.org/10.5194/hess-25-1849-2021, 2021.
Docherty, C. L., Dugdale, S. J., Milner, A. M., Abermann, J., Lund, M., and Hannah, D. M.: Arctic river temperature dynamics in a changing climate, River Res. Appl., 35, 1212–1227, https://doi.org/10.1002/rra.3537, 2019.
Donato, M. M.: A statistical model for estimating stream temperatures in the Salmon and Clearwater River basins, central Idaho, U. S. Geological Survey, Reston, VA, https://doi.org/10.3133/wri024195, 2002.
Ducharne, A.: Importance of stream temperature to climate change impact on water quality, Hydrol. Earth Syst. Sci., 12, 797–810, https://doi.org/10.5194/hess-12-797-2008, 2008.
Dugdale, S. J., Hannah, D. M., and Malcolm, I. A.: River temperature modelling: A review of process-based approaches and future directions, Earth-Sci. Rev., 175, 97–113, https://doi.org/10.1016/j.earscirev.2017.10.009, 2017.
Dugdale, S. J., Malcolm, I. A., Kantola, K., and Hannah, D. M.: Stream temperature under contrasting riparian forest cover: Understanding thermal dynamics and heat exchange processes, Sci. Total Environ., 610–611, 1375–1389, https://doi.org/10.1016/j.scitotenv.2017.08.198, 2018.
Ebersole, J., Liss, W., and Frissell, C.: Relationship between stream temperature, thermal refugia and rainbow trout Oncorhynchus mykiss abundance in arid-land streams in the northwestern United States, Ecol. Freshw. Fish, 10, 1–10, https://doi.org/10.1034/j.1600-0633.2001.100101.x, 2001.
Fabris, L., Rolick, R. L., Kurylyk, B. L., and Carey, S. K.: Characterization of contrasting flow and thermal regimes in two adjacent subarctic alpine headwaters in Northwest Canada, Hydrol. Process., 34, 3252–3270, https://doi.org/10.1002/hyp.13786, 2020.
Gatien, P., Arsenault, R., Martel, J.-L., and St-Hilaire, A.: Using the ERA5 and ERA5-Land reanalysis datasets for river water temperature modelling in a data-scarce region, Can. Water Resour. J., 48, 93–110, https://doi.org/10.1080/07011784.2022.2113917, 2023.
Ge, S., McKenzie, J., Voss, C., and Wu, Q.: Exchange of groundwater and surface-water mediated by permafrost response to seasonal and long term air temperature variation, Geophys. Res. Lett., 38, L14402, https://doi.org/10.1029/2011GL047911, 2011.
Grünberg, I., Wilcox, E. J., Zwieback, S., Marsh, P., and Boike, J.: Linking tundra vegetation, snow, soil temperature, and permafrost, Biogeosciences, 17, 4261–4279, https://doi.org/10.5194/bg-17-4261-2020, 2020.
Gustard, A., Bullock, A., and Dixon, J. M.: Low flow estimation in the United Kingdom, Institute of Hydrology, Oxfordshire, UK, ISBN 0-948540-45-1, 1992.
Hare, D. K., Helton, A. M., Johnson, Z. C., Lane, J. W., and Briggs, M. A.: Continental-scale analysis of shallow and deep groundwater contributions to streams, Nat. Commun., 12, 1450, https://doi.org/10.1038/s41467-021-21651-0, 2021.
Hijmans, R. J.: terra: Spatial Data Analysis, R package version 1.7-55, https://CRAN.R-project.org/package=terra (last access: 19 September 2023), 2023.
Hilderbrand, R. H., Kashiwagi, M. T., and Prochaska, A. P.: Regional and local scale modelling of stream temperatures and spatio-temporal variation in thermal sensitivities, Environ. Manage., 54, 14–22, https://doi.org/10.1007/s00267-014-0272-4, 2014.
Hinzman, A. M., Sjöberg, Y., Lyon, S. W., Ploum, S. W., and van der Velde, Y.: Increasing non-linearity of the storage-discharge relationship in sub-Arctic catchments, Hydrol. Process., 34, 3894–3909, https://doi.org/10.1002/hyp.13860, 2020.
