Articles | Volume 28, issue 20
https://doi.org/10.5194/hess-28-4715-2024
https://doi.org/10.5194/hess-28-4715-2024
Technical note
 | 
29 Oct 2024
Technical note |  | 29 Oct 2024

Technical note: A guide to using three open-source quality control algorithms for rainfall data from personal weather stations

Abbas El Hachem, Jochen Seidel, Tess O'Hara, Roberto Villalobos Herrera, Aart Overeem, Remko Uijlenhoet, András Bárdossy, and Lotte de Vos

Related authors

Open-source tools for processing opportunistic rainfall sensor data: An overview of existing tools and the new OpenSense software packages poligrain, pypwsqc and mergeplg
Christian Chwala, Aart Overeem, Erlend Øydvin, Louise Petersson Wårdh, Jochen Seidel, Maximilian Graf, Bas Walraven, Elia Covi, Hai Victor Habi, Martin Fencl, Lotte de Vos, Filippo Giannetti, Amy Green, Tess O’Hara, Nico Blettner, Tom Keel, Georges Schutz, Abbas El Hachem, Nicholas Illich, Julius Polz, Taoufiq Shit, Lukáš Kaleta, Damaris Zulkarnaen, and Vojtěch Bareš
EGUsphere, https://doi.org/10.5194/egusphere-2025-5438,https://doi.org/10.5194/egusphere-2025-5438, 2026
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Probabilistic downscaling of EURO-CORDEX precipitation data for the assessment of future areal precipitation extremes for hourly to daily durations
Abbas El Hachem, Jochen Seidel, and András Bárdossy
Hydrol. Earth Syst. Sci., 29, 1335–1357, https://doi.org/10.5194/hess-29-1335-2025,https://doi.org/10.5194/hess-29-1335-2025, 2025
Short summary
Technical Note: Space–time statistical quality control of extreme precipitation observations
Abbas El Hachem, Jochen Seidel, Florian Imbery, Thomas Junghänel, and András Bárdossy
Hydrol. Earth Syst. Sci., 26, 6137–6146, https://doi.org/10.5194/hess-26-6137-2022,https://doi.org/10.5194/hess-26-6137-2022, 2022
Short summary
The use of personal weather station observations to improve precipitation estimation and interpolation
András Bárdossy, Jochen Seidel, and Abbas El Hachem
Hydrol. Earth Syst. Sci., 25, 583–601, https://doi.org/10.5194/hess-25-583-2021,https://doi.org/10.5194/hess-25-583-2021, 2021
Short summary

Cited articles

Bárdossy, A., Seidel, J., and El Hachem, A.: The use of personal weather station observations to improve precipitation estimation and interpolation, Hydrol. Earth Syst. Sci., 25, 583–601, https://doi.org/10.5194/hess-25-583-2021, 2021. a, b, c, d
Bárdossy, A., Seidel, J., Eisele, M., Hachem, A. E., Kunstmann, H., Chwala, C., Graf, M., Demuth, N., and Gerlach, N.: Verbesserung der Abschätzung von Gebietsniederschlägen mittels opportunistischer Niederschlagsmessungen am Beispiel des Ahr-Hochwassers im Juli 2021, Hydrologie und Wasserbewirtschaftung, 66, 208–214, https://www.hywa-online.de/download/hywa-heft-4-2022/ (last access: 11 October 2024), 2022. a, b
Berne, A., Delrieu, G., Creutin, J.-D., and Obled, C.: Temporal and spatial resolution of rainfall measurements required for urban hydrology, J. Hydrol., 299, 166–179, https://doi.org/10.1016/j.jhydrol.2004.08.002, 2004. a
Boeckhout, M., Zielhuis, G. A., and Bredenoord, A. L.: The FAIR guiding principles for data stewardship: fair enough?, Eur. J. Hum. Genet., 26, 931–936, 2018. a
Chwala, C., Graf, M., Øydvin, E., Habi, H. V., El Hachem, A., Schutz, G., Seidel, J., de Vos, L., Fencl, M., Blettner, N., and Overeem, A.: OpenSenseAction/OPENSENSE_sandbox: v0.1.0 (v0.1.0), Zenodo [code], https://doi.org/10.5281/zenodo.13929196, 2024. a
Download
Short summary
This study presents an overview of open-source quality control (QC) algorithms for rainfall data from personal weather stations (PWSs). The methodology and usability along technical and operational guidelines for using every QC algorithm are presented. All three QC algorithms are available for users to explore in the OpenSense sandbox. They were applied in a case study using PWS data from the Amsterdam region in the Netherlands.  The results highlight the necessity for data quality control.
Share