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Abstract. The number of rainfall observations from personal
weather stations (PWSs) has increased significantly over the
past years; however, there are persistent questions about data
quality. In this paper, we reflect on three quality control algo-
rithms (PWSQC, PWS-pyQC, and GSDR-QC) designed for
the quality control (QC) of rainfall data. Technical and op-
erational guidelines are provided to help interested users in
finding the most appropriate QC to apply for their use case.
All three algorithms can be accessed within the OpenSense
sandbox where users can run the code. The results show that
all three algorithms improve PWS data quality when cross-
referenced against a rain radar data product. The considered
algorithms have different strengths and weaknesses depend-
ing on the PWS and official data availability, making it in-
advisable to recommend one over another without carefully
considering the specific setting. The authors highlight a need
for further objective quantitative benchmarking of QC algo-
rithms. This requires freely available test datasets represent-
ing a range of environments, gauge densities, and weather
patterns.

1 Introduction

Precipitation is highly variable in space and time; thus, the
accurate estimation of precipitation amounts is of funda-
mental importance for many hydrological purposes (Estévez

et al., 2011), especially on smaller scales and high temporal
resolutions such as in small catchments and in the field of
urban hydrology (Berne et al., 2004; Ochoa-Rodriguez et al.,
2015; Cristiano et al., 2017), where typical rain gauge net-
works are not always sufficiently dense to capture the spatio-
temporal variability of precipitation. Weather radar provides
rainfall estimates with good spatial coverage, but since radar
is an indirect measurement, its data suffer from errors and
uncertainties (Fabry, 2015; Rauber and Nesbitt, 2018). One
approach to improve precipitation estimates is the use of ad-
ditional data from so-called opportunistic sensors (OSs) such
as terrestrial commercial microwave links, personal weather
stations (PWSs), or satellite microwave links, which are typi-
cally more numerous than rain gauges from national weather
services. The high number of OS devices offers a huge po-
tential to better capture the strong spatio-temporal variabil-
ity of rainfall, especially in regions with scarce conventional
meteorological observations. This holds true in particular for
PWSs, where the number of stations has increased consider-
ably over the last years.

Some of the most popular and widely available PWSs are
simple, low-cost instruments that measure various meteoro-
logical parameters, including temperature, wind, and rainfall.
The rain gauges of PWSs are typically unheated tipping-
bucket gauges with varying orifice sizes and measurement
resolutions. Operators of PWSs also have the opportunity to
share and visualize the data on online platforms. For further
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details on PWSs and PWS networks, see de Vos et al. (2019)
and Fencl et al. (2024).

Since these PWSs may be installed by people who do
not have access to, or knowledge of, optimal gauge place-
ment, it is expected that many of these stations are not set up
and maintained according to professional standards. Further-
more, issues like uncertain or missing metadata, data gaps,
variable time steps, and biases are frequent and hamper the
use of PWS rainfall data for hydrological and meteorological
applications (de Vos et al., 2019; O’Hara et al., 2023). Over-
all, there is a high availability of PWS data, but the expected
quality of these data is fairly low.

As with all weather observations, in order to make con-
structive use of PWS rainfall observations, the application
of reliable quality control (QC) is vital. Many national me-
teorological services and other institutions have operational
QC algorithms for their precipitation data, but these are typi-
cally not open source and are not tailored for PWS data. This
can be because they assume a higher data availability and
smaller bias than what is commonly found from PWS de-
vices. In the past years, several QC methods for PWS rainfall
data have been proposed, which are typically applied to PWS
datasets in different geographical areas or time periods. This
lack of overlap in climate, conditions, and network density
can make it difficult for a reader to compare these methods.
Overcoming these limitations and making these data from
PWSs and other OSs available to a broader scientific com-
munity are aims of the EU COST Action CA2016 “Oppor-
tunistic Precipitation Sensing Network (OpenSense)” (https:
//opensenseaction.eu/, last access: 14 October 2024), where,
for example, data standards (Fencl et al., 2024) and soft-
ware for processing and quality controlling OS data (https:
//github.com/OpenSenseAction/OPENSENSE_sandbox, last
access: 14 October 2024) are being developed.

For people new to the field, it can be difficult to appreci-
ate the differences between the available methods and de-
cide on which method best suits their needs. The aim of
this paper is to provide a guideline to using three different
open-source QC methods designed especially for precipita-
tion data. They can be run in the public sandbox environ-
ment of the OpenSense EU COST Action (https://github.
com/OpenSenseAction/OPENSENSE_sandbox). As an ex-
ample, the methods are applied to the same publicly available
PWS rainfall dataset from the Amsterdam metropolitan area
in the Netherlands. Lastly, by following the open-data and
open-source concepts, the implementation of the QC algo-
rithms is reproducible. The OpenSense COST Action strives
to promote FAIR (Findability, Accessibility, Interoperabil-
ity, and Reuse) principles in research, which are increasingly
adopted and required by publishers, funding agencies, and
academic institutions (Boeckhout et al., 2018).

This paper is structured as follows. Section 2 describes and
compares the three different QC methods. Section 3 provides
instructions and guidelines on how to run these QC methods
in the OpenSense sandbox environment. In Sect. 4, a case

study where these QC methods have been applied using a
PWS dataset from the Amsterdam region in the Netherlands
is presented. This is followed by a discussion and conclu-
sions and recommendations for the usage of these QC meth-
ods in Sects. 5 and 6, respectively.