Isaak, D. J., Luce, C. H., Rieman, B. E., Nagel, D. E., Peterson, E. E., Horan, D. L., Parkes, S., and Chandler, G. L.: Effects of climate change and wildfire on stream temperatures and salmonid thermal habitat in a mountain river network, Ecol. Appl., 20, 1350–1371, https://doi.org/10.1890/09-0822.1, 2010.
Isaak, D. J., Wollrab, S., Horan, D., and Chandler, G.: Climate change effects on stream and river temperatures across the northwest U. S. From 1980–2009 and implications for salmonid fishes, Climatic Change, 113, 499–524, https://doi.org/10.1007/s10584-011-0326-z, 2012.
Johnson, S. L.: Factors influencing stream temperatures in small streams: Substrate effects and a shading experiment, Can. J. Fish Aquat. Sci., 61, 913–923, https://doi.org/10.1139/f04-040, 2004.
Johnson, Z. C., Johnson, B. G., Briggs, M. A., Devine, W. D., Snyder, C. D., Hitt, N. P., Hare, D. K., and Minkova, T. V.: Paired air-water annual temperature patterns reveal hydrogeological controls on stream thermal regimes at watershed to continental scales, J. Hydrol., 587, 124929, https://doi.org/10.1016/j.jhydrol.2020.124929, 2020.
Jorgenson, M. T., Racine, C. H., Walters, J. C., and Osterkamp, T. E.: Permafrost degradation and ecological changes associated with a warming climate in Central Alaska, Climatic Change, 48, 551–579, https://doi.org/10.1023/A:1005667424292, 2001.
Kelleher, C., Wagener, T., Gooseff, M., McGlynn, B., McGuire, K., and Marshall, L.: Investigating controls on the thermal sensitivity of Pennsylvania streams, Hydrol. Process., 26, 771–785, https://doi.org/10.1002/hyp.8186, 2012.
King, T. V. and Neilson, B. T.: Quantifying reach-average effects of hyporheic exchange on Arctic river temperatures in an area of continuous permafrost, Water Resour. Res., 55, 1951–1971, https://doi.org/10.1029/2018WR023463, 2019.
King, T. V., Neilson, B. T., Overbeck, L. D., and Kane, D. L.: Water temperature controls in low arctic rivers, Water Resour. Res., 52, 4358–4376, https://doi.org/10.1002/2015WR017965, 2016.
Kunkel, K. E.: Simple procedures for extrapolation of humidity variables in the mountainous western United States, J. Climate, 2, 656–669, https://doi.org/10.1175/1520-0442(1989)002<0656:SPFEOH>2.0.CO;2, 1989.
Kurylyk, B. and Walvoord, M.: Permafrost hydrogeology, in: Arctic Hydrology, Permafrost and Ecosystems, edited by: Yang, D. and Kane, D. L., Springer, 493–523, https://doi.org/10.1007/978-3-030-50930-9, 2021.
Kurylyk, B. L., Hayashi, M., Quinton, W. L., McKenzie, J. M., and Voss, C. I.: Influence of vertical and lateral heat transfer on permafrost thaw, peatland landscape transition, and groundwater flow, Water Resour. Res., 52, 1286–1305, https://doi.org/10.1002/2015WR018057, 2016.
Laaha, G. and Koffler, D.: lfstat: Calculation of Low Flow Statistics for Daily Stream Flow Data, R package version 0.9.12, https://CRAN.R-project.org/packages=lfstat (last access: 31 October 2023), 2022.
Laanaya, F., St-Hilaire, A., and Gloaguen, A.: Water temperature modelling: Comparison between the generalized additive model, logistic, residuals regression and linear regression models, Hydrolog. Sci. J., 62, 1078–1093, https://doi.org/10.1080/02626667.2016.1246799, 2017.
Leach, J. A. and Moore, R. D.: Above-stream microclimate and stream surface energy exchanges in a wildfire-disturbed riparian zone, Hydrol. Process., 24, 2369–2381, https://doi.org/10.1002/hyp.7639, 2010.
Leach, J. A. and Moore, R. D.: Observations and modeling of hillslope throughflow temperatures in a coastal forested catchment, Water Resour. Res., 51, 3770–3795, https://doi.org/10.1002/2014WR016763, 2015.
Leach, J. A. and Moore, R. D.: Empirical stream thermal sensitivities may underestimate stream temperature response to climate warming, Water Resour. Res., 55, 5453–5467, https://doi.org/10.1029/2018WR024236, 2019.
Lisi, P. J. and Schindler, D. E.: Wind-driven upwelling in lakes destabilizes thermal regimes of downstream rivers, Limnol. Oceanogr., 60, 169–180, https://doi.org/10.1002/lno.10010, 2015.
Lisi, P. J., Schindler, D. E., Cline, T. J., Scheuerell, M. D., and Walsh, P. B.: Watershed geomorphology and snowmelt control stream thermal sensitivity to air temperature, Geophys. Res. Lett., 42, 3380–3388, https://doi.org/10.1002/2015GL064083, 2015.
Lowney, C. L.: Stream temperature variation in regulated rivers: Evidence for a spatial pattern in daily minimum and maximum magnitudes, Water Resour. Res., 36, 2947–2955, https://doi.org/10.1029/2000WR900142, 2000.
Luce, C., Staab, B., Kramer, M., Wenger, S., Isaak, D., and McConnell, C.: Sensitivity of summer stream temperatures to climate variability in the Pacific Northwest, Water Resour. Res., 50, 3428–3443, https://doi.org/10.1002/2013WR014329, 2014.
MacDonald, R. J., Boon, S., Byrne, J. M., and Silins, U.: A comparison of surface and subsurface controls on summer temperature in a headwater stream, Hydrol. Process., 28, 2338–2347, https://doi.org/10.1002/hyp.9756, 2014.
McDowell, R. W., Elkin, K. R., and Kleinman, P. J.: Temperature and nitrogen effects on phosphorus uptake by agricultural stream-bed sediments, J. Environ. Qual., 46, 295–301, https://doi.org/10.2134/jeq2016.09.0352, 2017.
McGill, L. M., Steel, E. A., and Fullerton, A. H.: Empirical stream thermal sensitivity cluster on the landscape according to geology and climate, Hydrol. Earth Syst. Sci., 28, 1351–1371, https://doi.org/10.5194/hess-28-1351-2024, 2024.
McNamara, J. P., Kane, D. L., Hobbie, J. E., and Kling, G. W.: Hydrologic and biogeochemical controls on the spatial and temporal patterns of nitrogen and phosphorus in the Kuparuk River, arctic Alaska, Hydrol. Process., 22, 3294–3309, https://doi.org/10.1002/hyp.6920, 2008.
Mellina, E., Moore, R. D., Hinch, S. G., Macdonald, J. S., and Pearson, G.: Stream temperature responses to clearcut logging in British Columbia: the moderating influences of groundwater and headwater lakes, Can. J. Fish Aquat. Sci., 59, 1886–1900, https://doi.org/10.1139/f02-158, 2002.
Mihalevich, B. A., Neilson, B. T., and Buahin, C. A.: Evaluation of the ERA5-Land reanalysis data set for process-based river temperature modeling over data sparse and topographically complex regions, Water Resour. Res., 58, e2021WR031294, https://doi.org/10.1029/2021WR031294, 2022.
Mohseni, O., Stefan, H. G., and Erickson, T. R.: A nonlinear regression model for weekly stream temperatures, Water Resour. Res., 34, 2685–2692, https://doi.org/10.1029/98WR01877, 1998.
Moore, R. D., Spittlehouse, D. L., and Story, A.: Riparian microclimate and stream temperature response to forest harvesting: A review, J. Am. Water Resour. As., 41, 813–834, https://doi.org/10.1111/j.1752-1688.2005.tb03772.x, 2005a.
Moore, R. D., Sutherland, P., Gomi, T., and Dhakal, A.: Thermal regime of a headwater stream within a clear-cut, coastal British Columbia, Canada, Hydrol. Process., 19, 2591–2608, https://doi.org/10.1002/hyp.5733, 2005b.
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021.
Obu, J., Westermann, S., Kääb, A., and Bartsch, A.: Ground Temperature Map, 2000–2016, Northern Hemisphere Permafrost, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.888600, 2018.
Parkinson, E., Lea, E., Nelitz, M., Knudson, J., and Moore, R.: Identifying temperature thresholds associated with fish community changes in British Columbia, Canada, to support identification of temperature sensitive streams, River Res. Appl., 32, 330–347, https://doi.org/10.1002/rra.2867, 2016.