2 Description of the QC algorithms

2.1 PWSQC

PWSQC was originally developed and published by de Vos
et al. (2019). It consists of several QC modules, all relying
on neighbour checks. Neighbours are defined as all PWSs
within a spatial range, which is a parameterized value. The
range should reflect the distance over which one assumes
neighbouring PWSs to capture similar rainfall dynamics.
This value needs to be chosen carefully for the local climate
and the temporal resolution of the PWS data, as the rainfall
fields corresponding to longer time steps are more homoge-
neous than those from short time steps (Terink et al., 2018).
For high temporal resolution PWS data, neighbour compar-
isons can only be sensible if neighbour PWSs are selected
with a short range. As the selection is only based on distance,
local effects like elevation or land use are ignored. Another
parameter in the method sets the required minimum num-
ber of neighbouring PWSs that provide observations each
time step to ensure that the neighbour comparison is robust.
When this parameter is chosen too high, the minimum num-
ber of neighbour observations is never reached in sparse ar-
eas of the network.

A faulty zero (FZ) filter checks for periods of 0 mm rain-
fall where the median of nearby PWS observations is above
zero. The high influx (HI) filter detects unrealistically high
measurements compared to its surroundings by comparing
values against the median of its neighbouring PWSs, with
a fixed threshold for low rainfall intensities and a dynamic
high threshold during rainfall events (as measured by nearby
PWSs). The station outlier (SO) check calculates the correla-
tion between a PWS and each neighbouring PWS and starts
flagging when the correlation of most becomes too low. Fi-
nally, a dynamic bias correction factor (which differs for each
PWS and can change in time) is calculated and applied to the
observations. For the initial value of the bias correction fac-
tor, an auxiliary dataset can be considered to derive a proxy
for the overall bias of the whole dataset. This will improve
the results, but no auxiliary data are required for the appli-
cation of PWSQC. The method attributes flags to individ-
ual observations that can then be filtered; it does not exclude
complete time series. PWSQC has originally been applied
on the same dataset as the one used in this paper and showed
promising results. The method has been implemented in R
and is openly available (de Vos, 2021). Later, a radar version
of this algorithm has been constructed in Python that makes
use of unadjusted radar data at the location of a PWS as input
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for the QC. Then neighbouring PWSs are only employed to
improve the radar input data (Van Andel, 2021).

2.2 PWS-pyQC

PWS-pyQC was first introduced by Bárdossy et al. (2021).
It was used in a study in Germany in Graf et al. (2021) and
an event-based analysis in Bárdossy et al. (2022), showing
the potential of PWS data to improve precipitation interpo-
lation. The method is implemented in Python and is open-
source software available via El Hachem (2022). The QC al-
gorithm consists of three main modules. The first identifies
reliable PWSs using a space-time dependence structure de-
rived from a reference observation network (denoted as the
primary network). The main assumption is that the PWS val-
ues might be wrong but their relative orders (i.e. their ranks)
are correct. First, the indicator correlation values are calcu-
lated from the reference network and the PWS observation
series individually. Each time series is transformed into a
binary series depending on the corresponding precipitation
value (z= F−1(α)) for the selected quantile value (α), which
has to be chosen depending on the temporal resolution of the
data (see Bárdossy et al., 2021). For hourly values, the in-
dicator series are obtained by using a threshold of α = 0.99.
After deriving the pair-wise indicator correlation matrix from
the reference network, the PWS data can be filtered. For each
PWS, the indicator correlation with the nearest neighbouring
primary station is calculated and compared, for the same sep-
arating distance, to the corresponding value in the reference
correlation matrix. This allows for identifying and filtering
PWS observation series that do not fit in the reference corre-
lation structure. An advantage of using indicator correlations
is that the absolute values do not matter (e.g. if 50 and 10 mm
both exceed the threshold (z= F−1(α)), they are both trans-
formed to the value of 1). Furthermore, stations with incor-
rect location information can be identified as well. A disad-
vantage of this approach is that the complete time series of
the corresponding PWS is disregarded and filtered out.

The second module corrects the bias in the magnitudes of
the values of each PWS individually using the ranks of the
PWSs and the corresponding neighbouring primary observa-
tions. To that end, for every PWS value larger than 0 mm, its
corresponding rank and subsequent quantile are identified.
For the same quantile level, the corresponding precipitation
values at the nearest primary stations are identified. These are
then used to interpolate the precipitation value at the PWS lo-
cation. This corrects the bias in the PWS values individually
while preserving their ranks. It is the most time-consuming
part of PWS-pyQC as each hourly value has to be individu-
ally corrected.

The third module is an event-based filter to identify er-
roneous PWS observations (false zeros, false extremes) for
corresponding time intervals. The filter is based on a leave-
one-out cross-validation approach. After applying a Box–
Cox transformation to transform the PWS and primary data,

each PWS value (after bias correction) is removed from the
dataset and is re-estimated using the observation from the pri-
mary network. The ratio between the absolute difference of
the estimated and observed values and the kriging estimation
variance is noted. Large ratios indicate that the observation is
an outlier (a single value or a false measurement). Depend-
ing on the magnitude of the flagged observation (zero or high
precipitation value), the user has to decide to keep or disre-
gard the value. For this step, external information such as
weather radar data or discharge value (for headwater catch-
ments) could be used to distinguish between a false measure-
ment and a single event. Note that this filter was further de-
veloped in El Hachem et al. (2022).

PWS-pyQC relies on a reference network (a primary net-
work) with reliable observations to filter the PWS data. This
is usually acquired from the official rain gauge network.
However, in the study area, there is only one KNMI rain
gauge with hourly temporal resolution available, which is
not sufficient for deriving a reference dependence structure.
Hence, this dependence structure was derived from a radar
gauge-adjusted KNMI product by taking the time series of
20 randomly chosen pixels as the primary network. A sen-
sitivity analysis will help determine what the impact might
be when 20 other pixels (or even a different number of pix-
els) are chosen as a primary network proxy. If an official rain
gauge network is available with enough gauges within the
study area, it is recommended to use it.

2.3 GSDR-QC

GSDR-QC is the QC algorithm developed to construct the
“Global SubDaily Rainfall” dataset (Lewis et al., 2019) and
is fully described in Lewis et al. (2021). The algorithm
flags and removes suspicious individual observations rather
than entire gauge datasets, and it does not attempt to al-
ter (bias correct) observations, making it the most conser-
vative of the QC methods described herein. GSDR-QC ap-
plies user-defined thresholds for hourly and daily maximum
rainfall (appropriate to the extent of the study area), con-
ducts nearest-neighbour checks, and uses climate indices de-
fined by the Expert Team on Climate Change Detection In-
dices (ETCCDI, https://www.ecad.eu/indicesextremes/, last
access: 14 October 2024), comprising R99p, PCPTOT,
Rx1day, CDD, and SDII. These are described in Table 1 of
Lewis et al. (2021). The outputs of GSDR-QC allow the user
to evaluate QC summary overviews to establish where faults
lie, offering insight into the type of errors.

The complete procedure relies on a two-step process: first
flagging suspicious observations, followed by the applica-
tion of a rule base that uses the flags to remove unreli-
able observations. The process is comprehensive, addressing
all World Meteorological Organization (WMO) tests recom-
mended for rainfall QC: format, completeness, consistency,
tolerance/range, and spike and streak (WMO, 2021). A ref-
erence table describing each test is presented in the sup-
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plementary information of Villalobos-Herrera et al. (2022).
There are 25 QC checks that flag suspicious data: QC1–QC7
that identify where a substantial portion of the gauge data
appear to be suspicious (i.e. the gauge is seemingly unreli-
able), QC8–QC11 that flag suspiciously high values, QC12
that flags long periods without rainfall, and QC13–QC15
that flag suspect accumulations or repeated values. Checks
QC8, QC9, and QC11–QC15 use ETCCDI indices as ref-
erence data (QC10 implements the user-defined maximum
rainfall values). There are, then, further QC flags applied
based on observations from neighbouring gauges, including
QC16–QC25 that flag mismatches between neighbours in-
cluding high rainfall, dry periods, and the timing of rain-
fall. In the original implementation, three of these checks
require access to the restricted-access Global Precipitation
Climatology Centre (GPCC) daily and monthly precipitation
databases; however, these are not essential and are not used
in this local implementation of the GSDR-QC algorithm (as
applied herein).

Once data have been flagged, a rule base uses 8 of the 25
QC checks to determine suspicious observations which are
removed from the dataset. Briefly, the rule base applies the
QC checks against neighbouring gauges (×2), for extremely
large values (×2), for long dry spells, for repeated non-zero
values, and for suspect daily and monthly accumulations. Ta-
ble 3 in Lewis et al. (2021) provides a full description of the
rule base. A key aspect of the neighbour checks is that they
are applied to an aggregated daily total to avoid any poten-
tial issue caused by the higher variability and intermittency
of hourly rainfall (Lewis et al., 2021). This variability and in-
termittency tend to be higher in data originating from official
networks (the original application of GSDR-QC) since they
are much less dense than PWS networks, especially in urban
areas (O’Hara et al., 2023).

GSDR-QC can be tailored to the dataset/location in many
ways. The most obvious adjustments are defining appropri-
ate maximum hourly and daily thresholds for rain (required
for the extreme value checks) and determining nearest neigh-
bours. In our case study, we opted for hourly maximum
(90.7 mm) and daily maximum (131.7 mm) rainfall data that
were representative of the climate of the study area. We al-
lowed an intercomparison of up to 10 nearest neighbours that
were within a 50 km radius and had a minimum of 1 year of
overlapping data.

2.4 Overview of QC technical and operational
guidelines

Table 1 recaps the technical differences between the three QC
methods. Table 2 offers those interested in applying QC on
PWS data an overview on the applicability of the three differ-
ent QC methods, thus supporting them in choosing the most
suitable QC method for processing specific datasets (time se-
ries length, temporal resolution, PWS network density, etc.),

the availability of a reference dataset, and computational re-
sources.

3 Getting started in the sandbox

All three QC algorithms are available under https://github.
com/OpenSenseAction/OPENSENSE_sandbox, which is the
OpenSense GitHub repository. This repository includes a
binder which allows users to run and explore the code on-
line as well as instructions on how to install the environment
locally. It is not required to have a GitHub account.

The version of the PWSQC code available in the
OpenSense sandbox (https://github.com/OpenSenseAction/
OPENSENSE_sandbox/tree/main/PWSQC_R_notebook,
last access: 14 October 2024) is practically identical to the
originally published R code, with an added introduction
to download a PWS dataset directly from the internet
repository and save it in the correct format to get started.
The code runs in an R kernel, and all steps are listed in two
Jupyter Notebook instances. Due to the time it takes the
code to run in the sandbox, particularly the step with the
SO filter and the dynamic bias correction factor calculation,
users may explore the minimal example first, where 10 time
series in the PWS dataset are attributed FZ and HI flags only
and where the results are visualized.