Pilgrim, J. M., Fang, X., and Stefan, H. G.: Stream temperature correlations with air temperatures in Minnesota: implications for climate warming, J. Am. Water Resour. As., 34, 1109–1121, https://doi.org/10.1111/j.1752-1688.1998.tb04158.x, 1998.
Pomeroy, J. and Gray, D. M.: Snowcover: Accumulation, relocation, and management, National Hydrology Research Institute, Environment Canada, Saskatoon, SK, ISBN 0-660-15816-7, 1995.
Porter, C., Howat, I., Noh, M.-J., Husby, E., Khuvis, S., Danish, E., Tomko, K., Gardiner, J., Negrete, A., Yadav, B., Klassen, J., Kelleher, C., Cloutier, M., Bakker, J., Enos, J., Arnold, G., Bauer, G., and Morin, P.: ArcticDEM – Mosaics, Version 4.1 (V1), Harvard Dataverse [data set], https://doi.org/10.7910/DVN/3VDC4W, 2023.
Ran, Y., Li, X., Cheng, G., Che, J., Juha, A., Olli, K., Jan, H., Miska, L., Jin, H., Jaroslav, O., Masahiro, H., Yu, Q., and Chang, X.: High-resolution datasets of permafrost thermal state and hydrothermal zonation in the Northern Hemisphere, National Tibetan Plateau / Third Pole Environment Data Center [data set], https://doi.org/10.11888/Geocry.tpdc.271190, 2021.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 17 January 2024), 2022.
Rutherford, J. C., Blackett, S., Blackett, C., Saito, L., and Davies-Colley, R. J.: Predicting the effects of shade on water temperature in small streams, New Zeal. J. Mar. Fresh., 31, 707–721, https://doi.org/10.1080/00288330.1997.9516801, 1997.
Segura, C., Caldwell, P., Sun, G., McNulty, S., and Zhang, Y.: A model to predict stream water temperature across the conterminous USA, Hydrol. Process., 29, 2178–2195, https://doi.org/10.1002/hyp.10357, 2015.
Sergeant, F., Therrien, R., Anctil, F., and Gatel, L.: Simulating the recession dynamics of Arctic catchments in the context of a thawing permafrost, J. Hydrol., 623, 129847, https://doi.org/10.1016/j.jhydrol.2023.129847, 2023.
Shur, Y. L. and Jorgenson, M. T.: Patterns of permafrost formation and degradation in relation to climate and ecosystems, Permafrost Periglac., 18, 7–19, https://doi.org/10.1002/ppp.582, 2007.
Sjöberg, Y., Jan, A., Painter, S. L., Coon, E. T., Carey, M. P., O'Donnell, J. A., and Koch, J. C.: Permafrost promotes shallow groundwater flow and warmer headwater streams, Water Resour. Res., 57, e2020WR027463, https://doi.org/10.1029/2020WR027463, 2021.
Smith, C. A. S., Meikle, J. C., and Roots, C. F. (Eds.): Ecoregions of the Yukon Territory: biophysical properties of Yukon landscapes, Agriculture and Agri-Food Canada PARC Technical Bulletin No. 04-01, Summerland, British Columbia, Canada, 313 pp., ISBN 0-660-18828-7, 2004.
Stefan, H. G. and Preud'homme, E. B.: Stream temperature estimation from air temperatures, J. Am. Water Resour. As., 29, 27–45, https://doi.org/10.1111/j.1752-1688.1993.tb01502.x, 1993.
Story, A., Moore, R. D., and Macdonald, J. S.: Stream temperatures in two shaded reaches below cutblocks and logging roads: Downstream cooling linked to subsurface hydrology, Can. J. Forest Res., 33, 1383–1396, https://doi.org/10.1139/x03-087, 2003.
Szeitz, A. J.: The influence of permafrost and other environmental controls on stream thermal sensitivity across Yukon, Canada – data set (Version 1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.11668943, 2024.
Tallaksen, L. M. and van Lanen, H. A. J.: Hydrological Drought: Processes and Estimation Methods for Streamflow and Groundwater, Elsevier, Amsterdam, https://doi.org/10.1016/C2017-0-03464-X, 2004.