The PWS-pyQC repository includes a folder with a
Jupyter Notebook showcasing the workflow of the algorithm
with the Amsterdam PWS dataset. After the import of the
modules which include the code for the PWS-pyQC modules
in the file PWSpyqcFunctions.py, some user-specific
settings like the maximum distance for which the indicator
correlation is calculated or the threshold percentile for the in-
dicator correlation can be made. The user can set or change
the three parameter values of the QC, which need to be ad-
justed according to the temporal resolution of the data and
the network density. The sample data can be loaded, and the
notebook then produces several plots showing the locations
of the primary stations and PWSs. This is followed by exam-
ples for the different filters. The indicator filter accepts and
rejects PWSs that do not match the spatial correlation pattern
of the reference network. The bias correction of individual
PWSs is also showcased in the notebook. The bias correc-
tion described in Bárdossy et al. (2021) is based on a quan-
tile mapping between the PWS and the surrounding primary
station. This bias correction takes about 2 h for the Amster-
dam PWS dataset. Optionally, the bias-corrected PWS data
can be saved as *.csv file. The event filter is applied after the
bias correction and requires a few minutes execution time.
For every time step, the filter flags individual PWSs whose
values deviate too much from the surrounding reference net-
work values. The output of this filter can be saved as a *.csv
file as well.

The GSDR-QC repository includes the scripts required to
prepare data for implementing the QC, running the QC algo-
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Table 1. Technical overview of the QC algorithms.

PWSQC PWS-pyQC GSDR-QC Local

QC modules 1. Neighbour selection
2. Faulty zeroes and high influx filter
3. Station outlier filter and bias correc-
tion factor determination

1. Indicator-based filter
2. Bias correction
3. Event-based filter

1. Flagging of suspicious
observations using defined rule
base
2. Filtering of suspicious obser-
vations not meeting QC criteria

Reference dataset required No, but optional part of initialization of
bias correction factor determination

Yes, required for 1, 2, and 3 Yes, ETCCDI data plus user-
defined maximum daily and
hourly thresholds

Programming
language

R Python Python

Ground truth used in method Median values from neighbouring
PWSs

PWSs should fit in space-time
dependence structure of
reference data

Neighbouring gauges are com-
pared to each other and option-
ally against a reference dataset

Level of QC allocation – Individual measurement – Per full PWS time series
– Event based

– Per individual measurement

Output after running QC
method

– Original PWS dataset
– Three flag files conveying flag
attribution to individual observations
for all three QC methods
– One file with bias correction factors
generated for each observation
– Bias-adjusted PWS dataset with only
reliable observations

– Set of trustworthy PWSs
– Individual bias correction
for each time series
– Implausible time intervals re-
moved for each time series

– Flag file for each gauge
showing individual test results
– Output file with reliable ob-
servations

QC methods are available in the OpenSense sandbox (https://github.com/OpenSenseAction/OPENSENSE_sandbox).

rithm, and generating summary outputs on the impact of the
QC on the observations from each PWS. Where user-defined
modifications can or need to be made, the scripts are avail-
able as Jupyter Notebook instances. Scripts with functions
used in GSDR-QC are provided as *.py scripts. There is a
step-by-step guide to support users, which highlights how to
apply the changes for localization (locally appropriate maxi-
mum hourly and daily rainfall, as well as duration of overlap
of neighbouring observations). The data preparation script is
provided as an example, as the exact process will be deter-
mined by the original format of the PWS observations.

We provide an example of how to implement the three QC
algorithms in the case study, and we highlight some consid-
erations and limitations users should be aware of when se-
lecting the most appropriate method.

4 Case study

The three QC methods have been applied on the same PWS
dataset of 25 months, spanning the Amsterdam metropolitan
area in the Netherlands. For details on this dataset, we refer
the reader to de Vos et al. (2019). Figure 1 highlights that the
spatial spread of PWSs is typically not homogeneous, and
there are also edge effects by only evaluating PWSs within a
bounded box. As the PWS-pyQC algorithm and the iteration

of GSDR-QC available via the OpenSense sandbox require at
least a 1 h temporal resolution as data input, the 5 min PWS
dataset has been aggregated to hourly values. Hourly values
were only constructed with the completeness condition that
at least 10 out of 12 intervals were available; otherwise, the
value became “NA”. PWSQC has been applied to the PWS
dataset in its raw 5 min temporal resolution. Intervals that
were allocated a FZ, HI, and/or a SO error were excluded.
After QC, the PWS dataset was aggregated to hourly values
with the same completeness condition.

As a reference dataset, a gauge-adjusted radar prod-
uct from the Royal Netherlands Meteorological Institute
(KNMI) with a 1 km spatial resolution and 5 min tempo-
ral resolution was used (referred to as the radar reference
from here on). It is a climatological product of radar rainfall
depths corrected with validated hourly automatic rain gauge
measurements and validated daily manual rain gauge mea-
surements, constructed with a considerable delay (i.e. not
real-time available), available on the KNMI data platform
(KNMI, 2023). Additional details on its construction can be
found in Overeem et al. (2009a, b, 2011). It may seem con-
tradictory to consider a radar product as ground truth, while
making the case that PWS data may significantly improve
these existing rainfall measurement techniques. Note that this
radar product combines three types of rainfall information
(two radars and two gauge networks, one automatic and one
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Table 2. Operational guidelines for the use of the QC algorithms.

Applicability regarding PWSQC PWS-pyQC GSDR-QC local

Temporal scale HI filter has no lead-up time,
but (with default parameters)
FZ filter requires 30 min and
SO filter and bias correction re-
quire ≥ 2 weeks of data with
> 100 non-zero intervals.
Most suitable for long periods
of continuous data.

Time series should be long
enough to include significant
number of rain events, which
is dependent on the climatic re-
gion and temporal resolution.

Where neighbouring PWSs are
available within 50 km there is a
minimum requirement of 1 year
of overlapping data. Otherwise,
where climate indices are
available 1 month minimum of
data is required.

Spatial scale Network can span large areas,
provided that neighbour PWS
values are a good proxy of
the ground truth throughout the
network. Neighbours are de-
fined by a range around a sta-
tion which assumes climatolog-
ical agreement with neighbours
in all directions

Due to need for reference set,
PWS network has to overlap
with reference network. For the
indicator filter, the data from
the reference network needs to
represent the local spatial and
temporal rainfall variability, but
a temporal overlap is not neces-
sary.

There are no limitations to
the spatial scale. Considera-
tion must be given that the
same daily and hourly maxi-
mum rainfall thresholds
are applied on the whole area.

Temporal resolution 5 min time steps (or longer) 1 h time steps (or longer) 1 h time steps (or longer)

Spatial resolution Due to neighbour checks, most
suitable for dense networks

Applicable for both dense
and sparse networks

Applicable for both dense
and sparse networks

Operational potential Current version of code works
only on static dataset, but the-
ory applies for operational ap-
plication

Current version of code works
only on static dataset, but the-
ory applies for operational ap-
plication

Developed for static datasets

Approximated runtime
for Amsterdam PWS
dataset

1. Neighbour selection: flash
2. FZ and HI filter: lunch break
3. SO and bias correction:
weekend

1. Indicator correlation: flash
2. Bias correction: lunch break
3. Event filter: coffee time

1. Create gauge objects: flash
2. Run QC: coffee time
3. Extract QC summary: flash

Impact of PWS net-
work scaling on run-
time

As whole network needs to be
evaluated for each time step,
large dependency on number of
stations

Calculation of distance matri-
ces increases non-linearly with
number of stations

Linear with number of PWS

manual) with a significant delay, resulting in it being the best
available reference to work with. The benefit of PWSs is their
high spatial density and availability in real time. By merging
radar data with PWS data, the resulting product combines the
best from both techniques (see, for example, Overeem et al.
(2024); Nielsen et al. (2024); Overeem et al. (2023)).

The results highlight four distinct 24 h rainfall events, se-
lected to represent different spatio-temporal rainfall charac-
teristics. The events were chosen because the majority of
PWSs recorded significant rainfall over an extended dura-
tion, making them appropriate for the application of quality
control (QC) algorithms.

Figure 2 shows the ordinary kriging interpolated rainfall
maps on an ∼ 1 km grid after the QC algorithms were ap-
plied to the PWS data and the radar reference for event 4
(29 May 2018 08:00–30 May 2018 08:00 UTC). The figures

corresponding to the other three events, details on the inter-
polation method, and the difference maps of the four events
can be found in Appendix B. The highest peaks in the radar
reference are not captured by PWSQC. The rainfall in the
southwest part of the area, where the airport is located and
where PWS density is low (see Fig. 1), is underestimated by
all, but most severely by GSDR-QC, which is the least sensi-
tive to remove faulty zeroes in the data. PWS-pyQC has the
best metrics for this event, although only 50 % of the PWSs
are retained on average (see Table E1). The rainfall maps af-
ter applying each of the QC algorithms show similar patterns
to the radar reference.

GSDR-QC shows the most remaining data after QC, while
PWS-pyQC rejects most PWSs on average. This is related to
the faulty zero checks in the other two methods that are im-
plemented at the sub-daily timescale, whereas GSDR-QC ap-
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Figure 1. Map of the study area in the Amsterdam metropolitan area in the Netherlands. The red boxes in the map and overview map indicate
the domain used for the QC comparison. The PWS locations are denoted by the green diamond symbols. Background map: WMS TopPlu-
sOpen (https://gdk.gdi-de.org/geonetwork/srv/api/records/8BDFB79F-A3FD-4668-88D3-DFD957F265C2, last access: 14 October 2024).

plies the check to daily aggregated data, resulting in reduced
sensitivity to missing observations (see also the scatter plots
in Appendix C). Hence, because no bias correction is imple-
mented in GSDR-QC, the tendency for a higher negative bias
was to be expected. Results after PWS-pyQC yield similar
values for bias and Pearson correlation as PWSQC, and val-
ues for the coefficient of variation are smaller than the other
two QC methods.

Figure 3 shows an example of the hourly rainfall spatially
averaged over the full domain for event 4. The spatially av-
eraged rainfall after all methods were applied approximates
the radar reference well, with the least underestimation in
PWSQC and PWS-pyQC. Even though the spatial rainfall
maps present large differences as seen in Fig. 2, this is largely
averaged out over the domain. More results regarding the
four events can be found in Appendix C, D, and E. These
results provide insight into the number of remaining data,
correspondence with radar reference regarding spatial pat-
terns, areal averages, and overall performance metrics for the
study area. The relative performance should be interpreted as
indicative, as they do not constitute a complete benchmark
study.