Turcotte, B., Dubnick, A., McKillop, R., and Ensom, T.: Icing and aufeis in cold regions i: The origin of overflow, Can. J. Civil Eng., 51, 93–108, https://doi.org/10.1139/cjce-2023-0057, 2024.
van Vliet, M. T. H., Ludwig, F., Zwolsman, J. J. G., Weedon, G. P., and Kabat, P.: Global river temperatures and sensitivity to atmospheric warming and changes in river flow, Water Resour. Res., 47, W02544, https://doi.org/10.1029/2010WR009198, 2011.
Vincent, L., Zhang, X., Brown, R., Feng, Y., Mekis, E., Milewska, E., Wan, H., and Wang, X.: Observed trends in Canada's climate and influence of low-frequency variability modes, J. Climate, 28, 4545–4560, https://doi.org/10.1175/JCLI-D-14-00697.1, 2015.
Walvoord, M. A., Voss, C. I., and Wellman, T. P.: Influence of permafrost distribution on groundwater flow in the context of climate-driven permafrost thaw: example from Yukon Flats Basin, Alaska, United States, Water Resour. Res., 48, W07524, https://doi.org/10.1029/2011WR011595, 2012.
Water Survey of Canada: National Hydro Network Basin Polygons, Environment and Climate Change Canada, Government of Canada Open Data Repository [data set], https://open.canada.ca/data/en/dataset/0c121878-ac23-46f5-95df-eb9960753375 (last access: 3 October 2023), 2016.
Webb, B. W. and Zhang, Y.: Water temperatures and heat budgets in Dorset chalk water courses, Hydrol. Process., 13, 309–321, https://doi.org/10.1002/(SICI)1099-1085(19990228)13:3<309::AID-HYP740>3.0.CO;2-7, 1999.
Webb, B. W., Clack, P. D., and Walling, D. E.: Water–air temperature relationships in a Devon river system and the role of flow, Hydrol. Process., 17, 3069–3084, https://doi.org/10.1002/hyp.1280, 2003.
Winfree, M. M., Hood, E., Stuefer, S. L., Schindler, D. E., Cline, T. J., Arp, C. D., and Pyare, S.: Landcover and geomorphology influence streamwater temperature sensitivity in salmon bearing watersheds in Southeast Alaska, Environ. Res. Lett., 13, 064034, https://doi.org/10.1088/1748-9326/aac4c0, 2018.
Wissler, A. D., Segura, C., and Bladon, K. D.: Comparing headwater stream thermal sensitivity across two distinct regions in Northern California, Hydrol. Process., 36, e14517, https://doi.org/10.1002/hyp.14517, 2022.
Wondzell, S. M., Diabat, M., and Haggerty, R.: What matters most: Are future stream temperatures more sensitive to changing air temperatures, discharge, or riparian vegetation?, J. Am. Water Resour. As., 55, 116–132, https://doi.org/10.1111/1752-1688.12707, 2019.
Woo, M.-K.: Permafrost Hydrology, Springer, Berlin, https://doi.org/10.1007/978-3-642-23462-0, 2012.
Wu, Q., Brown, A.: whitebox: `WhiteboxTools' R Frontend, R package version 2.2.0, https://CRAN.R-project.org/package=whitebox (last access: 19 September 2023), 2022.
Zanaga, D., Van De Kerchove, R., De Keersmaecker, W., Souverijns, N., Brockmann, C., Quast, R., Wevers, J., Grosu, A., Paccini, A., Vergnaud, S., Cartus, O., Santoro, M., Fritz, S., Georgieva, I., Lesiv, M., Carter, S., Herold, M., Li, L., Tsendbazar, N.-E., Ramoino, F., and Arino, O.: ESA WorldCover 10 m 2020 v100 (v100), Zenodo [data set], https://doi.org/10.5281/zenodo.5571936, 2021.
Zipper, S. C., Lamontagne-Hallé, P., McKenzie, J. M., and Rocha, A. V.: Groundwater controls on postfire permafrost thaw: Water and energy balance effects, J. Geophys. Res.-Earth, 123, 2677–2694, https://doi.org/10.1029/2018JF004611, 2018.
Short summary
Stream temperature sensitivity in northern regions responds to many of the same environmental controls as in temperate regions, but the presence of annually frozen ground (permafrost) influences catchment hydrology and stream temperature regimes. Permafrost can have positive and negative influences on thermal regimes. The net effect of northern environmental change on stream temperature is complex and uncertain, but permafrost will likely play a role through its control on cold region hydrology.
Stream temperature sensitivity in northern regions responds to many of the same environmental...