5 Discussion

In this technical note, a guideline to using three different QC
algorithms was presented. Interested users have the chance
to familiarize themselves with each individual QC and gain
insight into their use. The information presented in Table 1
provides a comprehensive overview of the main differences
between the three QC algorithms. This information should be
beneficial for new users who are interested in using the QC
algorithms. For instance, PWSQC does not require any ad-
ditional information from more reliable observations and can
thus be used in areas without reference data, where only PWS
data are available. PWS-pyQC requires a reference dataset
(primary stations) to derive information about the spatial pat-
tern of indicator correlations and to apply the other filters.
Such a dataset can be either a dense rain gauge network or
(as shown in this study) a gauge-adjusted radar product. In
the absence of such a dataset, PWS-pyQC cannot be used.
GSDR-QC requires a reference dataset of gridded precip-
itation data and user-defined maximum rainfall thresholds.
PWS-pyQC typically retains the smallest number of stations
compared to PWSQC and GSDR-QC. The indicator corre-
lation filter of PWS-pyQC rejects the complete PWS series,
whereas the other QC methods flag and/or remove suspicious
individual observations. PWSQC has been applied conserva-
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Figure 2. Rainfall maps for event 4. Panel (a) shows the gauge-adjusted radar accumulation. Panels (b), (c), and (d) show the interpo-
lated PWS accumulations using the QC algorithms PWSQC, PWS-pyQC, and GSDR-QC, respectively. Panel (e) shows the locations of
all PWSs. Under each map, the data availability after QC is indicated by providing the number of PWSs with hourly data that were
used to generate interpolated maps for the hour with the fewest (min) and most (max) PWSs remaining after QC, as well as the av-
erage (mean) over the 24 h maps. Background map in panel (e): WMS TopPlusOpen (https://gdk.gdi-de.org/geonetwork/srv/api/records/
8BDFB79F-A3FD-4668-88D3-DFD957F265C2).

Figure 3. Example of areal rainfall over the Amsterdam metropoli-
tan area for event 4.

tively: if not enough data are available to determine a flag,
the data are not excluded. Given that PWSQC is applicable
to 5 min time series and that PWS-pyQC and GSDR-QC are
applicable to hourly time series, the calculation of the num-
ber of remaining observations is slightly different.

In Table 2, several operational guidelines are provided.
Such information is beneficial to select the appropriate QC
for the given data availability. The availability of the three

QC algorithms within the OpenSense sandbox along with the
data from the case study enables testing and experimenting
with each QC. Moreover, users can easily modify the QC pa-
rameter values without the need to change the main QC func-
tions. Within the case study, the three QC algorithms were
applied to the same dataset. An interpolation for one daily
event showed that all QC algorithms are able to adequately
estimate the average areal rainfall, although the spatial pat-
terns can largely differ. This preliminary analysis cannot pro-
vide a detailed comparison between the QC performances.
For this, a sensitivity analysis regarding the choice of pa-
rameters and reference data would be needed. In addition,
long record periods and different climatic conditions would
be needed. Such an analysis is beyond the scope of this tech-
nical note, as the main aim is to provide interested users with
guidelines for using the different QC algorithms. Each QC al-
gorithm was developed and presented in the original studies,
where the validity of each QC algorithm was tested (de Vos
et al., 2019; Bárdossy et al., 2021; Lewis et al., 2019). The
PWS dataset used in this study is of a relatively small size.
Upscaling the QC algorithms for larger datasets, e.g. cover-
ing Europe (Netatmo (2021): EUMETNET Sandbox, 2021),
requires additional steps. For instance, PWS-pyQC applies
the filters for every PWS independently; hence, a paralleliza-
tion of the filters allows for handling large datasets and time-
consuming steps. PWSQC cannot be parallelized per time
subset due to lead-up time. Parallelization per subset of sta-
tions is possible, but the whole PWS dataset needs to be
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within the working memory of each parallel run to ensure
that a PWS’s neighbours are always part of the analysis. An
alternative approach is used in Overeem et al. (2024) and in
the application of spin-off code from Van Andel (2021) on
Dutch water board gauge data, to apply the FZ and HI filters
only, as these are more efficiently run than the SO filter and
bias correction factor allocation. GSDR-QC is easily run in
parallel as each rain gauge is analysed in a separate process
and as multiple gauges may be analysed simultaneously. The
Python code has been written to be efficient, and the whole
case study sample is processed in a few minutes on an eight-
core laptop. GSDR-QC is therefore the fastest to implement
as it was designed for the quality control of a global dataset.

6 Conclusions and outlook

In this work, we presented guidelines for using open-source
QC algorithms for PWS rainfall data based on a single
dataset and a case study. The aim was to provide an exam-
ple of how QC for PWSs can be used and to contextualize
the additional input data requirements and the technical and
operational guidelines for the individual QC methods. Inter-
ested users can select the most appropriate QC algorithm for
their case study, and whilst the subsequent dataset might not
be perfect, there is an improvement from the raw data. Stud-
ies like the ones from Bárdossy et al. (2022) and Overeem
et al. (2024) have shown the added value of PWSs for im-
proving rainfall estimates for extreme events in Germany and
quantitative precipitation estimation on a European scale, re-
spectively.

In our example, all presented QC methods improve the
quality of PWS rainfall data; however, this single example
does not provide sufficient data to accurately benchmark the
three algorithms. Additional work is required for compre-
hensive sensitivity testing across a range of environments,
monitoring networks, and weather patterns to provide more
quantitative guidance on the most appropriate QC method.

We make a plea for open-access opportunistic sensing
data on a European or even global level (or restricted ac-
cess for research purposes), which would foster the devel-
opment and improvement of QC and rainfall-retrieval al-
gorithms. Eventually, this will lead to improved precipita-
tion products and applications such as validation of weath-
er/climate models, hydrological modelling, nowcasting, etc.
Furthermore, there is a need for large benchmark radar and
rain gauge datasets from different regions and climates. Such
benchmark datasets would facilitate a fair intercomparison
of QC algorithms and even different opportunistic sensor
rainfall estimates from commercial microwave links (CMLs)
and satellite microwave links (SMLs). Intercomparison stud-
ies also require appropriate metrics and the aforementioned
datasets. A discussion on standardized benchmark metrics to
be used for intercomparison studies is needed. Benchmark-
ing and intercomparison of algorithms for opportunistic sen-

sor data, merging of opportunistic sensor data and traditional
data from rain gauges and radars, and the integration of these
data into standard observation systems are objectives that are
currently being addressed in the OpenSense COST Action
project (https://opensenseaction.eu/).

An ongoing activity within working group 2 of the
OpenSense COST Action project is the open-source software
implementation the QC algorithms for processing OS data.
The aim is to develop a Python module which includes all
modules of the QC algorithms presented in this paper. In the
long run, this will replace the current QC algorithms in the
OpenSense sandbox and will allow users to apply and even
combine these in a uniform standardized programming lan-
guage.

Appendix A: Metrics for all four events

For the four events, 24 h accumulations maps based on hourly
interpolations were derived and compared. Subsequently,
hourly areal averages over the study domain were calculated
and compared. Furthermore, the number of remaining sta-
tions was calculated. A point value comparison was done by
calculating the pair-wise correlation value, the bias, and the
coefficient of variation (CV) between the PWS and reference
data for all PWSs locations in the study domain.

The first evaluation metric is the Pearson correlation. It is
a widely used pair-wise dependence measure to identify the
presence (or absence), the strength, and the direction of a
linear relationship between pairs of variables (e.g. x and y).
The equation for calculating the Pearson correlation is

rxy =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)
2
√∑n

i=1(yi − y)
2
=

cov(X,Y )
σXσY

. (A1)

The second metric is the relative bias (RB) defined as fol-
lows:

RB=
(x− y)

y
. (A2)

The third metric is the coefficient of variation (CV, Eq. A3)
and is used to quantify the dispersion in the data

CV=
σ(x− y)

y
, (A3)

where x is the variable to evaluate, y is the reference variable,
σ is the standard deviation, rxy is the Pearson correlation co-
efficient, xi is the value of x at time interval i, x is the average
value of time series x, yi is the value of y (the reference) at
time interval i, y is the average value of time series y (the
reference), and n is the number of observations.
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Table A1. Overview of the four rainfall events chosen for this case
study.

Start End Event characteristics

Event 1 12 May 2017 08:00 UTC 13 May 2017 08:00 UTC Several showers
Event 2 27 Nov 2017 08:00 UTC 28 Nov 2017 08:00 UTC Stratiform rainfall, dry spell from 22:00 to 05:00
Event 3 15 Jan 2018 08:00 UTC 16 Jan 2018 08:00 UTC Stratiform rainfall, one very evident outlier PWS
Event 4 29 May 2018 08:00 UTC 30 May 2018 08:00 UTC Convective rainfall from 14:00 to 22:00

Appendix B: Additional rainfall maps

Figures B1–B3 show the interpolated 24 h rainfall map after
the corresponding QC algorithms were applied. Figures B4–
B7 show that the filtered and corrected PWS data are inter-
polated using ordinary kriging (OK) on the same grid as the
reference dataset. OK utilizes the spatial configuration of the
points, which is quantified by a fitted variogram model. The
latter is derived in the rank space domain following the pro-
cedure in Lebrenz and Bárdossy (2017). The parameters (sill
and range) were further adapted to adhere with the bounds
and order of magnitudes with those derived for the Dutch
conditions in the work by Van de Beek et al. (2012). In case
no suitable variogram could be derived, e.g., due to the large
number of zeros, an average spherical variogram was used,
without a nugget value and with a sill scaled according to
the data variance. For every hour of the selected daily event
with positive PWS observations, the values in the domain are
spatially interpolated. The number of accepted PWSs is ac-
cordingly noted. The daily map is acquired by accumulating
the hourly maps.

For event 2 (Fig. B2), all QC methods show more spa-
tial variability than the radar reference, which is caused by
some faulty zeros which are not detected by PWSQC or
GSDR. Also, some higher values appear which were ob-
viously not identified as outliers by the QC methods. For
event 3 (Fig. B2), there is a very evident outlier PWS with
high rainfall amounts over 30 mm. This outlier was not de-
tected by PWSQC and GSDR.
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Figure B1. Rainfall maps for event 1. Panel (a) shows the gauge-adjusted radar accumulation. Panels (b), (c), and (d) show the inter-
polated PWS accumulations using the QC algorithms PWSQC, PWS-pyQC, and GSDR-QC, respectively. Panel (e) shows the locations
of all PWSs. Under each map, the data availability after QC is indicated by providing the number of PWSs with hourly data that were
used to generate interpolated maps for the hour with the fewest (min) and most (max) PWSs remaining after QC, as well as the av-
erage (mean) over the 24 h maps. Background map in panel (e): WMS TopPlusOpen (https://gdk.gdi-de.org/geonetwork/srv/api/records/
8BDFB79F-A3FD-4668-88D3-DFD957F265C2).

Figure B2. Rainfall maps for event 2. Panel (a) shows the gauge-adjusted radar accumulation. Panels (b), (c), and (d) show the inter-
polated PWS accumulations using the QC algorithms PWSQC, PWS-pyQC and GSDR-QC, respectively. Panel (e) shows the locations
of all PWSs. Under each map, the data availability after QC is indicated by providing the number of PWSs with hourly data that were
used to generate interpolated maps for the hour with the fewest (min) and most (max) PWSs remaining after QC, as well as the av-
erage (mean) over the 24 h maps. Background map in panel (e): WMS TopPlusOpen (https://gdk.gdi-de.org/geonetwork/srv/api/records/
8BDFB79F-A3FD-4668-88D3-DFD957F265C2).
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Figure B3. Rainfall maps for event 3. Panel (a) shows the gauge-adjusted radar accumulation. Panels (b), (c), and (d) show the inter-
polated PWS accumulations using the QC algorithms PWSQC, PWS-pyQC, and GSDR-QC, respectively. Panel (e) shows the locations
of all PWSs. Under each map, the data availability after QC is indicated by providing the number of PWSs with hourly data that were
used to generate interpolated maps for the hour with the fewest (min) and most (max) PWSs remaining after QC, as well as the av-
erage (mean) over the 24 h maps. Background map in panel (e): WMS TopPlusOpen (https://gdk.gdi-de.org/geonetwork/srv/api/records/
8BDFB79F-A3FD-4668-88D3-DFD957F265C2).

Figure B4. Differences between the radar reference and the interpolated maps from the three QC algorithms for event 1.

Figure B5. Differences between the radar reference and the interpolated maps from the three QC algorithms for event 2.
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Figure B6. Differences between the radar reference and the interpolated maps from the three QC algorithms for event 3.

Figure B7. Differences between the radar reference and the interpolated maps from the three QC algorithms for event 4.

Appendix C: Scatter plots for the four selected events

Figure C1 shows four scatter plots for the chosen events.
The scatter plots are derived by comparing the hourly PWS
data after QC has been applied with a gauge-adjusted radar
product, more specifically the overlying pixel of these PWS
locations. Only the remaining hourly intervals for every
QC method were considered. The data of PWSQC are dis-
played by the red dots, those of PWS-pyQC are displayed
by the blue squares, and those of GSDR-QC are displayed
by the green triangles. For every event, several metrics
are calculated and showcased within each plot. For each
QC method, the number of total data points in the event
(134 PWSs× 24 time steps) that is covered after filtering
is provided as a percentage. Given that we did not start off
with 100 % data availability in the original PWS dataset, this
should only be interpreted relative to the other QC method
outcomes. This shows that after PWS-pyQC, most data are
rejected.

GSDR-QC shows more remaining data after QC; evident are
the 0 mm precipitation records in PWS data, while the radar
reference records rainfall (the dots spread out horizontally
on the x axis). This is due to faulty zero checks in the other
two methods being implemented at the sub-daily timescale,
whereas GSDR-QC applies the check to daily aggregated
data, resulting in reduced sensitivity to missing observations.
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Figure C1. The scatter plots of hourly rainfall amounts of PWS after QC is applied against the gauge-adjusted radar reference at the PWS
location, including metrics for each of the three QC algorithms. Panels (a) to (d) correspond to the considered events 1 to 4, respectively.

Appendix D: Areal rainfall

Figure D1. Panels (a), (b) and (c) show the areal rainfall over the Amsterdam metropolitan area for events 1, 2, and 3, respectively.
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Appendix E: Metrics calculated for the four events

Table E1. Comparison metrics calculated for the four events.

Event 1 Event 2 Event 3 Event 4

Remaining PWS [%] PWSQC 61 67 63 62
PWS-pyQC 44 43 42 50
GSDR-QC 74 71 70 73

Pearson correlation PWSQC 0.71 0.90 0.83 0.84
PWS-pyQC 0.73 0.94 0.87 0.92
GSDR-QC 0.64 0.83 0.48 0.86

Relative bias PWSQC −0.01 0.02 −0.13 −0.20
PWS-pyQC 0.12 0.08 −0.03 −0.07
GSDR-QC −0.21 −0.09 −0.17 −0.25

CV PWSQC 1.67 1.01 0.75 1.58
PWS-pyQC 1.53 0.82 0.62 1.11
GSDR-QC 1.64 1.29 1.70 1.44

Code and data availability. The gauge-adjusted radar product
from the Royal Netherlands Meteorological Institute (KNMI) is
freely available on the KNMI data platform: https://dataplatform.
knmi.nl/dataset/rad-nl25-rac-mfbs-5min-netcdf4-2-0 (KNMI,
2023). The employed PWS dataset is publicly available at
de Vos (2019) (https://doi.org/10.4121/uuid:6e6a9788-49fc-
4635-a43d-a2fa164d37ec). The corresponding code for the
analysis is available upon request from the contact author.
All QC software is open source and can be accessed in the
OpenSense sandbox (https://github.com/OpenSenseAction/
OPENSENSE_sandbox, last access: 14 October 2024;
https://doi.org/10.5281/zenodo.13929196, Chwala et al., 2024)
in addition to their original locations. PWSQC is available as
R code under https://github.com/LottedeVos/PWSQC (last access:
14 October 2024; https://doi.org/10.5281/zenodo.10629489,
de Vos, 2021). PWS-pyQC is available as Python code un-
der https://github.com/AbbasElHachem/pws-pyqc (last access:
14 October 2024; https://doi.org/10.5281/zenodo.7310212,
El Hachem, 2022). GSDR-QC is available as Python code under
https://github.com/RVH-CR/intense-qc (last access: 14 Octo-
ber 2024; https://doi.org/10.5281/zenodo.13920320, McClean and
Pritchard, 2024).
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